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Introduction

Practical Artificial Intelligence (PAI) is a book that proposes a new model 

for learning. Most AI books deeply focus on theory and abandon practical 

problems that demonstrate the theory introduced throughout the book. 

In PAI we propose a model that follows Benjamin Franklin’s (Founding 

Father of the United States of America) ideas: “Tell me and I forget. Teach 

me and I remember. Involve me and I learn.” Therefore, PAI includes 

theoretical knowledge but guarantees that at least one fully coded (C#) 

practical problem is included in every chapter as a way to allow readers to 

better understand and as a way to get them involved with the theoretical 

concepts and ideas introduced during the chapter. These practical 

problems can be executed by readers using the code associated with 

this book and should give them a better insight into the concepts herein 

described.

Explanations and definitions included in PAI are intended to be 

as simple as they can be (not putting aside the fact that they belong 

to a mathematical, scientific environment) so readers from different 

backgrounds can engage with the content and understand it using 

minimal mathematical or programming knowledge.

Chapters 1 and 2 explore logic as a fundamental founding block of 

many sciences, like mathematics or computer science. In these chapters, 

we will describe propositional logic, first-order logic, and automated 

theorem proving; related practical problems coded in C# will be presented.

Throughout chapters 3–7, we will focus on agents and multi-agent  

systems. We’ll dive into the different types of agents and their 

architectures, then we’ll present a big practical problem where we’ll code 

a Mars Rover whose task is to find water on Mars. We’ll include another 
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practical problem where we set up a group of agents to communicate 

using Windows Communication Foundation (WCF), and finally, we’ll end 

this part of the book by presenting another practical problem (Chapter 7) 

where a group of agents forming a multi-agent system will collaborate and 

communicate to clean a room of its dirt.

Chapter 8 will describe a sub-field of AI known as simulation, where 

by using statistical, probabilistic tools we simulate a scenario of real life. 

In this case, we’ll simulate the functioning of an airport, with airplanes 

arriving at and departing from the airport during a certain period of time.

Chapters 9–12 will be dedicated to supervised learning, a very 

important paradigm of machine learning where we basically teach a 

machine (program) to do something (usually classify data) by presenting 

it with many samples of pairs <data, classification>, where data could 

be anything; it could be animals, houses, people, and so on. For instance, 

a sample set could be <elephant, big>, <cat, small>, and so forth. 

Clearly, for the machine to be able to understand and process any data we 

must input numerical values instead of text. Throughout these chapters we 

will explore support vector machines, decision trees, neural networks, and 

handwritten digit recognition.

Chapter 13 will explain another very important paradigm of machine 

learning, namely unsupervised learning. In unsupervised learning we 

learn the structure of the data received as input, and there are no labels 

(classifications) as occurred in supervised learning; in other words, 

samples are simply <data>, and no classification is included. Thus, an 

unsupervised learning program learns without any external help and by 

looking only at the information provided by the data itself. In this chapter, 

we will describe clustering, a classic unsupervised learning technique. 

We will also describe multi-objetive clustering and multi-objective 

optimization. A method for constructing the Pareto Frontier, namely 

Pareto Frontier Builder, proposed by the author, will be included in this 

chapter.

IntroductionIntroduction
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Chapter 14 will focus on heuristics and metaheuristics, a topic we 

will be mentioning in previous chapters and will finally be studied here. 

We will describe mainly two metaheuristics: genetic algorithms and tabu 

search, which are two of the main representatives of the broadest classes 

of metaheuristics, which are population-based metaheuristics and single 

solution–based metaheuristics.

Chapter 15 will explore the world of game programming, specifically 

games where executing a search is necessary. Many of the popular search 

algorithms will be detailed and implemented. A practical problem where 

we design and code a sliding tiles puzzle agent will also be included.

Chapter 16 will dive into game theory, in particular a sub-field of 

it known as adversarial search. In this field, we will study the Minimax 

algorithm and implement an Othello agent that plays using this strategy 

(Minimax).

Chapter 17 will describe a machine-learning paradigm that nowadays 

is considered the future of artificial intelligence; this paradigm is 

reinforcement learning. In reinforcement learning, agents learn through 

rewards and punishment; they learn over time like humans do, and when 

the learning process is long enough they can achieve highly competitive 

levels in a game, up to the point of beating a human world champion (as 

occurred with backgammon and Go).

IntroductionIntroduction
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CHAPTER 1

Logic & AI
In this chapter, we’ll introduce a topic that is vital not only to the world 

of artificial intelligence (AI) but also to many other areas of knowledge, 

such as mathematics, physics, medicine, philosophy, and so on. It 

has been deeply studied and formalized since ancient times by great 

philosophers like Aristotle, Euclid, and Plato and by some of the greatest 

mathematicians of all time. Born in the early ages of mankind, it represents 

a basic tool that allowed science to flourish up to the point where it is 

today. It clarifies and straightens our complicated human minds and 

brings order to our sometimes disordered thoughts.

Logic, this matter to which we have been referring thus far, will be the 

main focus of this chapter. We’ll be explaining some of its fundamental 

notions, concepts, and branches, as well as its relation to computer 

science and AI. This subject is fundamental to understanding many of the 

concepts that will be addressed throughout this book. Furthermore, how 

can we create a decent artificial intelligence without logic? Logic directs 

rationality in our mind; therefore, how can we create an artificial version 

of our mind if we bypass that extremely important element (logic) that 

is present in our “natural” intelligence and dictates decisions in many 

cases—or, to be precise, rational decisions.

Propositional logic; first-order logic; practical problems where we’ll 

learn how to create a logic framework, how to solve the SAT (satisfiability) 

problem using an outstanding algorithm called DPLL, and how to code 

a first, simple, naive cleaning robot using first-order logic components—

these topics will get us started in this book.
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Note  Logic can be branched into mathematical logic, philosophical 
logic, computational logic, Boolean logic, fuzzy logic, quantum logic, 
and so forth. In this book, we will be dealing with computational logic, 
the field related to those areas of computer science and logic that 
necessarily overlap.

�What Is Logic?
Intuitively we all have a notion of what logic is and how useful it can be 

in our daily lives. Despite this common sense or cultural concept of logic, 

surprisingly there is, in the scientific community, no formal or global 

definition (as of today) of what logic is.

In seeking a definition from its founding fathers, we could go back in 

time to its roots and discover that the word logic actually derives from the 

Ancient Greek logike, which translates as “concept, idea, or thought.”

Some theorists have defined logic as “the science of thought.” Even 

though this definition appears to be a decent approximation of what we 

typically associate with logic, it’s not a very accurate definition because 

logic is not the only science related to the study of thoughts and reasoning. 

The reality is that this subject is so deeply ingrained at the foundation of all 

other sciences that it’s hard to provide a formal definition for it.

In this book, we’ll think of logic as a way to formalize human 

reasoning.

Since computational logic is the branch of logic that relates to 

computer science, we’ll be describing some important notions on this 

subject. Ultimately, the concepts described here will be useful throughout 

this book and in every practical problem to be presented.

Chapter 1  Logic & AI
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Note  Logic is used extensively in computer science: at the processor 
level by means of logical gates, in hardware and software verification 
such as floating-point arithmetic, in high-level programming like 
constraint programming, and in artificial intelligence for problems 
such as planning, scheduling, agents control, and so forth.

�Propositional Logic
In daily life and during our human communication process, we constantly 

listen to expressions of the language that possess a certain meaning; 

among these we can find the propositions.

Propositions are statements that can be classified according to 

their veracity (True or 1, False or 0, etc.) or according to their modality 

(probable, impossible, necessary, etc.). Every proposition expresses a 

certain thought that represents its meaning and content. Because of 

the wide variety of expressions in our language, they can be classified 

as narratives, exclamatory, questioning, and so forth. In this book, we’ll 

focus on the first type of proposition, narratives, which are expressions of 

judgment, and we’ll simply call them propositions from this point on.

The following list presents a few examples of propositions:

	 1.	 “Smoking damages your health.”

	 2.	 “Michael Jordan is the greatest basketball player of 

all time.”

	 3.	 “Jazz is the coolest musical genre in the world.”

	 4.	 “100 is greater than 1.”

	 5.	 “There are wonderful beaches in Havana.”

Chapter 1  Logic & AI
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	 6.	 “World War II ended in 1945.”

	 7.	 “I listen to Sting’s music.”

	 8.	 “I will read poems from Spanish poet Rafael Alberti.”

These are simple or atomic propositions that we can use in any 

ordinary day during any ordinary conversation. In order to add complexity 

and transform them into something a bit more meaningful we can rely 

on compound propositions, which are obtained by means of logical 

connectors linking simple propositions like the ones previously listed.

Hence, from the propositions just listed we could obtain the following 

(not necessarily correct or meaningful) compound propositions.

	 1.	 “There are NOT wonderful beaches in Havana.”

	 2.	 “Smoking damages your health AND 100 is greater 

than 1.”

	 3.	 “Michael Jordan is the greatest basketball player of 

all time OR World War II ended in 1945.”

	 4.	 “IF Jazz is the coolest musical genre in the world 

THEN I listen to Sting’s music.”

	 5.	 “I will read poems from Spanish poet Rafael Alberti 

IF AND ONLY IF 100 is greater than 1.”

Logical connectives in these cases are shown in capital letters and are 

represented by the words or phrases “NOT”, “AND”, “OR”, “IF …THEN” 

and “IF AND ONLY IF”.

Simple or atomic propositions are denoted using letters (p, q, r, etc.) 

known as propositional variables. We could name some of the preceding 

propositions as follows:

	 1.	 p = “Smoking damages your health.”

	 2.	 q = “Michael Jordan is the greatest basketball player 

of all time.”

Chapter 1  Logic & AI
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	 3.	 r = “Jazz is the coolest musical genre in the world.”

	 4.	 s = “100 is greater than 1.”

A proposition that can be either True (1) or False (0) depending on 

the truth value of the propositions that compose it is known as a formula. 

Note that a formula can be simple; in other words, it can be composed 

of a single proposition. Consequently, every proposition is considered a 

formula.

The syntax of propositional logic is governed by the following rules:

	 1.	 All variables and propositional constants  

(True, False) are formulas.

	 2.	 If F is a formula then NOT F is also a formula.

	 3.	 If F, G are formulas then F AND G, F OR G, F => G,  

F <=> G also represent formulas.

An interpretation of a formula F is an assignation of truth values for 

every propositional variable that occurs in F and determines a truth value 

for F. Since every variable always has two possible values (True, False or 1, 0)  

then the total number of interpretations for F is 2n where n is the total 

number of variables occurring in F.

A proposition that is True for every interpretation is said to be a 

tautology or logic law.

A proposition that is False for every interpretation is said to be a 

contradiction or unsatisfiable.

We’ll be interested in studying the truth values of combined 

propositions and how to compute them. In the Satisfiability problem, we 

receive as input a formula, usually in a special, standardized form known as 

Conjunctive Normal Form (soon to be detailed), and we’ll try to assign truth 

values for its atomic propositions so the formula becomes True (1); if such 

assignment exists, we say that the formula is Satisfiable. This is a classic 

problem in computer science and will be addressed throughout this chapter.

Chapter 1  Logic & AI
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In the next section, we’ll take a closer look at logical connectives, as 

they are determinant in establishing the final truth value of a formula.

�Logical Connectives
Commonly, logical connectives are represented using the following 

symbols:

•	 ¬ denotes negation (“NOT”)

•	 ∧ denotes conjunction (“AND”)

•	 ∨ denotes disjunction (“OR”)

•	 => denotes implication (“IF … THEN”)

•	 <=> denotes double implication or equivalence  
(“IF AND ONLY IF”)

Logical connectives act as unary or binary (receive one or two 

arguments) functions that provide an output that can be either 1 (True) or 

0 (False). In order to better understand what the output would be for every 

connective and every possible input, we rely on truth tables.

Note T he tilde symbol (~) is also used to indicate negation.

In a truth table, columns correspond to variables and outputs and rows 

correspond to every possible combination of values for each propositional 

variable. We’ll see detailed truth tables for every connective in the 

following subsections.

Chapter 1  Logic & AI
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�Negation
If we have a proposition p then its negation is denoted ¬p (read Not p). 

This is a unary logical connective because it requires a single proposition 

as input.

Let’s try to negate some of the propositions previously presented:

	 1.	 “Smoking DOES NOT damage your health.”

	 2.	 “Michael Jordan is NOT the greatest basketball 

player of all time.”

	 3.	 “Jazz is NOT the coolest musical genre in the world.”

	 4.	 “100 is NOT greater than 1.”

	 5.	 “There are NOT wonderful beaches in Havana.”

	 6.	 “World War II DID NOT end in 1945.”

The truth table for the negation connective is the following (Table 1-1).

Table 1-1.  Truth Table for  

Negation Logical Connective

p ¬p

1 0

0 1

From Table 1-1 we can see that if a proposition p is True (1) then its 

negation (¬p) is False (0), and vice versa if the proposition is False.

Chapter 1  Logic & AI
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�Conjunction
If we have propositions p, q then their conjunction is denoted p ∧ q (read p 

AND q). This is a binary logical connective; it requires two propositions as 

input.

The conjunction of the previous propositions can be obtained by 

simply using the AND word, as follows:

	 1.	 “Smoking damages your health AND I will read 

poems from Spanish poet Rafael Alberti.”

	 2.	 “Michael Jordan is the greatest basketball player of 

all time AND jazz is the coolest musical genre in the 

world.”

	 3.	 “100 is greater than 1 AND there are wonderful 

beaches in Havana.”

The truth table for the conjunction connective is shown in Table 1-2.

Table 1-2.  Truth Table for the  

Conjunction Logical Connective

p q p ∧ q

1 0 0

0 1 0

0 0 0

1 1 1

Table 1-2 permits us to see that p ∧ q is True only when both p and q 

are True simultaneously.

Chapter 1  Logic & AI
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�Disjunction
If we have propositions p, q then their disjunction is denoted p ∨ q (read 

p OR q). This is a binary logical connective; it requires two propositions as 

input.

The disjunction of the previous propositions can be obtained by simply 

using the OR word, as follows:

	 1.	 “I will read poems from Spanish poet Rafael Alberti 

OR I listen to Sting’s music.”

	 2.	 “Michael Jordan is the greatest basketball player of 

all time OR jazz is the coolest musical genre in the 

world.”

	 3.	 “World War II ended in 1945 OR there are wonderful 

beaches in Havana.”

The truth table for the conjunction connective is as follows (Table 1-3).

Table 1-3.  Truth Table for the  

Disjunction Logical Connective

p q p ∨ q

1 0 1

0 1 1

0 0 0

1 1 1

From Table 1-3 we can see that p ∨ q is True when either p or q are True.

Chapter 1  Logic & AI
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�Implication
Countless expressions in mathematics are stated as an implication; i.e., in 

the manner “if . . . then.” If we have propositions p, q then their implication 

is denoted p => q (read p IMPLIES q). This is a binary logical connective; 

it requires two propositions as input and indicates that from p veracity we 

deduce q veracity.

We say that q is a necessary condition for p to be True and p is a 

sufficient condition for q to be True.

The implication connector is similar to the conditional statement (if) 

that we find in many imperative programming languages like C#, Java, 

or Python. To understand the outputs produced by the connective let us 

consider the following propositions:

•	 p = John is intelligent.

•	 q = John goes to the theater.

An implication p => q would be written as “If John is intelligent then he 

goes to the theater.” Let’s analyze each possible combination of values for 

p, q and the result obtained from the connective.

Case 1, where p = 1, q = 1. In this case, John is intelligent and he goes to 

the theater; therefore, p => q is True.

Case 2, where p = 1, q = 0. In this case, John is intelligent but does not 

go to the theater; therefore, p => q is False.

Case 3, where p = 0, q = 1. In this case, John is not intelligent even 

though he goes to the theater. Since p is False and p => q only indicates 

what happens when p = John is intelligent, then proposition p => q is not 

negated; hence, it’s True.

Case 4, where p = 0, q = 0. In this case, John is not intelligent and 

does not go to the theater. Since p is False and p => q only indicates what 

happens when p is True, then p => q is True.

Chapter 1  Logic & AI



11

In general, proposition p => q is True whenever p = 0 because if 

condition p does not hold (John’s being intelligent) then the consequence 

(John goes to the theater) could be anything. It could be interpreted as “If 

John is intelligent then he goes to the theater”; otherwise, “If John is not 

intelligent then anything could happen,” which is True.

The truth table for the implication connective is shown in Table 1-4.

Table 1-4.  Truth Table for the  

Implication Logical Connective

p q p => q

1 0 0

0 1 1

0 0 1

1 1 1

Proposition p => q is True when p is False or both p and q are True.

�Equivalence
Propositions p, q are said to be equivalent, denoted p <=> q (read p Is 

Equivalent to q or p If and Only If q), if it occurs that p => q and q => p both 

have the same value.

The double implication or equivalence connective will output True 

only when propositions p, q have the same value.

Chapter 1  Logic & AI



12

The truth table for the equivalence connective can be seen in Table 1-5.

Table 1-5.  Truth Table for the  

Equivalence Logical Connective

p q p <=> q

1 0 0

0 1 0

0 0 1

1 1 1

Considering propositions p, q, r, the equivalence connective satisfies 

the following properties:

•	 Reflexivity: p <=> p

•	 Transitivity: if p <=> r and r <=> q then

	 p <=> q

•	 Symmetry: if p <=> q then q <=> p

Both the implication and equivalence connectives have great 

importance in mathematical, computational logic, and they represent 

fundamental logical structures for presenting mathematical theorems. The 

relationship between artificial intelligence, logical connectives, and logic 

in general will seem more evident as we move forward in this book.

�Laws of Propositional Logic
Now that we have gotten acquainted with all logical connectors, let’s 

introduce a list of logic equivalences and implications that, because of 

their significance, are considered Laws of Propositional Logic. In this case, 

Chapter 1  Logic & AI
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p, q, and r are all formulas, and we will use the ≡ symbol to denote that 

p <=> q is a tautology; i.e., it’s True under any set of values for p, q (any 

interpretation). In such cases we say that p and q are logically equivalent. 

This symbol resembles the equal sign used in arithmetic because its 

meaning is similar but at a logical level. Having p ≡ q basically means that 

p and q will always have the same output when receiving the same input 

(truth values for each variable).

Logical equivalences:

	 1.	 p ∨ p ≡ p (idempotent law)

	 2.	 p ∧ p ≡ p (idempotent law)

	 3.	 [p ∨ q] ∨ r ≡ p ∨ [q ∨ r] (associative law)

	 4.	 [p ∧ q] ∧ r ≡ p ∧ [q ∧ r] (associative law)

	 5.	 p ∨ q ≡ q ∨ p  (commutative law)

	 6.	 p ∧ q ≡ q ∧ p  (commutative law)

	 7.	 p ∧ [q∨ r] ≡ [p ∧ q] ∨ [p ∧r] (distributive law over ˄)

	 8.	 p ∨ [q ∧ r] ≡ [p ∨ q] ∧ [p ∨ r] (distributive law over ˅)

	 9.	 p ∨ [p ∧ q] ≡ p

	 10.	 p ∧ [p ∨ q] ≡ p

	 11.	 p ∨ 0 ≡ p

	 12.	 p ∧ 1 ≡ p

	 13.	 p ∨ 1 ≡ 1

	 14.	 p ∧ 0 ≡ 0

	 15.	 p ∨ ¬p ≡ 1

	 16.	 p ∧ ¬p ≡ 0    (contradiction)

	 17.	 ¬[¬p] ≡ p    (double negation)

Chapter 1  Logic & AI
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	 18.	 ¬1 ≡ 0

	 19.	 ¬0 ≡ 1

	 20.	 ¬[p ∨ q] ≡ ¬p ∧ ¬q     (De Morgan’s law)

	 21.	 ¬[p ∧ q] ≡ ¬p ∨ ¬q     (De Morgan’s law)

	 22.	 p => q ≡ ¬p ∨ q      (definition =>)

	 23.	 [p <=> q] ≡ [p => q] ∧ [q => p] (definition <=>)

Note the use of brackets in some of the previous formulas. As occurs 

in math, brackets can be used to group variables and their connectives all 

together to denote order relevance, association with logical connectives, 

and so forth. For instance, having a formula like p ∨ [q ∧ r] indicates the 

result of subformula q ∧ r is to be connected with the disjunction logical 

connective and variable p.

In the same way as we introduced the ≡ symbol for stating that p, q 

were logically equivalent we now introduce the ≈ symbol for denoting that 

p, q are logically implied, written p ≈ q. If they are logically implied then  

p => q must be a tautology.

Logical implications:

	 1.	 p ≈ q => [p ∧ q]

	 2.	 [p => q] ∧ [q => r] ≈ p => q

	 3.	 ¬q => ¬p ≈ p => q

	 4.	 [p => q] ∧ [¬p => q] ≈ q

	 5.	 [p => r] ∧ [q => r] ≈ [p ∨ q] => r

	 6.	 ¬p => [q ∧ ¬q] ≈ p

	 7.	 p => [q ∧ ¬q] ≈ ¬p

	 8.	 ¬p => p ≈ p

	 9.	 p => ¬p ≈ ¬p
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	 10.	 p => [¬q => [r ∧ ¬r]] ≈ p => q

	 11.	 [p ∧ ¬q] => q ≈ p => q

	 12.	 [p ∧ ¬q] => ¬p ≈ p => q

	 13.	 [p => q] ∧ [¬p => r ] ≈ q ∨ r

	 14.	 ¬p => q ≈ p ∨ q

	 15.	 p => q ≈ q ∨ ¬p

	 16.	 p ≈ p ∨ q

	 17.	 p ∧ q ≈ p

	 18.	 p ≈ q => p

Many of these laws are very intuitive and can be easily proven by 

finding all possible values of the variables involved and the final outcome 

of every formula. For instance, equivalence ¬[p ∨ q] ≡ ¬p ∧ ¬q, which is 

known as De Morgan’s law, can be proven by considering every possible 

value for p, q in a Truth table, as shown in Table 1-6.

Table 1-6.  Truth Table Verifying ¬[p ∨ q] ≡ ¬p ∧ ¬q

p q ¬[p ∨ q] ¬p ∧ ¬q

0 0 1 1

0 1 0 0

1 0 0 0

1 1 0 0

So far we have presented some of the basic topics of computational 

logic. At this point, the reader might wonder what the relationship 

between propositional logic and artificial intelligence may be. First of all, 

propositional logic and logic in general are the founding fields of many 
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areas related to AI. Our brain is crowded with logical decisions, On (1) / 

Off (0) definitions that we make every step of the way, and that on multiple 

occasions are justified by our “built-in” logic. Thus, because AI tries to 

emulate our human brain at some level, we must understand logic and 

how to operate with it in order to create solid, logical AIs in the future. In 

the following sections we’ll continue our studies of propositional logic, and 

we’ll finally get a glimpse of a practical problem.

�Normal Forms
When checking satisfiability, certain types of formulas are easier to work 

with than others. Among these formulas we can find the normal forms.

•	 Negation Normal Form (NNF)

•	 Conjunctive Normal Form (CNF)

•	 Disjunctive Normal Form (DNF)

We will assume that all formulas are implication free; i.e., every 

implication p => q is transformed into the equivalent ¬p ∨ q.

A formula is said to be in negation normal form if its variables are the 

only subformulas negated. Every formula can be transformed into an 

equivalent NNF using logical equivalences 17, 20, and 21 presented in the 

previous section.

Note  Normal forms are useful in automated theorem proving (also 
known as automated deduction or ATP), a subfield of automated 
reasoning, which at the same time is a subfield of AI. ATP is 
dedicated to proving mathematical theorems by means of computer 
programs.
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A formula is said to be in conjunctive normal form if it’s of the form  

(p1 ∧ p2 … ∨ pn) ∧ (q1 ∨ q2 … ∨ qm) where each pi, qj is either a 

propositional variable or the negation of a propositional variable. A 

CNF is a conjunction of disjunctions of variables, and every NNF can be 

transformed into a CNF using the Laws of Propositional logic.

A formula is said to be in disjunctive normal form if it’s of the form  

(p1 ∧ p2 … ∧ pn) ∨ (q1 ∧ q2 … ∨ qm) where each pi, qj is either a 

propositional variable or the negation of a propositional variable. A DNF 

is a disjunction of conjunctions of variables, and every NNF can also be 

transformed into a CNF using the Laws of Propositional Logic.

At the end of this chapter, we’ll examine several practical problems 

where we’ll describe algorithms for computing NNF and CNF; we’ll also 

look at the relationship between normal forms and ATP.

Note A  canonical or normal form of a mathematical object is a 
standard manner of representing it. A canonical form indicates that 
there’s a unique way of representing every object; a normal form 
does not involve a uniqueness feature.

�Logic Circuits
The topics presented thus far regarding propositional logic find 

applications in design problems and, more importantly, in digital logic 

circuits. These circuits, which execute logical bivalent functions, are used 

in the processing of digital information.

Furthermore, the most important logical machine ever created by 

mankind (the computer) operates at a basic level using logical circuits.
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The computer, the most basic, classical example of an AI container, 

receives input data (as binary streams of ones and zeroes). It processes that 

information using logic and arithmetic (as our brain does), and finally it 

provides an output or action. The core of the computer is the CPU (central 

processing unit), which is composed of the ALU (arithmetic-logic unit) 

and the CU (control unit). The ALU—and therefore the entire computer—

processes information in digital form using a binary language with the 

symbols 1 and 0. These symbols are known as bits, the elemental unit of 

information in a computer.

Logical circuits represent one of the major technological components 

of our current computers, and every logical connective described so far in 

this chapter is known in the electronics world as a logical gate.

A logical gate is a structure of switches used to calculate in digital circuits. 

It’s capable of producing predictable output based on the input. Generally, 

the input is one of two selected voltages represented as zeroes and ones. The 

0 has low voltage and the 1 has higher voltage. The range is between 0.7 volts 

in emitter-coupled logic and approximately 28 volts in relay logic.

Note  Nerve cells known as neurons function in a more complex yet 
similar way to logical gates. Neurons have a structure of dendrites 
and axons for transmitting signals. A neuron receives a set of inputs 
from its dendrites, relates them in a weighted sum, and produces 
an output in the axon depending on the frequency type of the input 
signal. Unlike logical gates, neurons are adaptables.

Every piece of information that we input into the computer (characters 

from the keyboard, images, and so on) are eventually transformed into 

zeroes and ones. This information is then carried on and transported via 

logic circuits in a discontinuous or discreet manner. Information flows as 

successive signals commonly made by electronic impulses constituted by 

high (1) and low (0) voltage levels, as illustrated in Figure 1-1.
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Logic circuits in the ALU transform the information received by executing 

the proper logical gates (AND, OR, and so on). As a result, any transformation 

endured by the incoming information is describable using propositional 

logic. Circuits are built that connect various elementary electronic 

components. We will abstract each electronic component and the operation 

it represents into one of the diagrams shown in Figures 1-2, 1-3, and 1-4.

In Figure 1-5 we can see, as a first example of a logic circuit, a binary 

comparer. This circuit receives two inputs p, q (bits) and outputs 0 if p 

and q are equal; otherwise, it outputs 1. To verify that the output of the 

diagram illustrated in Figure 1-5 is correct and actually represents a binary 

comparer, we could go over all possible values of input bits p, q and check 

the corresponding results.

A simple analysis of the circuit will show us that whenever inputs p, 

q have different values then each will follow a path in which it is negated, 

with the other bit left intact. This will activate one of the conjunction gates, 

outputting 1 for it; thus, the final disjunction gate will output 1 as well, and 

the bits will not be considered equals. In short, when the two inputs are 

equal, the output will be 1, and if the inputs are not equal the output will be 0.

Figure 1-1.  Digital information flow

Figure 1-2.  Representation of negation component (NOT)
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Figure 1-3.  Representation of disjunction component (OR)

Figure 1-4.  Representation of conjunction component (AND)
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Now that we have studied various topics related to propositional logic, 

it’s time to introduce a first practical problem. In the following section we’ll 

present a way to represent logic formulas in C# using the facilities provided 

by this powerful language. We’ll also see how to find all possible outputs of 

a formula using binary decision trees.

�Practical Problem: Using Inheritance and  
C# Operators to Evaluate Logic Formulas
Thus far, we have studied the basics of propositional logic, and in this 

section we’ll present a first practical problem. We’ll create a set of classes, all 

related by inheritance, that will allow us to obtain the output of any formula 

from inputs defined a priori. These classes will use structural recursion.

In structural recursion the structure exhibited by the class—and 

therefore the object—is recursive itself. In this case, recursion will be 

present in methods from the Formula class as well as its descendants. 

Using recursion, we’ll be calling methods all the way through the hierarchy 

tree. Inheritance in C# will aid recursion by calling the proper version of 

the method (the one that corresponds to the logical gate that the class 

represents).

Figure 1-5.  Binary comparer circuit
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In Listing 1-1 the parent of every other class in our formula design is 

presented.

Listing 1-1.  Abstract Class Formula

public abstract class Formula

{

     public abstract bool Evaluate();

     public abstract IEnumerable<Variable> Variables();

}

The abstract Formula class states that all its descendants must 

implement a Boolean method Evaluate() and an IEnumerable<Variable> 

method Variables(). The first will return the evaluation of the formula 

and the latter the variables contained within it. The Variable class will be 

presented shortly.

Because binary logic gates share some features we’ll create an abstract 

class to group these features and create a more concise, logical inheritance 

design. The BinaryGate class, which can be seen in Listing 1-2, will 

contain the similarities that every binary gate shares.

Listing 1-2.  Abstract Class BinaryGate

public abstract class BinaryGate : Formula

  {

        public Formula P { get; set; }

        public Formula Q { get; set; }

        public BinaryGate(Formula p, Formula q)

        {

            P = p;

            Q = q;

        }

Chapter 1  Logic & AI



23

        public override IEnumerable<Variable> Variables()

        {

            return P.Variables().Concat(Q.Variables());

        }

    }

In Listing 1-3 the first logic gate, the AND gate, is illustrated.

Listing 1-3.  And Class

public class And: BinaryGate

    {

        public And(Formula p, Formula q): base(p, q)

        { }

        public override bool Evaluate()

        {

            return P.Evaluate() &&Q.Evaluate();

}

    }

The implementation of the And class is pretty simple. It receives two 

arguments that it passes to its parent constructor, and the Evaluate 

method merely returns the logic AND that is built in to C#. Very similar are 

the Or, Not, and Variable classes, which are shown in Listing 1-4.

Listing 1-4.  Or, Not, Variable Classes

public class Or : BinaryGate

    {

        public Or(Formula p, Formula q): base(p, q)

        { }

        public override bool Evaluate()
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        {

            return P.Evaluate() || Q.Evaluate();

        }

    }

    public class Not : Formula

    {

        public Formula P { get; set; }

        public Not(Formula p)

        {

            P = p;

        }

        public override bool Evaluate()

        {

            return !P.Evaluate();

        }

        public override IEnumerable<Variable> Variables()

        {

            return new List<Variable>(P.Variables());

        }

    }

    public class Variable : Formula

    {

        public bool Value { get; set; }

        public Variable(bool value)

        {

            Value = value;

}
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        public override bool Evaluate()

        {

            return Value;

        }

        public override IEnumerable<Variable> Variables()

        {

            return new List<Variable>() { this };

}

    }

Notice the Variable class is the one we use for representing variables 

in formulas. It includes a Value field, which is the value given to the 

variable (true, false), and when the Variables() method is called it returns 

a List<Variable> whose single element is itself. The recursive inheritance 

design that we have come up with then moves this value upward in the 

inheritance to output the IEnumerable<Variable> with the correct objects 

of type Variable when requested.

Now, let’s try to create a formula and find its output from some defined 

inputs, as illustrated in Listing 1-5.

Listing 1-5.  Creating and Evaluating Formula ¬p ∨ q

var p = new Variable(false);

var q = new Variable(false);

var formula = new Or(new Not(p), q);

Console.WriteLine(formula.Evaluate());

p.Value = true;

Console.WriteLine(formula.Evaluate());

Console.Read();
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The result obtained after executing the previous code is illustrated in 

Figure 1-6.

Since every implication can be transformed into a free implication 

formula using the OR and NOT expressions (according to the laws of 

propositional logic) and every double implication can be set free of 

implications’ transforming it into a conjunction of implications, then 

having the preceding logic gates is enough to represent any formula.

�Practical Problem: Representing Logic 
Formulas as Binary Decision Trees
A binary decision tree (BDT) is a labelled binary tree satisfying the 

following conditions:

•	 The leaves are labelled with either 0 (False) or 1 (True).

•	 Non-leaf nodes are labelled with positive integers.

•	 Every non-leaf node labelled i has two child nodes, 

both labelled i + 1.

•	 Every branch leading to a left child has a low value (0), 

and every branch leading to a right child has a high 

value (1).

Figure 1-6.  Result after executing code in Listing 1-5
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Note A  binary decision tree is just another way of representing or 
writing the truth table of a formula.

In Figure 1-7 we can see a binary decision tree with leaf nodes 

represented as squares and non-leaf nodes represented as circles.

In a BDT, every level of the tree matches a variable, and its two 

branches correspond to its possible values (1, 0). A path from the root to 

a leaf node represents an assignment for all variables of the formula. The 

value found at a leaf node represents an interpretation of the formula; i.e., 

the result of an assignation from the root.

Now that we have studied some topics related to propositional 

logic, it’s time to create our first AI data structure. As we’ll see, by using 

the Formula class introduced in the last practical problem we will be 

able to create our binary decision tree in just a few lines of code. Three 

constructors, for different uses, will be included in the class, as shown in 

Listing 1-6.

Figure 1-7.  Binary decision tree for p ∨ ¬q
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Listing 1-6.  Constructors and Properties of BinaryDecisionTree 

Class

public class BinaryDecisionTree

    {

        private BinaryDecisionTreeLeftChild { get; set; }

        private BinaryDecisionTreeRightChild { get; set; }

        private int Value { get; set; }

        public BinaryDecisionTree()

        { }

        public BinaryDecisionTree(int value)

{

            Value = value;

        }

        �public BinaryDecisionTree(int value, BinaryDecisionTreelft, 

BinaryDecisionTreergt)

        {

            Value = value;

LeftChild = lft;

RightChild = rgt;

}

   ...

}

A binary decision tree is a recursive structure; as a result, its template 

or class will include two properties, LeftChild and RightChild, that are of 

type BinaryDecisionTree. The Value property is an integer that identifies 

the variable as provided in the order given by the Variables() method in 

the Formula class; this order is equivalent to the height of the tree; i.e., in 

the first level the root node will have value 0, then at level (height) 1 every 

node (all representing the same variable) will have value 1 and so on.
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Note  In a binary decision tree every level represents a variable in 
the formula. The left branch leaving a node (variable) corresponds 
to the decision where that variable will have value 0 (false), and the 
right branch indicates that the variable will have value 1 (true).

The static methods shown in Listing 1-7 will take care of building the 

binary decision tree.

Listing 1-7.  Methods to Build Binary Decision Tree from Formula

public static BinaryDecisionTreeFromFormula(Formula f)

        {

            return TreeBuilder(f, f.Variables(), 0, "");

        }

        �private static BinaryDecisionTreeTreeBuilder(Formula f, 

IEnumerable<Variable> variables, intvarIndex, string path)

        {

            �if (!string.IsNullOrEmpty(path))

variables.ElementAt(varIndex - 1).Value = path[path.Length - 1] 

!= '0';

            if (varIndex == variables.Count())

                �return new BinaryDecisionTree(f.Evaluate() ?  

1 : 0);

            �return new BinaryDecisionTree(varIndex, 

TreeBuilder(f, variables, varIndex + 1, path + "0"),

TreeBuilder(f, variables, varIndex + 1, path + "1"));

        }

The public method FromFormula uses an auxiliary private method that 

relies on recursion to create the tree.
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The varIndex variable defines the height of the tree or, equivalently, 

the index of the variable representing that tree level.

Path stores the evaluation of every variable as a binary string; e.g., 

“010” denotes the path where the root variable r is evaluated false, then its 

left child lft is evaluated true, and finally lft’s right child is evaluated false. 

Once we have reached a depth that equals the number of variables of the 

formula, we evaluate the formula with the assignment matching the path 

built so far and leave the final result in a leaf node.

By traversing the decision tree we can obtain the output of the 

formula under a predefined set of values (path from root to leaf node) 

for its variables. This feature can be very useful during decision-making 

processes because the tree structure is very intuitive and easy to interpret 

and understand. Decision trees will be covered deeply in Chapter 4; for 

now we should know that they provide several advantages or benefits. 

Among these, it’s worth mentioning that they create a visual representation 

of all possible outputs and follow-up decisions in one view. Each 

subsequent decision resulting from the original choice is also depicted 

on the tree so we can see the overall effect of any one decision. As we go 

through the tree and make choices, we’ll see a specific path from one node 

to another and the impact a decision made now could have down the road.

As mentioned before, we will describe in the next section various 

practical problems related to normal forms. We’ll learn how to transform 

a formula in its regular state to negation normal form (NNF) and from 

there to conjunctive normal form (CNF). This transformation will come in 

handy when manipulating formulas and especially for developing  

logic-related algorithms like DPLL.
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�Practical Problem: Transforming a Formula 
into Negation Normal Form (NNF)
In this problem, we’ll finally study an algorithm that transforms any 

formula into negation normal form. Remember, normal forms are useful 

because

•	 they reduce logic operators (implication, etc.);

•	 they reduce syntactical structure (nesting of 

subformulas); and

•	 they can be taken advantage of to seek efficient data 

structures.

The NNF transformation algorithm is determined by the following 

recursive ideas; assuming F is the input formula, this is a pseudocode.

Function NNF(F):

If F is a variable or negated variable Then return F

If F is ¬(¬p) Then return NNF(p)

If F is p ∧ q Then return NNF(p) ∧ NNF(q)

If F is p ∨ q Then return NNF(p) ∨ NNF(q)

If F is ¬(p ∨ q) Then return NNF(¬p) ∧ NNF(¬q)

If F is ¬(p ∧ q) Then return NNF(¬p) ∨ NNF(¬q)

We will assume that all formulas are implication free and take 

advantage of the Formula hierarchy to implement the pseudocode 

described.
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Note T he formulas ¬p ∧ q, p ∨ q, (p ∧ (¬q ∨ r)) are all in negation 
normal form. The formulas ¬(q ∨¬r), ¬(p ∧ q) on the other hand are 
not in negation normal form as some of these formulas include Or, 
And formulas that are being negated. To be in NNF only variables can 
be negated.

We’ll start by modifying the Formula abstract class as shown in Listing 1-8.

Listing 1-8.  Abstract Method ToNnf() Added to Abstract Class 

Formula

public abstract class Formula

    {

         public abstract bool Evaluate();

         public abstract IEnumerable<Variable> Variables();

public abstract Formula ToNnf();

}

The And, Or classes require a little modification, including an override 

to the newly created ToNnf() abstract method (Listing 1-9).

Listing 1-9.  And, Or Classes with ToNnf() Method Override

public class And: BinaryGate

    {

        public And(Formula p, Formula q): base(p, q)

        { }

        public override bool Evaluate()

        {

            return P.Evaluate() &&Q.Evaluate();

        }
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public override Formula ToNnf()

       {

return new And(P.ToNnf(), Q.ToNnf());

       }

}

    public class Or : BinaryGate

    {

        public Or(Formula p, Formula q): base(p, q)

        { }

        public override bool Evaluate()

        {

            return P.Evaluate() || Q.Evaluate();

        }

public override Formula ToNnf()

       {

return new Or(P.ToNnf(), Q.ToNnf());

       }

    }

The Not class incorporates most of the steps (if statements) from the 

NNF pseudocode; its final implementation can be seen in Listing 1-10.

Listing 1-10.  Not Class with Nnf() Override

public class Not : Formula

    {

        public Formula P { get; set; }

        public Not(Formula p)

        {

            P = p;

        }
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        public override bool Evaluate()

        {

            return !P.Evaluate();

}

        public override IEnumerable<Variable> Variables()

        {

            return new List<Variable>(P.Variables());

        }

         Public override Formula ToNnf()

       {

if (P is And)

               �return new Or(new Not((P as And).P), new Not((P 

as And).Q));  

            if (P is Or)

               �return new And(new Not((P as Or).P), new Not((P 

as Or).Q));    

          if (P is Not)

               return new Not((P as Not).P);

            return this;

       }

  }

Finally, the Variable class includes a simple override of the Nnf() 

abstract method inherited from its parent; the entire class is shown in 

Listing 1-11.
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Listing 1-11.  Variable Class with Nnf() Override

public class Variable : Formula

    {

        public bool Value { get; set; }

        public Variable(bool value)

        {

            Value = value;

        }

        public override bool Evaluate()

        {

            return Value;

        }

        public override IEnumerable<Variable> Variables()

        {

            return new List<Variable>() { this };

}

public override Formula ToNnf()

        {

            return this;

        }

    }

To obtain an NNF out of a formula we can simply call the Nnf() 

method in some instance of the Formula class.

Chapter 1  Logic & AI



36

�Practical Problem: Transforming a Formula 
into Conjunctive Normal Form (CNF)
A conjunctive normal form (CNF) is basically an AND of ORs; i.e., 

groups of variables or negated variables all connected using disjunction 

connectives where all groups are related among themselves by conjunctive 

connectives; e.g., (p ∨ q) ∧ (r ∨ ¬q). Because of the multiple reasons 

detailed earlier, we are interested in taking a formula to CNF. A pseudocode 

of the CNF transformation algorithm is presented in the next lines.

Function CNF(F):

If F is a variable or negated variable Then return F

If F is p ∧ q Then return CNF(p) ∧ CNF(q)

If F is p ∨ q Then return DISTRIBUTE-CNF 

(CNF(p),CNF(q))

Function DISTRIBUTE-CNF(P, Q):

If P is R ∧ S Then return DISTRIBUTE-CNF (R, Q) ∧ 

DISTRIBUTE-CNF (R, Q)

If Q is T ∨ U Then return DISTRIBUTE-CNF (P, T) ∧ 

DISTRIBUTE-CNF (P, U)

return P ∨ Q

The CNF algorithm relies on an auxiliary method called DISTRIBUTE-

CNF that uses the distributive laws of propositional logic to decompose a 

formula in order to get it closer to the excepted form of a CNF.

Note T he CNF algorithm assumes the input formula is already in 
NNF. Every NNF formula can be transformed into an equivalent CNF 
formula using the distributive laws of propositional logic.
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As we did with the NNF algorithm, we’ll insert the CNF algorithm 

into the Formula hierarchy that we have been enhancing in the previous 

practical problems. Necessary edits to the Formula abstract class are 

shown in Listing 1-12.

Listing 1-12.  Adding ToCnf() and DistributeCnf() Methods to the 

Formula Class

public abstract class Formula

{

         public abstract bool Evaluate();

         public abstract IEnumerable<Variable> Variables();

         public abstract Formula ToNnf();

         public abstract Formula ToCnf();

public Formula DistributeCnf(Formula p, Formula q)

        {

if (p is And)

return new And(DistributeCnf((p as And).P, q), DistributeCnf 

((p as And).Q, q));

if(q is And)

                 �return new And(DistributeCnf(p, (q as And).P), 

DistributeCnf(p, (q as And).Q));

return new Or(p, q);

}

    }

Now that we have added the abstract method to the parent class we 

can include the corresponding overrides in the child classes And, Or as 

shown in Listings 1-13 and 1-14.
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Listing 1-13.  And Class with ToCnf() Method Override

public class And: BinaryGate

{

        public And(Formula p, Formula q): base(p, q)

        { }

        public override bool Evaluate()

        {

            return P.Evaluate() &&Q.Evaluate();

        }

        public override Formula ToNnf()

        {

            return new And(P.ToNnf(), Q.ToNnf());

        }

public override Formula ToCnf()

{

return new And(P.ToNnf(), Q.ToNnf());

}

    }

The override implementation of the ToCnf() methods in the Or and 

And classes represents a direct result drawn from the pseudocode of the 

CNF function (Listing 1-14).

Listing 1-14.  Or Class with ToCnf() Method Override

public class Or : BinaryGate

    {

        public Or(Formula p, Formula q): base(p, q)

        { }

        public override bool Evaluate()
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        {

            return P.Evaluate() || Q.Evaluate();

        }

        public override Formula ToNnf()

        {

            return new Or(P.ToNnf(), Q.ToNnf());

}

public override Formula ToCnf()

{

return DistributeCnf(P.ToCnf(), Q.ToCnf());

}

    }

The Not and Variable classes will simply return a reference to 

themselves on their ToCnf() override as shown in Listing 1-15.

Listing 1-15.  ToCnf() Method Override in Not, Variable Classes

public override Formula ToCnf()

{

      return this;

}

Remember: The CNF algorithm expects as input a formula in NNF; 

therefore, before executing this algorithm we need to call the ToNnf() 

method and then the ToCnf() on the Formula object created. In the 

following chapter, we’ll start diving into an application of AI and logic 

that’s directly related to all the practical problems we have seen thus far: 

automated theorem proving.

Chapter 1  Logic & AI
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�Summary
In this chapter, we analyzed the relationship between AI and logic. We 

introduced a basic logic—propositional logic. We described various codes 

that included a hierarchy for representing formulas (variables, logical 

connectives, and so on), and we complemented this hierarchy with 

different methods. Among these methods were the negation normal form 

transformation algorithm and the conjunctive normal form transformation 

algorithm (relies on the distributive laws previously introduced). We 

also described a binary decision tree for representing formulas and their 

possible evaluations.

In the next chapter, we’ll begin studying a very important logic that 

extends propositional logic: first-order logic. At the same time, we’ll dive 

into the world of automated theorem proving (ATP) and present a very 

important method for determining satisfiability of a formula, the DPLL 

algorithm:

(x)IsFriend(x, Arnaldo)(x)IsFriend(x, Arnaldo) (y)

IsWorkingWith(y, Arnaldo)
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CHAPTER 2

Automated Theorem 
Proving & First-Order 
Logic
Following the line of thought begun in Chapter 1, we’ll start this chapter 

by introducing a topic related to AI and logic: automated theorem proving. 

This is a field of AI that serves mathematicians in their research and assists 

them in proving theorems, corollaries, and so forth. In this chapter, we’ll 

also devote some pages to first-order logic, a logic that extends propositional 

logic by allowing or including quantifiers (universal and existential) and 

providing a more complete framework for easily representing different 

types of logical scenarios that could arise in our regular life.

At the same time, we’ll keep extending the Formula hierarchy 

introduced in Chapter 1 by inserting clauses and CNF C# classes and 

describing a very important method for solving the SAT (satisfiability) 

problem: the DPLL algorithm. Practical problems will help us to better 

understand every concept hereafter described. We will end the chapter 

by presenting a simple cleaning robot that will use some of the terms of 

first-order logic and show how they can be applied in a real-life problem.
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�Automated Theorem Proving
An automated theorem Prover (ATP) is a computer program that can 

generate and check mathematical theorems and search for a proof of 

the theorem’s veracity; i.e., its statement is always true. Theorems are 

expressed using some mathematical logic, such as propositional logic, 

first-order logic, and so on. In this case, we’ll only consider an ATP that 

uses propositional logic as its language. We can think of an ATP’s workflow 

as illustrated in the diagram in Figure 2-1.

Figure 2-1.  ATP workflow diagram

ATPs were originally created for mathematical computation but 

recently have gained notice in the scientific community as a wide range of 

potential applications have been associated with them. One of the several 

applications of ATPs is adding intelligence to databases of mathematical 

theorems; in other words, using automated theorem provers to astutely 

query for equivalent theorems within a database of mathematical 

theorems. An ATP would be used to verify whether a theorem within 

the database was mathematically equivalent to another entered by the 

user. String-matching algorithms or similar techniques wouldn’t be good 

enough for such an application since the user may have phrased the 

theorem in a different way than how it was stored in the database, or the 

searched-for theorem could be a logical consequence rather than a direct 

clone of existing theorems.
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Another application of theorem provers and formal methods can be 

found in the verification of hardware and software designs. Hardware 

verification happens to be an extremely important task. The commercial 

cost of an error in the design of a modern microprocessor, for instance, is 

potentially so large that verification of designs is essential.

Software verification is similarly crucial as mistakes can be very costly in 

this area. Examples of the catastrophic consequences of such mistakes are 

the destruction of the Ariane 5 rocket (caused by a simple integer overow 

problem that could have been detected by a formal verification procedure) 

or the error in the floating-point unit of the Pentium II processor.

The classical application of ATPs of course is that for which it was 

created—as a tool to aid mathematicians in their research. One could say 

ATPs are mathematicians’ favorite robots.

Note S ome logics are more powerful and can express and prove 
more theorems than others. Propositional logic is usually the weakest 
and simplest of them all.

Theorem provers vary depending on the amount of human guidance 

that is required in the proof search and the sophistication of the logical 

language that may be used to express the theorem that is to be proven. 

A tradeoff between the automation degree and the sophistication of the 

logical language must be taken into account.

A high degree of automation is only possible if the language is 

constrained. Proofs for flexible, high-order languages generally require 

human guidance, and the associated theorem prover is referred to as a 

proof assistant.

This human assistance can be provided by the programmer’s giving 

hints a priori or interacting with the ATP during the proof process through 

a prompt.
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The simplest type of ATP is the SAT (SATisfiability) solver, which relies 

on propositional logic as theorem language. SAT solvers are very useful, 

but the expressive power of propositional logic is limited, and Boolean 

expressions can become quite large. Additionally, the SAT problem was the 

first to be proved NP(Non-Polynomial)-complete in complexity (S.A. Cook, 

“The Complexity of Theorem-proving Procedures”). There is a large 

amount of research done in finding heuristics for efficient SAT solving.

In pure mathematics, proofs are somewhat informal; they are 

“validated” by peer review and are intended to convince and convey an 

intuitive, clear idea of how the proof works, and the theorem statement 

should be always true. ATPs provide formal proofs where the output could 

be, as shown in Figure 1-8, the Boolean values Yes, No (True, False), or 

maybe a counterexample if the statement is found to be False.

Note S oftware and hardware verification using the approach of 
model checking works well with propositional logic. Expressions are 
obtained after considering a state machine description of the problem 
and are manipulated in the form of binary decision trees.

An Automated Theorem Proving (ATP) can usually handle two types 

of tasks: they can check theorems in their logic or they can automatically 

generate proofs.

When proof checking, the ATP receives as input a formal proof, which 

consists of a list (steps) of formulas, each justified either by an axiom or 

inference rule applied to previous formulas:

Formulas                  Justification

F1                        Axiom  

F2                        Rule X and F1

...                       ...

Theorem
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These types of proofs are very easy to check mechanically; we just need 

to make sure that every justification is valid or is applied correctly.

However, proof generation is much harder. We need to generate a 

list of formulas, each with a valid justification and guaranteeing that the 

last formula is the theorem to be proven. For simple problems, proof 

generation is very useful; for example, type inference (C#, Java), safety of 

web applications, and so forth.

So far we have described a SAT solver—the binary decision tree, which 

is suitable for small problems. However, its size is exponential, and to 

check satisfiability we would need to explore the entire tree in the worst-

case scenario. Hence, in future sections we’ll detail more on this topic and 

on how to obtain better results using other methods.

Note I n 1976 Kenneth Appel and Wolfgang Haken proved the 
four-color theorem using a program that performed a gigantic case 
analysis of billions of cases. The four-color theorem states that it’s 
possible to paint a world map using only four colors and guaranteeing 
that there will not be two neighboring countries that share the same 
color.

�Practical Problem: Clauses and CNFs 
Classes in C#
In this section, we’ll enhance the logic framework we have been developing 

throughout this chapter with the addition of the Clause and Cnf classes. 

We’ll make use of these classes when coding the DPLL algorithm, probably 

the most ingenious algorithm for determining the satisfiability of a logic 

formula and a basic tool for automated theorem proving.
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Before we start developing this new enhancement, let’s take a brief 

look at some definitions that will come in handy for understanding the 

classes that we’ll be developing soon.

A literal is either a variable or the negation of a variable (e.g., p, ¬p, q, ¬q).

A clause is a disjunction of literals p1 ∨ p2 ∨ ... ∨ pm, and every CNF is 

a set of clauses. From now on we’ll denote a clause as {p1, p2, ... pm} where 

every pi(i = 1, 2, ... ,m) is a literal.

In Listing 2-1 we illustrate the proposed Clause class.

Listing 2-1.  Clause Class

public class Clause

    {

        public List<Formula> Literals { get; set; }

        public Clause()

        {

            Literals = new List<Formula>();

        }

        public bool Contains(Formula literal)

        {

if (!IsLiteral(literal))

                �throw new ArgumentException("Specified formula 

is not a literal");

foreach (var formula in Literals)

            {

                if (LiteralEquals(formula, literal))

                    return true;

            }

            return false;

        }
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        public Clause RemoveLiteral(Formula literal)

        {

if (!IsLiteral(literal))

                �throw new ArgumentException("Specified formula 

is not a literal");

var result = new Clause();

            for (vari = 0; i<Literals.Count; i++)

            {

                if (!LiteralEquals(literal, Literals[i]))

result.Literals.Add(Literals[i]);

            }

            return result;

        }

        public bool LiteralEquals(Formula p, Formula q)

        {

            if (p is Variable && q is Variable)

                �return (p as Variable).Name == (q as  

Variable).Name;

            if (p is Not && q is Not)

                return LiteralEquals((p as Not).P, (q as Not).P);

            return false;

        }

     public bool IsLiteral(Formula p)

     {

            �return p is Variable || (p is Not && (p as Not).P 

is Variable);

     }

}
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The Clause class contains the following methods:

•	 public bool Contains(Formula literal): 

determines whether a given literal belongs to the clause

•	 public Clause RemoveLiteral(Formula literal): 

returns a new Clause that does not contain the literal 

passed as argument

•	 public bool LiteralEquals(Formula p, Formula 

q): determines whether literals p, q are equal

•	 public bool IsLiteral(Formula p): determines 

whether a given formula is a literal

The Cnf class, which represents a conjunctive normal form, is 

illustrated in Listing 2-2.

Listing 2-2.  Cnf Class

public class Cnf

    {

        public List<Clause> Clauses { get; set; }

        public Cnf()

        {

            Clauses = new List<Clause>();

        }

        public Cnf(And and)

        {

            Clauses = new List<Clause>();

RemoveParenthesis(and);

        }
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        public void SimplifyCnf()

        {

Clauses.RemoveAll(TautologyClauses);

        }

        private bool TautologyClauses(Clause clause)

        {

            for (vari = 0; i<clause.Literals.Count; i++)

            {

                �for (var j = i + 1;  

j <clause.Literals.Count - 1; j++)

                {

                    �// Checking that literal i and literal 

j are not of the same type; i.e., both 

variables or negated literals.

                    �if (!(clause.Literals[i] is Variable 

&&clause.Literals[j] is Variable) &&

                        �!(clause.Literals[i] is Not &&clause.

Literals[j] is Not))

                    {

var not = clause.Literals[i] is Not ? clause.Literals[i] as  

Not : clause.Literals[j] as Not;

var @var = clause.Literals[i] is Variable ? clause.Literals[i] 

as Variable : clause.Literals[j] as Variable;

                        if (IsNegation(not, @var))

                            return true;

                    }

                }

            }

            return false;

        }
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        private bool IsNegation(Not f1, Variable f2)

        {

            return (f1.P as Variable).Name == f2.Name;

        }

private void Join(IEnumerable<Clause> others)

        {

Clauses.AddRange(others);

        }

        private voidRemoveParenthesis(And and)

        {

varcurrentAnd = and;

            while (true)

            {

                // If P is OR or literal and Q is OR or literal.

                �if ((currentAnd.P is Or || currentAnd.P is 

Variable || currentAnd.P is Not) &&

                    �(currentAnd.Q is Or || currentAnd.Q is 

Variable || currentAnd.Q is Not))

                {

Clauses.Add(new Clause { Literals = new List<Formula>(currentAnd.

P.Literals()) });

Clauses.Add(new Clause { Literals = new List<Formula>(currentAnd.

Q.Literals()) });

                    break;

                }

                // If P is AND and Q is OR or literal.

                �if (currentAnd.P is And && (currentAnd.Q is Or || 

currentAnd.Q is Variable || currentAnd.Q is Not))

                {
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Clauses.Add(new Clause { Literals = new List<Formula>(currentAnd.

Q.Literals()) });

currentAnd = currentAnd.P as And;

                }

                // If P is OR or literal and Q is AND.

                �if ((currentAnd.P is Or || currentAnd.P is 

Variable || currentAnd.P is Not) &&currentAnd. 

Q is And)

                {

Clauses.Add(new Clause { Literals = new List<Formula>(currentAnd.

P.Literals()) });

currentAnd = currentAnd.Q as And;

                }

                // If both P and Q are ANDs.

                if (currentAnd.P is And &&currentAnd.Q is And)

                {

RemoveParenthesis(currentAnd.P as And);

RemoveParenthesis(currentAnd.Q as And);

                    break;

                }

            }

        }

The Cnf class contains the following methods:

•	 public void SimplifyCnf(): simplifies the formula 

by deleting every clause containing both p and ¬p. 

Since p ∨ ¬p is always true, the entire clause becomes 

true, and its analysis is unnecessary.

•	 public bool TautologyClauses(Clause clause): 

determines whether the given clause contains p and ¬p
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•	 private bool IsNegation(Not f1, Variable f2): 

determines whether f 1 is the negation of variable f 2

•	 private void Join(IEnumerable<Clause> others): 

concatenates the IEnumerable<Clause> others to Cnf’s 

clauses

•	 private voidRemoveParenthesis(And and): changes 

Cnf to a list of clauses

The method RemoveParenthesis(And and) is in charge of executing a 

very important task. This method transforms the CNF formula that we have 

as a series of concatenated AND connectives, And(p1, And(p2, And( ... ) 

)), into a list of clauses.

The Formula hierarchy we have been using thus far has saved us 

from having to implement a parser for logic formulas, but it cost us just 

a little bit on clarity. We aim to recover it by executing this method and 

transforming the And formula representing CNFs into a list of clauses. This 

new representation will come in handy for any CNF-related algorithm that 

we may need to develop; it will certainly be useful for the DPLL algorithm 

that we will introduce shortly.

Note I f you would like to develop a parser for logic formulas, you 
can use ANTLR (Another Tool for Language Recognition), a very useful 
tool that helps developers in the grammar-writing process and the 
creation of parsers. ANTLR generates and outputs parsers as Java 
or C# classes (.cs files), allowing you to include them later in your 
projects and use them at will.

The RemoveParenthesis(And and) method consists basically of a 

while loop with several conditions contained within. These conditions 

might mark the end of the loop, and each of them matches a different 
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scenario that could arise as we consider the types of formulas P and Q 

from the argument And. These scenarios are as follows:

•	 P, Q are ORs or literals.

•	 (P is OR or literal) and Q is And.

•	 P is And and (Q is OR or literal).

•	 P, Q are both And.

Notice in the body of RemoveParenthesis(And and) that there exist 

several calls to a Literals() method. This method must be created and 

inserted all across the Formula hierarchy as we did before with the ToNnf() 

and ToCnf() methods. We start from the top, the Formula abstract class, as 

shown in Listing 2-3.

Listing 2-3.  Adding Literals() Abstract Method to Formula Abstract 

Class

public abstract class Formula

    {

         public abstract bool Evaluate();

         public abstract IEnumerable<Variable> Variables();

         public abstract Formula ToNnf();

         public abstract Formula ToCnf();

         public abstract IEnumerable<Formula> Literals();

...

}

Now, we need to spread concrete implementations of the Literals() 

method throughout the hierarchy. In Listing 2-4 we present the concrete 

implementation for the remaining classes.
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Listing 2-4.  Adding the Literals() Method to the Remaining Classes 

of the Hierarchy

public abstract class BinaryGate : Formula

    {

...

public override IEnumerable<Formula> Literals()

        {

return P.Literals().Concat(Q.Literals());

}

    }

public class Not : Formula

{

...

public override IEnumerable<Formula> Literals()

        {

return P is Variable ? new List<Formula>() { this }: 

P.Literals();

}

}

public class Variable : Formula

{

        ...

public override IEnumerable<Formula> Literals()

        {

                 returnnew List<Formula>() { this };

              }

}
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Up to this point we have built a framework for logic in C#; now, it’s time 

to examine one of the simplest yet most efficient and ingenious algorithms 

for determining the satisfiability of a formula: the DPLL algorithm.

�DPLL Algorithm
The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is a decision-

making procedure that uses backtracking to search for an assignment that 

makes a formula in CNF satisfiable. It was introduced in two articles in 

1960 (by Davis, Putnam) and 1962 (by Davis, Logemann, Loveland) and 

even today still forms the basis for most efficient SAT solvers; it has even 

been extended for small pieces of more complex logic, like first-order logic.

The SAT problem was the first problem to be proven to be NP-

Complete; as a result, it’s essential to find efficient procedures that solve 

it. Furthermore, this problem has applications in automated theorem 

proving, planning, scheduling, and many other areas of artificial 

intelligence, so throughout the years it has inspired great interest in the 

scientific community.

DPLL receives as input a CNF formula and tries to build an assignment 

that verifies the formula using backtracking and applying certain rules 

that simplify and reduce the complexity of the current formula. The set of 

possible assignments is represented using a binary tree very much like the 

binary decision tree we presented in Chapter 1.

A pseudocode of the algorithm is illustrated in the following lines:

DPLL(cnf):

       TERMINATION-CONDITIONS(cnf)

cnf' = Rule_OneLiteral(cnf)

cnf'' = Rule_PureLiteral(cnf')
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       // Splits the decision tree into branches p and ¬p

       splitted = Rule_Split(cnf'')

       return DPLL(splitted[p]) || DPLL(splitted[¬p])

TERMINATION-CONDITIONS(cnf):

       If cnf.Clauses is Empty:

          return True

       If cnf.Clauses contains Empty_Clause:

          return False

DPLL builds a tree that is shaped using three rules: OneLiteral, 

PureLiteral, and Split. The first two determine the formula that is 

contained in every node while the latter creates new branches in the tree. 

Let us examine them one by one:

•	 OneLiteral: If there is a unit clause—i.e., a clause 

containing only one literal p—then delete that clause 

as well as every clause containing p. Then, delete 

the negation of p (¬p) from every clause of CNF. If a 

formula is to be satisfiable then this literal necessarily 

must be 1 since it determines the truth value of its 

clause.

•	 PureLiteral: If there is a literal p such that ¬p does not 

belong to any clause of CNF then delete every clause 

containing p. In this case, we can assign value 1 to p 

since its negation does not exist in CNF.

•	 Split: After applying the Pure Literal rule we know that 

if there’s a literal p then its negation must also be there. 

Thus, we select a literal p and divide the set of clauses 

into Cp, C¬p, and R. The set of clauses Cp contains all 

clauses including literal p. C¬p every clause containing 

¬p and R the set of clauses that do not contain p or ¬p.
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Finally we obtain the sets Cp + R and C¬p + R, where 

Cp + R is the set obtained after adding every clause 

in R to Cp; C¬p + R is the set obtained after adding 

every clause in R to C¬p. These two sets will be the 

new CNFs root nodes for the left and right branches 

of the tree that we are forming under the DPLL 

procedure.

An example of these rules can be seen in the following lines; in each 

case an initial CNF formula is presented and then each rule is applied to it.

One Literal Example

CNF = {{p, q, ¬r},{p, ¬q}, {¬p}, {r}, {u}}

-Apply OneLiteral rule with L = ¬p

CNF' = {{p, q, ¬r},{p, ¬q}, {r}, {u}}

-Removing ¬L = p from clauses in Cnf'

CNF'' = {{q, ¬r},{¬q}, {r}, {u}}

Pure Literal Example

CNF = {{p, q},{p, ¬q}, {r, q}, {r, ¬q}}

-Apply PureLiteral rule with L = p

CNF' = {{r, q}, {r, ¬q}}

Split Example

CNF = {{p, ¬q, r},{¬p, q}, {¬r, q}, {¬r, ¬q}}

-Apply Split rule with L = p

CNF' = {{¬q, r}, {¬r, q}, {¬r, ¬q}}

CNF'' = {{q}, {¬r, q}, {¬r, ¬q}}

The DPLL algorithm as well as all its auxiliary methods will be 

included in the Cnf class. The public Dpll() method will rely on an 

auxiliary private Dpll method that will receive as argument a copy of the 

Cnf class as shown in Listing 2-5.
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Listing 2-5.  Dpll() Method and Its Auxiliary Method Dpll(Cnf cnf)

        public bool Dpll()

        {

            �return Dpll(new Cnf {Clauses = new 

List<Clause>(Clauses)});

        }

        private bool Dpll(Cnfcnf)

        {

            // The CNF with no clauses is assumed to be True

            if (cnf.Clauses.Count == 0)

                return true;

            �// Rule One Literal: if there exists a clause with 

a single literal

            �// we assign it True and remove every clause 

containing it.

varcnfAfterOneLit = OneLiteral(cnf);

            if (cnfAfterOneLit.Item2 == 0)

                return true;

            if (cnfAfterOneLit.Item2 < 0)

                return false;

cnf = cnfAfterOneLit.Item1;

            �// Rule Pure Literal: if there exists a literal and 

its negation does not exist in any clause of Cnf

varcnfPureLit = PureLiteralRule(cnf);

            �// Rule Split: splitting occurs over a literal and 

creates 2 branches of the tree

var split = Split(cnfPureLit);

            return Dpll(split.Item1) || Dpll(split.Item2);

        }
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From Listing 2-5 we can see that the Dpll(Cnfcnf) method is pretty 

close to matching exactly the DPLL pseudocode previously presented. 

First, we check that there are some clauses in the current Cnf class, and 

then we execute the first simplification rule, which is the One Literal rule. 

As illustrated in Listing 2-6, the OneLiteral(Cnfcnf) method returns a 

Tuple<Cnf, int> where the resulting Cnf class in the tuple will be the one 

obtained after executing the simplification and the resulting integer can be 

either -1, 0, or 1. If its value is 0 then the Cnf formula has no more clauses 

to check, and therefore it must be true (satisfiable); if its value is -1 then 

an empty clause was found in the Cnf and it must be false (unsatisfiable). 

Finally, in cases where it has value 1 the procedure must continue as no 

conclusive result of Cnf’s satisfiability has been found.

A description of the two auxiliary methods used by 

OneLiteral(Cnfcnf) are detailed here:

•	 Negate Literal(Formula literal): receives as 

argument a Formula assumed to be a literal and returns 

its negation. In any other case returns null.

•	 UnitClause(Cnfcnf): finds a clause with a single literal 

and returns this literal. In cases where there’s not such 

a clause it returns null.

The code of this rule would be as in Listing 2-6.

Listing 2-6.  OneLiteral() Rule and Its Auxiliary Methods

private Tuple<Cnf, int>OneLiteral(Cnfcnf)

        {

varunitLiteral = UnitClause(cnf);

            if (unitLiteral == null)

                return new Tuple<Cnf, int>(cnf, 1);

varnewCnf = new Cnf();
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            while (unitLiteral != null)

            {

varclausesToRemove = new List<int>();

vari = 0;

                �// 1st Loop - Finding clauses where the 

unit literal is, these clauses will not be 

considered in the new Cnf

foreach (var clause in cnf.Clauses)

                {

                    �if (clause.Literals.Any(literal =>clause.

LiteralEquals(literal, unitLiteral)))

clausesToRemove.Add(i);

i++;

                }

                �// New Cnf after removing every clause where 

unit literal is

newCnf = new Cnf();

                �// 2nd Loop - Leave clause that do not include 

the unit literal

                for (var j = 0; j <cnf.Clauses.Count; j++)

                {

                    if (!clausesToRemove.Contains(j))

newCnf.Clauses.Add(cnf.Clauses[j]);

                }

                // No clauses, which implies SAT

                if (newCnf.Clauses.Count == 0)

                    return new Tuple<Cnf, int>(newCnf, 0);
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                �// Remove negation of unit literal from 

remaining clauses

varunitNegated = NegateLiteral(unitLiteral);

varclausesNoLitNeg = new List<Clause>();

foreach (var clause in newCnf.Clauses)

                {

varnewClause = new Clause();

                    �// Leaving every literal except the unit 

literal negated

foreach (var literal in clause.Literals)

                        �if (!clause.LiteralEquals(literal, 

unitNegated))

newClause.Literals.Add(literal);

clausesNoLitNeg.Add(newClause);

                }

newCnf.Clauses = new List<Clause>(clausesNoLitNeg);

                // Resetting variables for next stage

cnf = newCnf;

unitLiteral = UnitClause(cnf);

                // Empty clause found

                if (cnf.Clauses.Any(c =>c.Literals.Count == 0))

                    return new Tuple<Cnf, int>(newCnf, -1);

            }

            return new Tuple<Cnf, int>(newCnf, 1);

        }
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        public Formula NegateLiteral(Formula literal)

        {

            if (literal is Variable)

                return new Not(literal);

            if (literal is Not)

                return (literal as Not).P;

            return null;

        }

        private Formula UnitClause(Cnfcnf)

        {

foreach (var clause in cnf.Clauses)

                if (clause.Literals.Count == 1)

                    return clause.Literals.First();

            return null;

        }

The OneLiteral method consists of a while loop that ends when either 

there are no more clauses of a single literal in the current Cnf class or one 

of the termination conditions (no clauses in Cnf or empty clause found) is 

reached. Inside this while loop there’s a first loop that stores the positions 

of unit clauses in every clause, including the current unit literal. There is 

a second loop that builds up a new Cnf class by skipping those clauses 

whose positions were stored in the first loop. A third and final loop within 

the while does an analogous job to the first two loops but in this case 

makes sure the negation of the unit literal is removed from every clause in 

the new Cnf obtained after the execution of the first two loops.

In Listing 2-7 we can see the code of the Pure Literal rule, which is 

typically applied after the One Literal rule.
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Listing 2-7.  PureLiteral() Rule and Its Auxiliary Methods

private CnfPureLiteralRule(Cnfcnf)

        {

varpureLiterals = PureLiterals(cnf);

            if (pureLiterals.Count() == 0)

                return cnf;

varnewCnf = new Cnf();

varclausesRemoved = new SortedSet<int>();

            // Checking what clauses contain pure literals

foreach (varpureLiteral in pureLiterals)

            {

                for (vari = 0; i<cnf.Clauses.Count; i++)

                {

                    if (cnf.Clauses[i].Contains(pureLiteral))

clausesRemoved.Add(i);

                }  

            }

            // Creating the new set of clauses

            for (vari = 0; i<cnf.Clauses.Count; i++)

            {

                if (!clausesRemoved.Contains(i))

newCnf.Clauses.Add(cnf.Clauses[i]);

            }

            return newCnf;

        }

        private IEnumerable<Formula>PureLiterals(Cnfcnf)

        {

var result = new List<Formula>();
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foreach (var clause in cnf.Clauses)

foreach (var literal in clause.Literals)

                {

                    if (PureLiteral(cnf, literal))

result.Add(literal);

                }

            return result;

        }

        private bool PureLiteral(Cnfcnf, Formula literal)

        {

var negation = NegateLiteral(literal);

foreach (var clause in cnf.Clauses)

            {

foreach (var l in clause.Literals)

                    if (clause.LiteralEquals(l, negation))

                        return false;

            }

            return true;

        }

The PureLiteralRule method takes care of executing the Pure Literal 

rule over the new Cnf class returned by the One Literal rule. It relies on the 

following auxiliary methods:

•	 PureLiterals(Cnf cnf): returns a list of pure literals 

found in Cnf class

•	 PureLiteral(Cnf cnf, Formula literal): determines 

whether a given literal is a pure literal; i.e., it return false 

if its negation exists in Cnf class; true otherwise.
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The PureLiteralRule() method finds all pure literals in the Cnf class 

and removes them from every clause in the CNF formula; a new Cnf with 

the resulting clauses is returned.

As a final point, the Split() method is shown in Listing 2-8.

Listing 2-8.  Split() Rule and Its Auxiliary Methods

        private Tuple<Cnf, Cnf> Split(Cnfcnf)

        {

var literal = Heuristics.ChooseLiteral(cnf);

var tuple = SplittingOnLiteral(cnf, literal);

            �return new Tuple<Cnf, Cnf>(RemoveLiteral(tuple.Item1,  

literal), RemoveLiteral(tuple.Item2, 

NegateLiteral(literal)));

        }

        private CnfRemoveLiteral(Cnfcnf, Formula literal)

        {

var result = new Cnf();

foreach (var clause in cnf.Clauses)

result.Clauses.Add(clause.RemoveLiteral(literal));

            return result;

        }

        �private Tuple<Cnf, Cnf>SplittingOnLiteral(Cnfcnf, 

Formula literal)

        {

            // List of clauses containing literal

var @in = new List<Clause>();

            // List of clauses containing Not(literal)

varinNegated = new List<Clause>();
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            �// List of clauses not containing literal nor 

Not(literal)

var @out = new List<Clause>();

var negated = NegateLiteral(literal);

foreach (var clause in cnf.Clauses)

            {

                if (clause.Contains(literal))

                    @in.Add(clause);

                else if (clause.Contains(negated))

inNegated.Add(clause);

                else

                    @out.Add(clause);

            }

varinCnf = new Cnf { Clauses = @in };

varoutCnf = new Cnf { Clauses = @inNegated };

inCnf.Join(@out);

outCnf.Join(@out);

            return new Tuple<Cnf, Cnf>(inCnf, outCnf);

        }

This method uses the following auxiliary methods:

•	 RemoveLiteral(Cnf cnf, Formula literal): returns 

a new Cnf class where each clause will not contain the 

literal received as argument

•	 SplittingOnLiteral(Cnf cnf, Formula literal): 

returns a tuple containing two CNFs according to the 

Split rule previously described
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In the Split() method we make a call to a static method 

ChooseLiteral() from a class named Heuristics; this method outputs 

the first literal from the CNF formula and takes it as the branching literal.

Heuristics and metaheuristics are topics that we’ll analyze deeply in 

Chapter 7. For the time being, let us think of a heuristic as a procedure 

that, drawn from experience, helps us in attaching human, empiric 

knowledge to the process of solving a certain problem.

Note I n the SplittingOnLiteral() method we declared 
variables @in, inNegated, and @out with the purpose of storing 
clauses that contain the literal selected for splitting or branching, 
its negation, and any other clause respectively. We use the @ prefix 
because in and out are keywords in C#.

In DPLLs, tree construction is extremely important for efficiency 

reasons in order to properly select the literal that will be used for 

branching; i.e., the literal that will be used to split the current node and 

create new branches of the tree. We’ll content ourselves with the naïve, 

simple method that we have for branching, and later in this book we will 

dive into better ways to select and branch.

�Practical Problem: Modeling the Pigeonhole 
Principle in Propositional Logic
The Pigeonhole Principle, also known as Dirichlet’s Box Principle, is a 

simple yet fundamental idea in mathematics. It was formulated back in the 

1800s by the German mathematician Peter Gustav Lejeune Dirichlet, the 

scientist who defined the concept of function as we know it today—one of 

his multiple contributions in many fields.
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The principle states that if you have n pigeonholes and m pigeons 

where m > n (# pigeons > # pigeonholes) then there’s at least one 

pigeonhole containing two pigeons.

To formulate the principle in propositional logic, let us consider 

variable p_ij, which will indicate that pigeon i is mapped to pigeonhole j. 

We’ll try to create a CNF formula that models this problem and then find 

out about its satisfiability.

The following constraints will determine the clauses of the resulting 

CNF formula.

•	 p_i1 ∨ p_i2 ∨ ... ∨ p_in, for each i <= m

•	 ¬p_ik ∨ ¬p_jk, for each i, j <= m and k <= n, i ≠ j

The first rule guarantees that every clause (pigeonhole) contains at 

least one pigeon. The second rule or constraint is applied to every distinct 

pair of variables and guarantees that there are not two pigeons in the same 

pigeonhole. In the following practical problem, we'll see an example of 

how to test the Pigeonhole Principle in our program.

�Practical Problem: Finding Whether 
a Propositional Logic Formula is SAT
In this practical problem we’ll use the hierarchy and the DPLL algorithm 

previously described to determine whether a given propositional logic 

formula is satisfiable. To provide better visualization of results we’ll 

implement a Name property in the Variable class as well as ToString() 

overrides in classes Not, And, Or, Variable, and Cnf (Listing 2-9).
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Listing 2-9.  Adding Name Property to Variable Class and ToString() 

Overrides for Variable, Not, And, Or, and Cnf Classes

public class Variable : Formula

    {

        public bool Value { get; set; }

        public string Name { get; set; }

        ...

        public override string ToString()  

        {

            return Name;

        }

    }

public class Not : Formula

    {

        ...

        public override string ToString()  

        {

            return "!" + p;

        }

    }

public class Or : BinaryGate

    {

        ...

        public override string ToString()  

        {

            return  "(" + P + " | " + Q + ")";

        }

    }
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public class And : BinaryGate

    {

        ...

        public override string ToString()  

        {

            return  "(" + P + " & " + Q + ")";

        }

    }

public class Cnf : BinaryGate

    {

        ...

        public override string ToString()  

        {

               if (Clauses.Count > 0)

               {

                   var result = "";

                  foreach (var clausule in Clauses)

                 {

                    var c = "";

                    foreach (var literal in clausule.Literals)

                        c += literal + ",";

                    result += "(" + c + ")";

                }

                 return result;

            }

            return "Empty CNF";

        }

    }
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Let’s start by trying to input the next formula into our program:

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬r)

We’ll use the And, Or, Variable, and Not classes to create this formula, 

as illustrated in Listing 2-10.

Listing 2-10.  Creating Formula (p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬r) 

and Finding Out If It’s Satisfiable Using the DPLL Algorithm

var p = new Variable(true) { Name = "p" };

var q = new Variable(true) { Name = "q" };

var r = new Variable(true) { Name = "r" };

var f1 = new And(new Or(p, q), new Or(p, new Not(q)));

var f2 = new And(new Or(new Not(p), q), new Or(new Not(p),  

new Not(r)));

var formula = new And(f1, f2);

varnnf = formula.ToNnf();

Console.WriteLine("NNF: " + nnf);

nnf = nnf.ToCnf();

varcnf = new Cnf(nnf as And);

cnf.SimplifyCnf();

Console.WriteLine("CNF: " + cnf);

Console.WriteLine("SAT: " + cnf.Dpll());
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The result obtained after executing this code is shown in Figure 2-2.

Figure 2-3.  Results after executing the DPLL algorithm on the 
previous formula

Figure 2-2.  Results after executing the previous code

Now, let’s try a different formula (Listing 2-11; Figure 2-3):

(p ∨ q ∨ ¬r) ∨ (p ∨ q ∨ r) ∧ (p ∨ ¬q) ∧ ¬p

Listing 2-11.  Creating Formula (p ∨ q ∨ ¬r) ∨ (p ∨ q ∨ r) ∨ (p ∨ ¬q) ∨ ¬p 

and Finding Out If It’s Satisfiable Using the DPLL Algorithm

var f1 = new Or(p, new Or(q, new Not(r)));

var f2 = new Or(p, new Or(q, r));

var f3 = new Or(p, new Not(q));

var formula = new And(f1, new And(f2, new And(f3, new Not(p))));
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We will use one final formula to test the algorithm and the Formula 

hierarchy introduced in this chapter (Listing 2-12; Figure 2-4).

(p ˅ q ˅ r) ˄ (p ˅ q ˅ ¬r) ˄ (p ˅ ¬q ˅ r) ˄ (p ˅ ¬q ˅ ¬r) ˄ (¬p ˅ q 
˅ r) ˄ (¬p ˅ q ˅ ¬r) ˄ (¬p ˅ ¬q ˅ r)

Listing 2-12.  Creating Formula (p ˅ q ˅ r) ˄ (p ˅ q ˅ ¬r) ˄ (p ˅ ¬q ˅ r) ˄ (p 

˅ ¬q ˅ ¬r) ˄ (¬p ˅ q ˅ r) ˄ (¬p ˅ q ˅ ¬r) ˄ (¬p ˅ ¬q ˅ r) and Finding Out If It’s 

Satisfiable Using the DPLL Algorithm

var f1 = new Or(p, new Or(q, r));

var f2 = new Or(p, new Or(q, new Not(r)));

var f3 = new Or(p, new Or(new Not(q), r));

var f4 = new Or(p, new Or(new Not(q), new Not(r)));

var f5 = new Or(new Not(p), new Or(q, r));

var f6 = new Or(new Not(p), new Or(q, new Not(r)));

var f7 = new Or(new Not(p), new Or(new Not(q), r));

var formula = new And(f1, new And(f2, new And(f3, new And(f4, 

new And(f5, new And(f6, f7))))));

Figure 2-4.  Results after executing the DPLL algorithm on the 
previous formula
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Recalling now the Pigeonhole Principle (described in the last practical 

problem), let’s consider the case where m = 3, n = 2. This case would be 

encoded in our program as shown in Listing 2-13.

Listing 2-13.  Pigeonhole Principle Modeled in Our Program for the 

Case Where m = 3, n = 2; i.e., m pigeons, n pigeonholes

// Pigeonhole Principle m = 3, n = 2

var p11 = new Variable(true) { Name = "p11" };

var p12 = new Variable(true) { Name = "p12" };

var p21 = new Variable(true) { Name = "p21" };

var p22 = new Variable(true) { Name = "p22" };

var p31 = new Variable(true) { Name = "p31" };

var p32 = new Variable(true) { Name = "p32" };

var f1 = new Or(p11, p12);

var f2 = new Or(p21, p22);

var f3 = new Or(p31, p32);

var f4 = new Or(new Not(p11), new Not(p21));

var f5 = new Or(new Not(p11),  new Not(p31));

var f6 = new Or(new Not(p21), new Not(p31));

var f7 = new Or(new Not(p12), new Not(p22));

var f8 = new Or(new Not(p12), new Not(p32));

var f9 = new Or(new Not(p22), new Not(p32));

var formula = new And(f1, new And(f2, new And(f3, new And(f4, 

new And(f5, new And(f6, new And(f7, new And(f8, f9))))))));

The result for this case, as expected, would be False since we cannot 

occupy every pigeonhole with a single pigeon.
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In the last few sections we have been studying propositional logic and 

some of the algorithms and methods related to it. We also analyzed the 

relationship between logic and AI and described what ATP stands for, as 

well as some of its uses and advantages. Let’s remember that ATP is an area 

that attempts to automate mathematicians’ work and that SAT solvers are 

very useful tools in this area. In the following sections we’ll start looking at 

a more complex logic than propositional logic, first-order logic, which is 

an extension of propositional logic, and we’ll get a glimpse of some of the 

benefits it provides over the simpler propositional logic.

�First-Order Logic
Propositions that we have studied thus far consist of a subject (object or 

individual) and a predicate.

Given a set of objects or subjects, the relations and properties defined 

among these objects are known as predicates.
Examples of predicates are the following:

	 1.	 x > x

	 2.	 5 + y - x = 1

	 3.	 x > 2

After considering the previous examples, we may ask ourselves, what 

would be the difference between propositions and predicates?

In the latest predicate examples we have constants (1, 2, 5), relations 

(>, =), and functions (+, -), and they all have a fixed interpretation, 

but the same doesn’t occur with numerical variables (x, y). The 

indetermination that these variables introduce in regards to the value 

that they can take causes the expression to not be logically considered 

as a proposition. Depending on the value that variables x, y may take, 

the previous expressions could become True or False—hence, become 

propositions.
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In logic, expressions 1, 2, 3 are referred to as nth predicates; i.e., a 

predicate with n variables. Considering examples 1, 2, and 3, we can say 

that the first expression is a unary predicate and the second a binary 

predicate. A property is a unary predicate, a particular type of relationship 

with the subject itself; thus, it’s thought of as a special case of predicate.

Note P redicates represent relations between subjects, objects, and 
individuals. They lack veritative value; i.e., they don’t have True or 
False values like propositions do.

First-order logic (FOL) extends propositional logic by allowing certain 

forms of reasoning about objects in logical statements.

In propositional logic we have variables that stand for facts or 

statements that might be true or not, like “World War II ended in 1952” 

or “Star Wars was directed by George Lucas,” but you can’t have variables 

that represent things like cars, pencils, or the temperature. In FOL, 

variables refer to things of the world like pencils or the temperature, and 

we can quantify them, allowing us to express in one sentence what in 

propositional logic would probably take several.

In general, some of the reasons why we need FOL are as follows:

•	 We need a way of saying that an individual or subject has 

a certain property or that certain individuals are related 

in a particular way (e.g., that Zofia is single, or that she is 

married to Albert, or that Johnny is Ben’s dog).

•	 We need a way of saying that all subjects (of a certain 

type) have a certain property (e.g., that all birds have 

wings or there exists a man taller than 7 feet).

•	 We need a way of referring to entities that are 

functionally determined by other entities (e.g., the 

height of a person; the weight of an object; the sum of 

two numbers).
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The simplified representation that propositional logic provides makes 

it very complicated to model numerous problems that typically arise in our 

ordinary life. As a result, we must rely on a more complex logic like FOL.

The reasons described earlier motivate the syntax of FOL. Its syntax 

allows us to form (using a formal language) formulas similar to English 

sentences, such as IsDog(“Johnny”) (Is Johnny a dog?), Misses(“Katty”, 

“John”) (Katty misses John) or ∀x (IsDog(x) => ¬CanFly(x)) (For all object 

x, if x is a dog then x cannot fly).

The components of FOL are the connectives of propositional logic; 

terms, which can be constants (a, b, John, Lucas, etc.), variables (x, y, etc.), 

or functions (F, G, H, etc.) applied to other terms; propositional constants 

(True, False), predicates (IsDog, CanFly, etc.), which represent the 

properties of a single object or relationships among two or more objects, 

and quantifiers (‘for all ...’ denoted as ∀, ‘there exists ...’ denoted as ∃ and 

‘there exists only one ...’ denoted as ∃!). The big novelty in FOL is without a 

doubt the appearance of quantifier operators.

A formula can be a predicate applied to one or more terms, the 

equality of two terms (i.e., t1 = t2; ∀(v)F'(v), ∃(v)F'(v) if v is a variable 

and F' is a formula), or anything deriving from the application of logic 

connectives of propositional logic to other formulas.

In the following lines we detail a bit more the FOL syntax:

constant ::= a | A | b | B | c | C | John | Block1 | Block2 | ...

variable ::= x | y | z | x1| x2 | block1 | ...

function::= f | g | h | weight | sum | mother-of | ...

term ::= constant | variable | function (term , ..., term)

predicate::= A | B | C |IsDog| Loves |IsBrother ...

binary connective ::=˄ | ˅ | => | <=>
formula ::= predicate (term , ..., term) | (term = term) 

| ¬formula | ((formula) binary connective (formula)) | 

∀(variable) formula | ∃(variable) formula
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In propositional logic we interpreted a formula as the assignment 

of truth values to its propositional variables. In FOL the introduction of 

predicates and quantifiers gives us formulas whose evaluation depends 

on the interpretation given in some domain (integers, real numbers, cars, 

pencils . . . anything we can think of) or universe of objects; the concept of 

interpretation in this case is a bit more complicated.

Note A n interpretation of a formula is a pair (D, A) where D is the 
domain and A an assignment for each constant, function, predicate, 
and so on.

In order to define the interpretation I of a formula in a domain or set of 

objects D we must consider the following rules of interpretation:

	 1.	 If c is a constant then c has domain D. This 

mapping indicates how names (constants are 

basically names) are connected to objects of the 

universe. We may have a constant Johnny, and the 

interpretation of Johnny in the world of dogs could 

be a particular dog.

	 2.	 If P is a predicate then P has D x D x ... D domain; 

i.e., there’s a mapping from predicates to relations 

in D.

	 3.	 If f is a function then f has domain D, an image 

also in D; i.e., there’s a mapping from functions to 

functions in D.
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Given an interpretation I of a formula F under domain D, I follows the 

following rules of evaluation:

	 1.	 If P(v1, v2, ... ,vn) is a predicate then P is True if (v1, 

v2, ... , vn) is a relation in D; i.e., (v1, v2, ... , vn)∈ D 

x D x ... x D. Recall that an n-ary relation is a set of 

n-tuples.

	 2.	 If F, F' are formulas of FOL then F ∧ F', F ∨ F', F => F', 

F <=> F', ¬F have the same veritative value in domain 

D as they would have using the same operators in 

propositional logic; i.e., these operators have the 

same truth tables in both logics.

	 3.	 The formula ∀(v)F(v) is True if F(v) is True for all 

values of v in D.

	 4.	 The formula ∃(v)F(v) is True if F(v) is True for at 

least one value of v in D.

Let’s examine an example that will clarify how interpretation and 

evaluation works in FOL; consider the following interpretation I of a 

formula under domain D:

∃(x)IsFriend(x, Arnaldo)∧∃(y)IsWorkingWith(y, Arnaldo)

D = {John, Arnaldo, Mark, Louis, Duke, Sting, Jordan, Miles, 

Lucas, Thomas, Chuck, Floyd, Hemingway}

Constants = {Arnaldo}

Predicates = {IsFriend, IsWorkingWith}

I(Arnaldo) = Arnaldo

I(IsFriend) = {(John, Arnaldo), (Mark, Louis), (Duke, Sting), 

(Jordan, Miles)}

I(IsWorkingWith) = {(Lucas, Arnaldo), (Thomas, Chuck), (Floyd, 

Hemingway)}

Chapter 2  Automated Theorem Proving & First-Order Logic



80

For determining the truth value of the previous interpretation we have that

∃(x)IsFriend(x, Arnaldo)

for x = John is True because tuple or relation (John, Arnaldo) belongs to 

IsFriend; therefore, ∃(x)IsFriend(x, Arnaldo) is also True.

∃(y)IsWorkingWith(y, Arnaldo)

for y = Lucas is True because tuple or relation (Lucas, Arnaldo) belongs 

to IsWorkingWith; therefore, ∃(y)IsWorkingWith(y, Arnaldo) is also 

True.

Since both ∃(x)IsFriend(x, Arnaldo) and ∃(y)IsWorkingWith(y, 
Arnaldo) are True, their conjunction is True, and the interpretation is 

also True.

�Predicates in C#
Since we are exploring the world of FOL and its most notable components 

(predicates, quantifiers, and so forth) it would be worth mentioning that 

in C# we can make use of the Predicate<T> delegate, a construct that 

allows us to test whether an object of type T fulfills a given condition. For 

example, we could have the Dog class as follows (Listing 2-14).

Listing 2-14.  Dog Class

public class Dog

  {

        public string Name { get; set; }

        public double Weight { get; set; }

        public Gender Sex { get; set; }

        public Dog(string name, double weight, Gender sex)

        {

            Name = name;
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            Weight = weight;

            Sex = sex;

}

    }

    public enum Gender {

         Male, Female

    }

Then, we can use a predicate to filter and get objects that satisfy certain 

properties, as illustrated in Listing 2-15, where we create a list of dogs and 

then use the Find() method, which expects a predicate as argument, to 

“find” all objects (dogs) satisfying the given predicates.

Listing 2-15.  Using a Predicate in C# to Filter and Get Objects (Dogs 

in This Case) That Are Males and Dogs Whose Weight Exceeds 22 

Pounds

varjohnny = new Dog("Johnny", 17.5, Gender.Male);

var jack = new Dog("Jack", 23.5, Gender.Male);

varjordan = new Dog("Jack", 21.2, Gender.Male);

varmelissa = new Dog("Melissa", 19.7, Gender.Female);

var dogs = new List<Dog> { johnny, jack, jordan, melissa };

Predicate<Dog>maleFinder = (Dog d) => { return d.Sex == Gender.

Male; };

Predicate<Dog>heavyDogsFinder = (Dog d) => { return d.Weight>= 

22; };

varmaleDogs = dogs.Find(maleFinder);

varheavyDogs = dogs.Find(heavyDogsFinder);

At this point, we have gotten ourselves into the world of propositional 

logic and FOL. In the next section we will present a practical problem 

where we’ll see some FOL in action.
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�Practical Problem: Cleaning Robot
In this section we’ll see many of the concepts described earlier (functions, 

predicates, and so forth) being applied in the creation of a cleaning robot, 

whose world is illustrated in Figure 2-5.

Figure 2-5.  Cleaning robot in the grid. Dirt is marked as orange balls 
and logically represented on the grid as integers. Following this idea, 
the cell on the upper-left corner (first one) has value 5.

This cleaning robot tries to get rid of the dirt in a grid of n x m (n rows, 

m columns). Each cell in the grid is an integer d, where d indicates the 

count of dirt in that cell. When d = 0 that cell is considered clean.

The robot will have the following features:

•	 It moves one step at a time in four possible directions 

(left, up, right, down).

•	 It does not abandon a cell until is completely clean, and 

it picks dirt up one step at a time; i.e., if on a dirty cell 

it will clean a unit of dirt at a time (leaving -1 dirt) and 

then continue to its next decision stage.

•	 It stops when everything is clean or its task has 

exceeded a given time in milliseconds.
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Our cleaning robot will rely on the following predicates and functions:

•	 IsDirty() is a predicate that determines if the cell 

where the robot is happens to be dirty.

•	 IsTerrainClean() is a predicate that determines if 

every cell on the terrain is clean.

•	 MoveAvailable(int x, int y) is a predicate that 

determines whether a move to (x, y) in the terrain is 

legal.

•	 SelectMove() is a function that randomly selects  

a move.

•	 Clean() is a function that simply cleans (-1) a dirt 

from current cell; i.e., the cell where the robot is at that 

moment.

•	 Move(Direction m) is a function that moves the robot 

in direction m.

•	 Print() is a function that prints the terrain.

•	 Start(intmilliseconds) is a function that commands 

the robot to start cleaning up. The code of this 

method matches the robot behavior explained earlier. 

The integer argument milliseconds represents 

the maximum time the robot will be cleaning, in 

milliseconds.

The robot is encoded in a CleaningRobot C# class that goes as shown 

in Listing 2-16.
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Listing 2-16.  CleaningRobot Class

public class CleaningRobot

    {

        private readonlyint[,] _terrain;

        private static Stopwatch _stopwatch;

        public int X { get; set; }

        public int Y { get; set; }

        private static Random _random;

public CleaningRobot(int [,] terrain, int x, int y)

        {

            X = x;

            Y = y;

_terrain = new int[terrain.GetLength(0), terrain.GetLength(1)];

Array.Copy(terrain, _terrain, terrain.GetLength(0) * terrain.

GetLength(1));

            _stopwatch = new Stopwatch();

            _random = new Random();

        }

        public void Start(intmilliseconds)

        {

            _stopwatch.Start();

            do

            {

                if (IsDirty())

                    Clean();

                else

                    Move(SelectMove());

            �} while (!IsTerrainClean() && !(_stopwatch.Elapsed

Milliseconds>milliseconds));

        }
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        // Function

        private Direction SelectMove()

        {

var list = new List<Direction> { Direction.Down, Direction.Up, 

Direction.Right, Direction.Left };

            return list[_random.Next(0, list.Count)];

        }

        // Function

        public void Clean()

        {

            _terrain[X, Y] -= 1;

        }

        // Predicate

        public bool IsDirty()

        {

            return _terrain[X, Y] > 0;

        }

        // Function

        private void Move(Direction m)

        {

            switch (m)

            {

                case Direction.Up:

                    if (MoveAvailable(X - 1, Y))

                        X -= 1;

                        break;

                case Direction.Down:

                    if (MoveAvailable(X + 1, Y))

                        X += 1;

                        break;
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                case Direction.Left:

                        if (MoveAvailable(X, Y - 1))

                            Y -= 1;

                        break;

                case Direction.Right:

                        if (MoveAvailable(X, Y + 1))

                            Y += 1;

                        break;

            }

        }

        // Predicate

        public bool MoveAvailable(int x, int y)

        {

            �return x >= 0 && y >= 0 && x < _terrain.

GetLength(0) && y < _terrain.GetLength(1);

        }

        // Predicate

        public bool IsTerrainClean()

        {

            // For all cells in terrain; cell equals 0

foreach (var c in _terrain)

                if (c > 0)

                    return false;

            return true;

        }

        public void Print()

        {

var col = _terrain.GetLength(1);

vari = 0;

var line = "";
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Console.WriteLine("--------------");

foreach (var c in _terrain)

            {

                line += string.Format("  {0}  ", c);

i++;

                if (col == i)

                {

Console.WriteLine(line);

line = "";

i = 0;

                }

            }

        }

    }

    public enumDirection

    {

        Up, Down, Left, Right

}

The constructor of the class receives as arguments the terrain and two 

integers x, y that represent the initial position of the robot on the terrain.

The print() method was included for testing purposes. Let’s suppose 

we have the terrain as shown in the following code and then we execute 

the robot, i.e., call the Start() method on it, as seen in Listing 2-17.

Listing 2-17.  Starting the Cleaning Robot

var terrain = new [,]

                     {

                          {0, 0, 0},

                          {1, 1, 1},

                          {2, 2, 2}

};
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varcleaningRobot = new CleaningRobot(terrain, 0, 0);

cleaningRobot.Print();

cleaningRobot.Start(50000);

cleaningRobot.Print();

The terrain contains dirt on the second (1 on each column) and 

third rows (2 on each column), and after the robot has finished his task, 

according to one of the termination conditions (everything’s clean or 

time’s up) stated before, we obtain the result seen in Figure 2-6.

Figure 2-6.  Terrain before and after the cleaning of the robot

As occurred before when developing the DPLL algorithm, we need a 

heuristic for selecting the next move of the agent. We’ll get into the field of 

heuristics and metaheuristics in Chapter 7.

This cleaning robot is a very naïve, simple agent; the topic of agents in 

AI will be addressed in the next chapter. For the moment, we have created 

the necessary basis to start diving into more complicated and interesting 

subjects and branches of AI. In any case, future topics to be studied will be 

related to logic as it’s the basis of many sciences and areas of knowledge.
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�Summary
In the last two chapters we analyzed the relationship between AI and 

logic. We introduced two fundamental types of logic: propositional 

logic and first-order logic. We examined various codes that included a 

hierarchy for representing formulas (variables, logical connectives, and 

so on), and we complemented this hierarchy with different methods. 

Among these methods we presented the negation normal form 

transformation algorithm, the conjunctive normal form transformation 

algorithm (relies on the distributive laws previously introduced), and 

the DPLL algorithm, which is a classic algorithm for determining the 

satisfiability of a formula. Additionally, we described a binary decision 

tree for representing formulas and their possible evaluations and a 

practical problem where a simple, naïve cleaning robot uses first-order 

logic concepts to formulate its simple intelligence.

In the next chapter, we’ll begin explaining agents and many of the 

concepts around these (proactive, reactive) that we may have heard of 

before from video-game fans, AI fans, friends, or colleagues.
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CHAPTER 3

Agents
In this chapter, we’ll begin describing a very important field of study in the 

world of AI: agents. Nowadays, agents represent an area of strong interest 

for many subfields of computer science and AI. They are being used in a 

great number of applications, ranging from comparatively small systems 

such as email filters to complex, colossal systems such as air traffic control.

In the next pages we’ll address agents as fundamental AI entities; we 

will start by getting acquainted with a possible agent definition (as there’s 

no global agreement regarding this concept). We’ll examine different 

agents’ properties and architectures and analyze a practical problem that 

will help us understand how to develop agents in C#. Practical problems 

examined in this and the following chapter will set the concepts presented 

throughout this chapter on firm ground, and many of them will be 

connected to classical problems of AI.

We’ll give meaning and definition to many of the words that we 

typically hear today from videogamers, AI hobbyists, or programmers 

associated with AI—words such as reactive, proactive, perceptions, actions, 

intentions, or deliberation. Typical examples of agents that we might 

know are a robot (like the cleaning robot from last chapter), a web-based 

shopping program, a traffic-control system, software daemons, and so on.
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Note  Agents are colloquially known as bots, which derives from the 
word robot. They could use metallic bodies similar to the ones we see 
in science fiction films or just consist of computer software installed 
on our phone, like Siri. They may possess human abilities like speech 
and speech recognition and be able to act on their own.

�What’s an Agent?
As mentioned earlier, there’s no agreement on a global concept of the term 

agent. Let’s remember that the same thing occurred with the concept of 

logic (recall that we analyzed it in Chapter 2).

To provide a definition of the term agent we will consider different 

definitions from various authors and take the most generic features from 

all of them, attaching some self-logic to it.

Since agent is a term drawn from AI, we must bear in mind that, as 

happens with everything in the field of AI, it relates to creating an artificial 

entity, something that emulates and enhances, if possible, the making of a 

set of human tasks in a certain way and environment.

Hence, an agent is an entity (human, computer program) that, using 

a set of sensors (to sense maybe heat, pressure, and so on, kind of like 

humans do), is capable of obtaining a set of percepts or inputs (warm, 

high pressure, and so forth) and has the ability to act (turn on AC, move to 

different location) upon that environment through actuators.

Actuators for the human case can be their legs, arms, or mouth, and in 

the robot case it can be their robotic arms, wheels, or similar.

Percepts or inputs are every piece of data that the agent receives 

through its sensors.

In the human case sensors can be eyes, nose, ears, or anything that 

we actually have for pulling information out of the world, our daily 
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environment. In the robot case, sensors can be their cameras, microphone, 

or anything that they can use to obtain inputs from the environment. 

In both cases the input received is transformed into percepts, which 

represent pieces of information with some logic attached. For instance, 

using our ears we could notice that, when entering a room, the music in it 

is too loud. How does the process of noticing and receiving this perception 

work? Our ears sense the loud sounds in the room, and that information is 

passed on to our brain, which processes it and creates a percept labelled 

“loud music,” and then we know. Optionally, we could act upon that 

percept and use our arms and hands (actuators) to lower the volume on 

the music. The same occurs with nonhuman agents, but at a software level 

and maybe using some robotic parts (arms, wheels, and so on).

From a mathematical point of view, the definition of agent can be 

viewed as a function that uses a set of tuples or relations from a set of 

percepts as the domain and has a set of actions (Figure 3-1); i.e., assuming 

F is the agent’s function, P the set of percepts, and A the set of actions, F: P* 

→ A. Now that we have provided a definition for the very important term of 

agent, it’s time to define what we will refer to as an intelligent agent.
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An intelligent agent is an autonomous agent capable of executing its 

actions while considering several agent properties, such as reactivity, 

proactiveness, and social ability. The main difference between an agent 

and an intelligent agent are the words intelligent and autonomous, the 

latter of which is associated with the independence that is expected in its 

behavior, while the first relates to the properties just mentioned. These 

properties and others will be the main topic of the following sections.

Note  An agent does not necessarily need to be an intelligent 
agent since that feature involves a set of more human or advanced 
attributes (reactivity, proactiveness, social ability, and so on) that a 
simple agent such as a movement detector may not need. Thus, to 
be as general as possible, we begin with the more generic agent 
definition and then discuss the intelligent agent definition.

Figure 3-1.  An agent in its environment. The agent uses its sensory 
components to receive inputs from the environment. It processes these 
inputs and eventually outputs an action that affects the environment. 
This will be a continuous interaction as long as the agent remains 
active.

Chapter 3  Agents



95

�Agent Properties
Now that we have gotten acquainted with the agent and intelligent agent 

concepts, it’s time to describe those properties mentioned that make an 

agent intelligent.

Autonomy refers to the ability of agents to act without the direct 

intervention of humans or other agents and have control over their own 

actions and internal state.

Reactivity refers to the ability of agents to perceive their environment 

and respond in a timely fashion (response must be useful) to the percepts 

received in it so as to meet the agent’s designated goals.

Proactiveness refers to the ability of agents to exhibit goal-directed 

behavior and take the initiative by creating plans or similar strategies that 

would lead them to satisfy their designated goals.

Social ability refers to the capability of an agent to interact with other 

agents (possible humans) in a multi-agent system to achieve its designated 

goals. Since this property relates to multi-agents’ environments, we’ll 

address it further in the next chapter.

Another very important property is that of rationality. We say that an 

agent is rational if it acts in order to achieve its goals and will never act in 

such a way as to prevent its goals from being achieved.

Purely reactive agents decide what to do without looking at their 

percepts history. Their decision-making process is based solely on the 

current percept without looking at their past; hence, they have no memory 

or do not consider it. Mathematically speaking the agent function of a 

purely reactive agent is F: P → A. As we can see, an agent that only exhibits 

the reactive property will only need the current percept in order to provide 

an action.
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Note  The agent’s function for a generic agent is F: P * → A. The 
asterisk on top of the P denotes a relation of zero or more percepts; 
i.e., a set of tuples of length n where n >= 0; this is the number that 
replaces the asterisk. In the purely reactive agent case, n = 1.

The decision-making process in a reactive agent is implemented as a 

direct mapping from state to action. Agents incorporating this property 

react to the environment without reasoning about it. The cleaning robot 

described in the last chapter is an example of a reactive agent; remember 

we had rules like the ones shown in Listing 3-1.

Listing 3-1.  Simple Rule of the Cleaning Robot from Last Chapter,  

a Reactive Agent

if (IsDirty())

Clean();

      else

Move(SelectMove());

These were simply rules that made our robot react to the environment 

without any reasoning whatsoever. The SelectMove() method returned 

a random move to be executed by the agent, so no heuristic (to be seen 

in Chapter 14) or any other type of goal-directed analysis or behavior was 

incorporated into this agent. As happens with the cleaning robot, every 

reactive agent is basically hardwired as a set of if … then rules.

What advantages do we get from developing reactive agents?

	 1.	 It is really easy to code them, and they allow us to 

obtain an elegant, legible code.

	 2.	 They are easy to track and understand.

	 3.	 They provide robustness against failures.
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What would be the disadvantages or limitations of a purely reactive agent?

	 1.	 Since they make decisions based on local 

information—in other words, information about the 

agent’s current state—it's difficult to see how such 

decision making could take into account non-local 

information; hence, they have a “short horizon” view.

	 2.	 It is difficult to make them learn from experience 

and improve their performance over time.

	 3.	 It’s hard to code reactive agents that must 

incorporate a large number of behaviors (too many 

situations -> action rules).

	 4.	 They don’t have any proactive behavior; therefore, 

they do not make plans or care about the future, just 

about the present or immediate action to execute.

Reacting to an environment is quite easy, but we regularly need more 

from our agents; we need them to act on our behalf and do things for us.  

In order to accomplish these tasks, they must have goal-directed 

behavior—they must be proactive.

Proactive agents will be looking to create and achieve secondary goals 

that will eventually lead them to fulfill their primary goals. As part of their 

operation, such agents should be able to anticipate needs, opportunities, 

and problems, and act on their own initiative to address them. They should 

also be able to recognize opportunities on the fly; for example, available 

resources, pattern anomalies, chances of cooperation, and so forth.

A common example of a proactive agent is a personal assistant agent, 

like those likely installed on one of our devices. This agent can be running 

constantly on our phone, keeping track of our location and preferences and 

proactively suggesting places to visit according to those preferences (cultural 

activities in the area, restaurant offering our type of food, and so on).
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In general we’ll want our agents to be reactive; that is, respond to the 

changing conditions of the environment in a timely fashion or equivalently 

respond to short-term goals. We also want them to be proactive and 

systematically work toward meeting long-term goals. Having an agent that 

balances these two properties is an open research problem.

In this chapter, we’ll analyze a practical problem in which we’ll add 

proactive features to the cleaning robot presented in Chapter 1.

Other properties of agents that, although not considered basic 

properties like the ones previously mentioned, still are relevant are shown 

in Table 3-1.

Table 3-1.  Other Agent Properties

Property Description

Coordination It means the agent is capable of executing some activity in a 

shared environment with other agents. It answers the question, 

How do you divide a task between a group of agents? Coordination 

occurs through plans, workflows, or any other management tool.

Cooperation It means the agent is able to cooperate with other agents so as 

to fulfill their common goal (share resources, results, distributed 

problem solving). They either succeed or fail all together, as a team.

Adaptability Also referred to as learning, it means the agent is reactive, 

proactive, and capable of learning from its own experiences, the 

environment, and its interactions with others.

Mobility It means the agent is able to transport itself from one shell to 

another and use different platforms.

Temporal 

continuity

It means the agent is continuously running.

(continued)
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Property Description

Personality It means the agent has a well-defined personality and a sense of 

emotional state.

Reusability It means successive agent instances can require keeping instances 

of the agent class for information reuse or to check and analyze 

previously generated information.

Resource 

limitation

It means the agent can act only as long as it has resources at its 

disposal. These resources are modified by its actions and also by 

delegating.

Veracity It means the agent will not knowingly communicate false 

information.

Benevolence It means the agent will run under the assumption it does not have 

conflicting goals, and it will always try to do what is asked of it.

Knowledge-level 

communication

It means the agent will have the ability to communicate with 

human agents and maybe other nonhuman agents using a 

humanlike language (English, Spanish, etc.).

Table 3-1.  (continued)

Now that we have detailed some significant agent properties, let’s 

examine some of the different types of environment in which our agent can 

be interacting; eventually, we’ll also introduce various agent architectures 

that we could implement for our agent.

�Types of Environments
Depending on the type of environment, an agent may or may not need a set 

of properties. Hence, the decision-making process of the agent is affected 

by the features exposed by the environment in which it runs. These features 

make up the types of environment that will be described in this section.
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In a deterministic environment every action taken by the agent will 

have a single possible outcome; i.e., there is no uncertainty about the 

resulting state or percept after executing an action (Figure 3-2).

Figure 3-2.  Deterministic environment; an agent is in state S and 
can only move to state or percept S1 after executing an action A. Every 
state is linked to just one state; i.e., there’s a single possible outcome 
for every action executed by the agent.

On the other hand, a non-deterministic environment is one in 

which actions executed by agents do not have a well-determined state 

and rather than just being a single state it could be a set of states; for 

instance, executing action A could lead to states S1, S2, or S3. This is non-

deterministic, as illustrated in Figure 3-3. Non-deterministic environments 

are the most complicated environments for agent design. Board games 

using dice are usually non-deterministic, as the roll of the dice could bring 

the agent to any state, and it depends on the values displayed on the dice.
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In a static environment only actions executed by the agent will affect 

the environment and cause it to alter. In dynamic environments there are 

multiple processes operating, many of which are not related in any way to 

the agent, yet they still affect the environment and change it. The physical 

world is a highly dynamic environment.

A discrete environment is one in which there are a fixed, finite number 

of actions and percepts. Alternatively, a continuous environment is one in 

which both actions and percepts are not determined by a finite number. 

Board games like Chess, Sliding Tiles Puzzle, Othello, or Backgammon 

represent discrete environments. However, an environment consisting of 

an actual city represents a continuous environment as there’s no way to 

limit to a fixed, finite number the percepts that the agent may perceive in 

such an environment.

An accessible environment is one in which the agent can obtain 

accurate, complete, and updated information about the environment’s 

state. An inaccessible environment is the opposite—it’s one in which the 

agent cannot obtain accurate, complete, updated information. The more 

accessible an environment is the easier it will be to design an agent for it.

Figure 3-3.  Non-deterministic environment; an agent is in state 
S and after executing action A it could move to states S1, S2, or S3. 
Every state is linked to a set of states; i.e., there are multiple possible 
outcomes for every action executed by the agent.
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Finally, an episodic environment is one in which the agent’s 

performance depends on a discrete number of episodes and there’s no 

relation between the performance of the agent in different episodes. In this 

type of environment the agent can decide what action to execute based 

only on the current episode.

Note  The most complex class of environment is composed of those 
that are inaccessible, non-deterministic, non-episodic, dynamic, and 
continuous.

�Agents with State
Thus far we have considered agents that map a percept or sequence of 

percepts to an action. Because agents (not reactive ones) are capable of 

mapping from a sequence of percepts, they are aware of their history. In 

this section, we’ll go further and examine agents that also maintain state.

The state of an agent will be maintained by means of an internal data 

structure, which will be used to store information about the environment 

while the agent is being executed. As a result, the decision-making process 

could be based on the information stored in this data structure.

The agent function then slightly changes to incorporate this new feature.

F: I x P* → A

where I is the set of internal environmental states stored by the agent, P the 

set of percepts, and A the actions set.

Hence, with stateless agents we just had F: P* → A; now in this case we 

added the necessary consideration of the internal data structure by making 

the agent function receive as arguments an internal state and a percept or 

sequence of percepts; i.e.,

F(I, P1, P2 ... PN) = A.
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It is worth noting that state-based agents like the ones defined in this 

section are actually vastly more powerful than an agent without state.

In the next practical problem, we’ll enhance the cleaning robot 

described in Chapter 1 by adding state to it.

�Practical Problem: Modeling the Cleaning 
Robot as an Agent and Adding State to It
In this practical problem, we’ll modify the CleaningRobot class that we 

described in the last chapter to adapt it to the agent paradigm (percepts, 

actions, and so on), specifically to the agent’s function. We’ll also add state 

to this agent in the form of a List<Tuple<int, int>> that will store cells 

already visited and cleaned. We’ll see the benefits of having such state and 

compare it with the CleaningRobot class that is stateless.

We shall name this class CleaningAgent, and its constructor will be 

very much like the constructor of the CleaningRobot, as seen in Listing 3-2. 

For this new class, we’ll add the Boolean TaskFinished field, which will 

indicate when the task of the agent is finished, and the List<Tuple<int, 

int>> __cellsVisited, which will determine the set of cells that have 

been already visited.

Listing 3-2.  Constructor and Fields of the Cleaning Agent

public class CleaningAgent

    {

        private readonly int[,] _terrain;

        private static Stopwatch _stopwatch;

        public int X { get; set; }

        public int Y { get; set; }

        public bool TaskFinished { get; set; }

        // Internal data structure for keeping state
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        private readonly List<Tuple<int, int>> __cellsVisited;

        private static Random _random;

        public CleaningAgent(int [,] terrain, int x, int y)

        {

            X = x;

            Y = y;

            �_terrain = new int[terrain.GetLength(0), terrain.

GetLength(1)];

            �Array.Copy(terrain, _terrain, terrain.GetLength(0) 

* terrain.GetLength(1));

            _stopwatch = new Stopwatch();

            _cellsVisited= new List<Tuple<int, int>>();

            _random = new Random();

        }

}

The working loop of the agent is now related to the agent function; 

i.e., it executes an action based on the set of perceptions it gets from the 

environment. The loop ends when the task is finished or the maximum 

execution time (in milliseconds) is reached, as shown in Listing 3-3.

Listing 3-3.  Loop of the Agent Matching the Agent’s Function 

Definition

    public void Start(int miliseconds)

    {

        _stopwatch.Start();

        do

        {

            AgentAction(Perceived());

        }
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        �while (!TaskFinished && !(_stopwatch.

ElapsedMilliseconds > miliseconds));

    }

The methods Clean(), IsDirty(), MoveAvailable(int x, int y), 

and Print() will remain as they were in the CleaningRobot class; these are 

illustrated in Listing 3-4.

Listing 3-4.  Methods Clean(), IsDirty(), MoveAvailable(int x, int y), 

and Print() as They Were in the CleaningRobot Class

        public void Clean()

        {

            _terrain[X, Y] -= 1;

        }

        public bool IsDirty()

        {

            return _terrain[X, Y] > 0;

}

public bool MoveAvailable(int x, int y)

        {

            �return x >= 0 && y >= 0 && x < _terrain.

GetLength(0) && y < _terrain.GetLength(1);

        }

        public void Print()

        {

            var col = _terrain.GetLength(1);

            var i = 0;

            var line = "";

            Console.WriteLine("--------------");

            foreach (var c in _terrain)
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            {

                line += string.Format("  {0}  ", c);

                i++;

                if (col == i)

                {

                    Console.WriteLine(line);

line = "";

                    i = 0;

                }

            }

        }

The set of perceptions will be obtained by a method shown in  

Listing 3-5, which returns a list of percepts that will be represented by an 

enum (declared outside of the CleaningAgent class) that defines every 

possible perception in the CleaningAgent environment; this enum can 

also be seen in Listing 3-5.

Listing 3-5.  Percepts enum and the Perceived() Method That 

Returns a List<Percepts> Containing Every Perception the Agent Has 

Obtained from the Environment

public enum Percepts

    {

        �Dirty, Clean, Finished, MoveUp, MoveDown, MoveLeft, 

MoveRight  

}

private List<Percepts> Perceived()

    {

            var result = new List<Percepts>();

            if (IsDirty())

                result.Add(Percepts.Dirty);
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            else

                result.Add(Percepts.Clean);

            �if (_cellsVisited.Count == _terrain.GetLength(0) * 

_terrain.GetLength(1))

                result.Add(Percepts.Finished);

            if (MoveAvailable(X - 1, Y))

                result.Add(Percepts.MoveUp);

            if (MoveAvailable(X + 1, Y))

                result.Add(Percepts.MoveDown);

            if (MoveAvailable(X, Y - 1))

                result.Add(Percepts.MoveLeft);

            if (MoveAvailable(X, Y + 1))

                result.Add(Percepts.MoveRight);

            return result;

        }

As mentioned before, this agent will maintain a state corresponding 

to the history of cells visited. For that purpose we implement the 

UpdateState() method seen in Listing 3-6.

Listing 3-6.  Method for Updating the State of the Agent; i.e.,  

Cells Visited

private void UpdateState()

        {

            if (!_cellsVisited.Contains(new Tuple<int, int>(X, Y)))

                _cellsVisited.Add(new Tuple<int, int>(X, Y));

        }
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The method that puts it all together is AgentAction(List<Percepts> 

percepts) shown in Listing 3-7. In this method, we go through every 

percept obtained from the environment and act accordingly. For instance, 

if the current cell is clean we update the state (internal data structure) of 

the agent by adding that cell to the _cellsVisited list; if we perceive that 

the current cell is dirty we clean it and so on for each situation or percept 

and its consequence or action. Additionally, Listing 3-7 also illustrates the 

methods RandomAction(List<Percepts> percepts) and Move(Percepts p). 

The first selects a random movement percept (MoveUp, MoveDown, etc.) to 

be executed, and the latter executes the movement percept supplied as 

argument.

Note that this agent will always check its state and percept (recall I x P 

is the domain of agents with state) before moving, and it will always try to 

move to an adjacent cell not previously visited.

Listing 3-7.  Method for Updating the State of the Agent; i.e., Cells 

Visited

        public void AgentAction(List<Percepts> percepts)

        {

            if (percepts.Contains(Percepts.Clean))

                UpdateState();

            if (percepts.Contains(Percepts.Dirty))

                Clean();

            else if (percepts.Contains(Percepts.Finished))

                TaskFinished = true;

            else if (percepts.Contains(Percepts.MoveUp) && !_

cellsVisited.Contains(new Tuple<int, int>(X - 1, Y)))

                Move(Percepts.MoveUp);
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            else if (percepts.Contains(Percepts.MoveDown) && 

!_cellsVisited.Contains(new Tuple<int, int>(X + 1, Y)))

                Move(Percepts.MoveDown);

            else if (percepts.Contains(Percepts.MoveLeft) && 

!_cellsVisited.Contains(new Tuple<int, int>(X, Y - 1)))

                Move(Percepts.MoveLeft);

            else if (percepts.Contains(Percepts.MoveRight) && 

!_cellsVisited.Contains(new Tuple<int, int>(X, Y + 1)))

                Move(Percepts.MoveRight);

            else

                RandomAction(percepts);

        }

        private void RandomAction(List<Percepts> percepts)

        {

            var p = percepts[_random.Next(1, percepts.Count)];

Move(p);

}

        private void Move(Percepts p)

        {

            switch (p)

            {

                case Percepts.MoveUp:

                    X -= 1;

                    break;

                case Percepts.MoveDown:

                    X += 1;

                    break;

                case Percepts.MoveLeft:

                    Y -= 1;

                    break;
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                case Percepts.MoveRight:

                    Y += 1;

                    break;

            }

        }

What advantages does the cleaning agent provide us over the stateless 

cleaning robot? In order to answer this question, let’s first note that 

the strategy (recording of its environment history by saving visited cell 

coordinates) we are using with the cleaning agent is very intuitive. Imagine 

you need to find some product X in a big city where there exist over 100 

stores; how would you accomplish such a task? Intuitively, you would 

visit a store once and then record in your mind that you already visited 

that store and the product was not there, thus saving the time of having to 

revisit it. You would then move from one store to the next until you found 

the product, always keeping in mind that stores already visited are a waste 

of time. That’s basically what our cleaning agent tries to do this with the 

exception that there might be times when already-visited cells will have 

to be revisited because the agent can only move to adjacent cells and they 

all may have been visited at some point. In Figure 3-4 we can see a basic 

comparison between the cleaning agent and the cleaning robot.
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In Listing 3-8 we have an environment of 1000 x 1 cells, i.e., 1000 rows 

and one column, and dirt is located just in the last row.

Listing 3-8.  Method for Updating the State of the Agent; i.e., Cells Visited

var terrain = new int[1000, 1];

  for (int i = 0; i < terrain.GetLength(0); i++)

 {

           for (int j = 0; j < terrain.GetLength(1); j++)

{

                     if (i == terrain.GetLength(0) - 1)

                        terrain[i, j] = 1;

}   

   }

Figure 3-4.  The cleaning agent (in blue) searches the environment, 
saving coordinates of visited cells, while the cleaning robot (in red) 
does not save the state of the environment or its history; therefore, it 
simply makes random moves that could take it up or down and  
even going in circles, thus consuming more time to clean the dirt on 
the last cell.
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var cleaningEntity = new CleaningRobot(terrain, 0, 0);

cleaningEntity.Print();

cleaningEntity.Start(200);

   cleaningEntity.Print();

var cleaningEntity = new CleaningAgent(terrain, 0, 0);

cleaningEntity.Print();

cleaningEntity.Start(200);

   cleaningEntity.Print();

The cleaning agent marks every visited cell and thus moves faster 

to the last cell and to the point where its task is complete. The cleaning 

robot, on the other hand, does not save the state of the environment, so 

it doesn’t have any internal structure that may help it decide what move 

should be the correct one and can basically move up and down randomly 

several times and even in circles. The cleaning agent has a data structure 

with information on the environment to aid it in applying some logic and 

making rational decisions, and the cleaning robot does not. As a result of 

the code shown in Listing 3-8, the random robot is incapable of cleaning 

the dirt on the last cell, whereas the agent is able to do it in the time given 

(Figure 3-5).
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Thus far in this chapter we have examined agents’ properties and 

environments and described a practical problem where we could see an agent 

with state overrunning the cleaning robot presented in the last chapter. In 

future sections, we’ll study some of the most popular agent architectures.

�Agent Architectures
Agent architectures represent predefined designs that consider different 

agent properties, like the ones studied earlier, to provide a scheme or 

blueprint for building agents.

One can think of the different concepts presented so far in an analogy 

where agents are buildings; their properties are similar to building 

properties (color, height, material used, etc.); their architecture is what it 

would be in a building, i.e., the infrastructure supporting it and defining its 

functionality; and agent types (soon to be detailed) would be as the types 

of buildings that we have (commercial, governmental, military, etc.).

Figure 3-5.  On the left, the result obtained after executing 
CleaningRobot; on the right, the result after executing CleaningAgent. 
The first leaves dirt on the last row, while the latter is able to clean it.
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Agent architecture as the basis of the agent’s functionality indicates 

how the agent will function. Up to this moment we have seen the agent’s 

function as an abstract one; architecture’s being a functionality-defining 

component will give us a model to implement such a function.

�Reactive Architectures: Subsumption 
Architecture
In the same way we could have an illuminated property and luminous 

architecture—in other words, one that is focused on offering the greatest 

lightness—we could also have a reactive agent and reactive-based 

architecture, one that is focused on reactivity above all. This is the case 

with agent-reactive architectures.

In a reactive architecture as it occurs in a reactive agent, each behavior 

is a mapping from percepts or environment states to actions. In Figure 3-6 

we can see a diagram showing a reactive architecture.

Figure 3-6.  Reactive architecture diagram
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The cleaning agent developed in previous sections is a clear example 

of reactive architecture. We already know from the agent’s properties 

section that being purely reactive involves some setbacks: there’s no 

learning in this type of architecture; it’s usually handcrafted, which makes 

it very difficult to create large systems; it can be used only for its original 

purpose, and so on.

One of the most popular—and arguably the best known—reactive 

architectures is the Subsumption architecture, developed by Rodney 

Brooks in the mid-1980s. His architecture is said to be a behavior-based 

architecture; it rejected the idea of logic-based agents—i.e., those that rely 

fully on logic to represent the world, its interactions, and its relations—in 

an attempt to set a new approach apart from the traditional AI of his time.

Note  Behavior-based agents use biological systems as building 
blocks and rely on adaptability. They tend to show more biological 
features than their AI counterparts and can repeat actions, make 
mistakes, demonstrate tenacity, and so forth, sort of like ants do.

The main ideas behind Brooks’ architecture are the following:

	 1.	 Intelligent behavior can be generated without 

explicit representations like the ones proposed by 

symbolic AI.

	 2.	 Intelligent behavior can be generated without 

explicit abstract reasoning of the kind that symbolic 

AI proposes.

	 3.	 Intelligence is an emergent property of certain 

complex systems.
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The Subsumption architecture possesses two fundamental 

characteristics:

	 1.	 An agent’s decision-making process is executed 

through a set of task-accomplishing behaviors 

where each behavior module can be seen as an 

individual agent function. Because this is a reactive 

architecture every agent function is a mapping from 

a percept or state to an action.

	 2.	 Behavior modules are intended to achieve a 

particular task, and each behavior “competes” with 

others to exercise control over the agent.

	 3.	 Many behaviors can fire simultaneously, and the 

multiple actions proposed by these behaviors are 

executed according to a subsumption hierarchy, with 

the behaviors arranged into layers.

	 4.	 Lower layers in the hierarchy are able to inhibit 

higher layers: the lower a layer is the higher is its 

priority.

The principle of the subsumption hierarchy is that higher layers will 

indicate more abstract behaviors. For instance, considering our cleaning 

agent, one would like to give a high priority to the “clean” behavior; thus, 

it’d be encoded in the lower layers where it has a higher priority.

Note  Symbolic AI is sometimes called Old Fashioned AI or Good 
Old Fashioned AI. It was popular in the 1950s and 1960s and was 
based on the idea of representing knowledge through symbols (logic 
formulas, graphs, rules, etc.). Hence, methods of Symbolic AI are 
developed on the basis of logic, theory of formal languages, various 
areas of discrete mathematics, and so forth.
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Looking again at the cleaning agent, we can see that it follows the 

Subsumption architecture (Listing 3-9).

Listing 3-9.  Cleaning Agent Action Function Follows the 

Subsumption Architecture

public void AgentAction(List<Percepts> percepts)

{

            if (percepts.Contains(Percepts.Clean))

                UpdateState();

            if (percepts.Contains(Percepts.Dirty))

                Clean();

            else if (percepts.Contains(Percepts.Finished))

                TaskFinished = true;

            �else if (percepts.Contains(Percepts.MoveUp) && !_

cellsVisited.Contains(new Tuple<int, int>(X - 1, Y)))

                Move(Percepts.MoveUp);

            �else if (percepts.Contains(Percepts.MoveDown) && !_

cellsVisited.Contains(new Tuple<int, int>(X + 1, Y)))

                Move(Percepts.MoveDown);

            �else if (percepts.Contains(Percepts.MoveLeft) && !_

cellsVisited.Contains(new Tuple<int, int>(X, Y - 1)))

                Move(Percepts.MoveLeft);

            �else if (percepts.Contains(Percepts.MoveRight) && !_

cellsVisited.Contains(new Tuple<int, int>(X, Y + 1)))

                Move(Percepts.MoveRight);

            else

                RandomAction(percepts);

        }

The cleaning agent establishes an order for the behaviors exhibited; 

this order corresponds to the subsumption hierarchy illustrated in 

Figure 3-7.
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The order of priority established by the subsumption hierarchy in the 

cleaning agent is 1, 2, 3, 4, 5, 6, and 7, with 7 being the behavior with the 

highest priority.

This architecture inherits the problems of reactive architectures (no 

learning, hardwired rules, and so on). Beyond that, modeling complex 

systems requires many behaviors to be included in the hierarchy, making 

it too extensive and unfeasible. Up to this point we have described agent 

properties and the reactive architecture, providing an example of one of 

these (probably the best-known example), the Subsumption architecture. 

In the next sections, we’ll look at other agent architectures, like the BDI 

(Belief Desire Intention) and Hybrid architectures.

Figure 3-7.  Subsumption hierarchy for cleaning agent
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�Deliberative Architectures: BDI Architecture
In a purely deliberative architecture agents follow a goal-based behavior 

where they are able to reason and plan ahead. Deliberative architectures 

usually incorporate some sort of symbolic representation of the world 

via logic, graphs, discreet math, and so forth, and decisions (for example, 

about what actions to perform) are typically made via logical reasoning 

using pattern matching and symbolic manipulation. Readers familiar 

with logical or functional programming languages like Prolog, Haskell, or 

FSharp may be able to understand the meaning of symbolic a lot easier. 

Deliberative architectures usually face two problems that need to be 

solved:

	 1.	 Translating the real world into an appropriate, 

accurate symbolic version of it that is efficient and 

useful for the purpose of the agent. This problem 

is usually time-consuming, especially if the 

environment is too dynamic and changing from 

time to time.

	 2.	 Symbolically representing information about real-

world entities, relations, processes, and so forth 

and how to reason and make decisions with this 

information.

Problem number 1 guided work on face recognition, speech 

recognition, learning, and so on, and Problem number 2 inspired the 

work on knowledge representation, automated scheduling, automated 

reasoning, automatic planning, and so forth. Regardless of the immense 

volume of scientific material that these problems generated, most 

researchers accepted the fact that they weren’t even near solved. Even 

apparently trivial problems, such as essential reasoning, turned out to be 

exceptionally difficult. The underlying problem seems to be the difficulty 

of theorem proving in even very simple logics, and the complexity of 
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symbol manipulation in general; recall that first-order logic (FOL) is 

not even decidable, and modal extensions attached to it (including 

representations of belief, desire, time, and so on) tend to be highly 

undecidable.

Note  The term decidable or decidability relates to the decision 
problem; i.e., the problem that can be defined as outputting Yes (1) 
or No (0) to a question on the input values. The satisfiability problem 
(SAT) is a particular case of decision problem. Thus, we say that a 
theory (set of formulas) is decidable if there is a method or algorithm 
for deciding whether a given randomly chosen formula belongs to 
that theory.

The generic deliberative architecture is illustrated in Figure 3-8.

Figure 3-8.  Deliberative architecture
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Multiple deliberative architectures like BDI (soon to be detailed) 

find their roots in the philosophical tradition of understanding practical 

reasoning, the process of deciding moment by moment which action 

to execute when seeking to fulfill our goals. Human practical reasoning 

consists of two activities:

	 1.	 Deciding what state of affairs we want to achieve 

(deliberation).

	 2.	 Deciding how to achieve these states of affairs 

(means-end reasoning or planning).

From the preceding activities we can conclude that deliberations 

output intentions and means-end reasoning outputs plans.

Note  There is a difference between practical reasoning and 
theoretical reasoning. The former is directed toward actions, while 
the latter is directed toward beliefs.

Means-end reasoning is the process of deciding how to achieve an 

end using means available; in the AI world this is known as planning. For 

the agent to generate a plan it typically requires a representation or goal 

intention to achieve, a representation of actions it can perform, and a 

representation of its environment (Figure 3-9).
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How does deliberation occur? In the deliberation process there’s a 

first step called alternatives generation in which the agent generates a set 

of alternatives (goals, desires) for consideration. In a second step called 

filtering the agent chooses between available options and commits to some 

of them. These chosen options or alternatives are its intentions.

The key question in deliberative architectures is “How can the agent 

deliberate on its (probably conflicting) goals to decide which ones it will 

pursue?” The answer to this question is provided by the goal-deliberation 

strategy that is particular to every deliberative architecture; the most 

popular of these is the BDI architecture created by Michael E. Bratman in 

his book Intentions, Plans and Practical Reason (1987).

Note  Considering their interaction with time, a reactive architecture 
exists in the present (with short duration), while a deliberative 
architecture reasons about the past and projects (plans, etc.) into the 
future.

Figure 3-9.  Inputs and output flow of the planning component of  
an agent
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The Beliefs, Desires, and Intentions (BDI) architecture contains explicit 

representations of an agent’s beliefs, desires, and intentions. Beliefs 

(what it thinks) are generally regarded as the information an agent has 

about its environment; we could say knowledge instead of belief, but we 

would rather use the more general term belief because what the agent 

believes may be false sometimes. Desires (what it wants) are those things 

the agent would like to see achieved, we don’t expect an agent to act on 

all its desires. Intentions (what it is doing) are those things the agent is 

committed to doing, and they are basically the result of filtering desires; 

the BDI architecture is illustrated in Figure 3-10.

Figure 3-10.  BDI architecture
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Beliefs are usually described by predicates outputting True or False 

values (for example, IsDirty(x,y)) and represent the internal knowledge 

the agent has of the world.

Desires are fulfilled when they are present in the belief base (or 

manually removed by the agent). Like the belief base, the desire base 

is updated during the execution of the agent. Desires can be related by 

hierarchical links (sub/super desires) when a desire is created as an 

intermediary goal (for example, to clean dirt on a terrain one could have 

two subdesires or subgoals: move to every dirty cell and clean it). Desires 

have a priority value that can change dynamically and is used to select a 

new intention from among the set of desires when necessary.

Once the agent considers all its options it must commit to some of them, 

in this case and as an example it will commit to just one, to its only available 

option, which later becomes its intention. Intentions eventually lead to 

actions, and the agent is supposed to act by trying to achieve its intentions. 

The agent is supposed to make reasonable attempts to achieve its 

intentions, and it may follow a sequence of actions (plan) for this purpose.

The intention chosen by the agent will constrain its practical reasoning 

from that point on; once a commitment to an intention exists the agent 

will not contemplate other intentions that are conflicting with the ones 

already set in motion. Intentions can be put on hold (for example, when 

they require a subdesire to be achieved). For this reason, there is a stack of 

intentions; the last one is the current intention and the only one that is not 

on hold.

Intentions should be persistent; in other words, we must devote every 

available resource to fulfilling them and not drop them immediately if 

they aren’t achieved in the short run, because then we will be achieving 

none all the time. On the other hand, intentions can’t persist for too long, 

because there might be a logical reason to drop them. For example, there 

may come a time when the cleaning agent has nothing else to do (clean), 

maybe because it inhabits a multi-agent environment and other agents 

have finished the cleaning task.
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Intentions make up a set of important roles associated with practical 

reasoning:

•	 Intentions motivate planning: Once an agent has 

decided to achieve an intention it must plan a course of 

action to accomplish that intention.

•	 Intentions constrain future deliberation: Once an agent 

commits to an intention it will not contemplate other 

intentions that are conflicting with the chosen intention.

•	 Intentions persist: The agent will not renounce 

its intentions without any rational cause; it will 

persist typically until either the agent believes it has 

successfully achieved them or it believes it cannot 

achieve them, or because the purpose for the intention 

is no longer present.

•	 Intentions influence beliefs upon the future: Once the 

agent adopts certain intentions, some planning for 

the future under the assumption that those intentions 

chosen will be achieved is necessary and logical.

From time to time it is important for the agent to stop and reconsider 

its intentions, as some could have become irrational or impossible. This 

reconsideration stage implies a cost at both spatial and temporal lines, and 

it also presents us with a problem:

•	 A bold agent that doesn’t stop enough to reconsider its 

intentions might be trying to achieve an intention that 

is no longer possible.

•	 A cautious agent that stops too frequently to reconsider 

its intentions might be spending too many resources on 

the reconsideration stage and not enough on achieving 

its intentions.
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A balance or tradeoff between the event-driven and goal-directed 

behaviors of the agent is the solution for this dilemma.

Note E xperiments have demonstrated that bold agents do better 
than cautious agents in environments that don’t change too often. In 
the other scenario (environment changes frequently), cautious agents 
outperform bold agents.

The process of practical reasoning in a BDI agent relies on the 

following components. In the next points B is assumed to be the set of 

beliefs, D the set of desires, and I the set of intentions:

•	 A set of current beliefs representing information the 

agent has about its environment

•	 A belief revision function (brf) that receives percepts 

and the agent’s beliefs as inputs and determines a new 

set of beliefs:

brf: P x B -> B

•	 An option-generation function (options) that receives 

beliefs about its environment and intentions (if any) 

as inputs and determines the options (desires) of the 

agent:

options: B x I -> D

•	 A set of current options representing probable courses 

of action for the agent to follow

•	 A filter function (filter) representing the deliberation 

process of the agent and using beliefs, desires, and 

intentions as inputs to determine the agent’s intentions:

filter: B x D x I -> I
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•	 A set of current intentions representing the agent’s 

commitments

•	 An action-selection function that uses current intentions 

as inputs to determine an action to perform

It comes as no surprise that the state of a BDI agent at any moment is a 

triple (B, D, I). The BDI agent’s action function seems pretty simple when 

we don’t get into details; it’s shown in the next pseudocode here:

function AgentAction(P):

         B = brf(P, B)

         D = options(D, I)

         I = filter(B, D, I)

end

In the next chapter we’ll present a practical problem where we’ll 

develop an AI for a Mars Rover whose architecture will be BDI; this 

problem will help us set firm ground for many of the concepts introduced 

during this section.

�Hybrid Architectures
Multiple researchers have argued that neither a purely deliberative  

agent nor a purely reactive agent is a good strategy when we design  

an agent. Hybrid architectures in which the agent possesses both a  

goal-based component where they are able to reason and plan ahead and 

a reactive component that allows them to react immediately to situations 

of the environment are usually preferred over the alternative of a purely 

deliberative or purely reactive agent.
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In general, hybrid architecture agents are composed of the following 

subsystems or components:

•	 Deliberative component: contains a representation of 

the world that can be at some level symbolic; it builds 

plans and makes decisions as in the deliberative 

architecture

•	 Reactive component: capable of reacting to certain 

situations without complex reasoning (situation -> 

consequence rules)

Thus, hybrid agents have reactive and proactive properties,  

and the reactive component is usually given some precedence over the 

deliberative one.

The divided and somewhat hierarchical structure where reactive and 

deliberative components coexist has lead to the natural idea of layering 

architectures, which represents the hybrid agents’ design. In this type of 

architecture, an agent’s control components are arranged into a hierarchy, 

with higher layers dealing with information at higher levels of abstraction.

Typically, we will have at least two layers in a layered architecture: 

one to deal with the reactive behavior and one to deal with the proactive 

behavior. In practice, there is no reason why there couldn’t be more layers. 

Generally speaking, we can count two types of layered architectures:

•	 Horizontal layering: In horizontally layered 

architectures, the agent’s layers are each directly 

connected to the sensory input and action output. 

As a result, each layer acts like an agent, producing 

suggestions as to what action to perform.
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•	 Vertical layering: In vertically layered architectures, 

sensory input and action output are each processed 

through every layer in one or possibly various 

directions.

Both horizontal and vertical layering are illustrated in Figure 3-11.

Figure 3-11.  Horizontally layered architecture (on the left) and 
vertically layered architecture (on the right). Note that in vertically 
layered architectures there could be more than just one pass through 
every layer.

Horizontally layered architectures are very simple in their conceptual 

design; agents exhibiting n behaviors will require n layers, one for each 

behavior. Despite this positive point, the fact that each layer is actually 

competing with others to suggest an action could cause the agent to show 

incoherent behavior. In order to provide consistency, a mediator function 

is usually required to act as “middle man” and decide which layer controls 

the agent at any given moment.

Chapter 3  Agents



130

The mediator function involves high complexity, as all possible 

interactions between all layers must be considered to finally output an 

action. Creating such a control mechanism is extremely difficult from a 

designer’s point of view.

In vertically layered architectures these problems are diminished 

because there’s an order between layers, and the last layer is the one 

outputting the action to be executed. Vertically layered architectures 

are usually divided into two types: one-pass architectures and two-pass 

architectures. In the former type, the agent’s decision-making process 

flows sequentially through each layer until the last layer generates an 

action. In two-pass architectures, information flows up the architecture 

(the first pass) and then back down. There exist some remarkable 

similarities between the principle of two-pass vertically layered 

architectures and the way organizations and enterprises work in the 

sense that information flows up to the highest levels and orders then flow 

down. In both one-pass and two-pass vertically layered architectures 

the complexity of interactions between layers is reduced. Since there 

are n - 1 edges between n layers, if each layer is capable of suggesting m 

actions, there are at most m2(n − 1) interactions to be considered between 

layers. Clearly, this is a much simpler level of interaction than the one 

a horizontally layered architecture forces us to have. This simplicity 

comes at a cost, and that cost is flexibility. In order for a vertically layered 

architecture to make a decision, control must pass between each different 

layer. Vertically layered architectures are not flawless, and failures in 

any layer can have serious consequences for an agent’s performance. 

In the next section we’ll study a particular case of horizontally layered 

architecture: touring machines.
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�Touring Machines
Touring machines represent horizontally layered architectures composed 

of three layers (modeling layer, planning layer, and the reactive layer). 

Figure 3-12 illustrates a touring machine.

Figure 3-12.  Touring machine

The reactive layer provides immediate responses to changes detected 

in the environment as a set of situation action rules resembling those of the 

Subsumption architecture. In the next pseudocode we illustrate a reactive 

rule of an autonomous vehicle agent. This example shows the obstacle-

avoidance rule of the vehicle:

rule-1: obstacle-avoidance

if (in_front(vehicle, observer)

andspeed(observer) > 0

andseparation(vehicle, observer) <vehicleThreshHold)

then

change_orientation(vehicleAvoidanceAngle)
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The planning layer is responsible for the agent’s proactive behavior; in 

other words, it’s responsible for what the agent will do in the long run. In 

order to do its planning, the layer maintains a library of plans; these plans 

are essentially hierarchically structured plans that the touring machines 

elaborate upon at runtime to decide what to do. Therefore, in order to 

achieve a goal, the planning layer tries to find a plan in the library that 

matches the goal sought by the agent.

Note  One of the first benchmark scenarios for touring machines 
was that of autonomous vehicle driving.

The modeling layer represents, as the name suggests, a model of 

the world and its various entities (including agents). It predicts conflicts 

between agents and generates new goals in order to resolve these conflicts. 

Newly generated goals are then posted down to the planning layer, which 

makes use of its plan library to determine a plan or set of plans that 

satisfies them.

All three layers are related to a control subsystem that decides which layer 

has control over the agent. This subsystem consists of a set of control rules 

that can either restrain information between layers or act over the output of 

layers as shown in the next pseudocode, which illustrates a control rule:

censorRule_1:

if (entity(bigObstacle) in perceptions)

then

removeSensoryRecord(layerReact, entity(bigObstacle))

This control rule prevents the reactive layer from ever knowing that 

a big obstacle has been detected. The reactive layer would be, in most 

scenarios, the most appropriate layer for dealing with obstacle avoidance, 

but under different scenarios it might be better to pass this perception 

to other layers. In this case, since the sensor detected a big obstacle that 
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might be visible from a long distance away, the planning layer may need to 

find a plan that considers a big obstacle and changes the agent’s route.

�InteRRaP
InteRRaP (Integration of Rational Reactive behavior and Planning) 

is a vertically layered two-pass architecture composed of three layers 

(cooperation layer, planning layer, and behavior layer) similar to the ones 

found in touring machines. Figure 3-13 illustrates an InteRRaP.

Figure 3-13.  InteRRaP architecture

The behavior layer (lowest) deals with the reactive behavior; the 

planning layer (middle) deals with regular planning to achieve the agent’s 

goals; and the cooperation layer (uppermost) deals with social interactions 

in multi-agent environments. A knowledge base is associated with every 

layer; each knowledge base represents the world in a manner that is 

convenient for its corresponding layer.
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The highest knowledge base represents the set of plans and actions of 

other agents in the environment; the middle knowledge base represents 

the plans and actions of the agent itself; and the lowest-level knowledge 

base represents raw information about the environment.

Note  Knowledge bases distinguish InteRRaP from touring 
machines.

The main difference between InteRRap and touring machines is 

the way they interact with the environment. In touring machines every 

layer was connected to perceptual input and action output, creating the 

necessity of having a control subsystem to deal with conflicts between 

layers. In InteRRap layers interact with each other as they seek to fulfill a 

common goal.

There exist two main types of interactions between layers in InteRRap: 

bottom-up activation and top-down execution. The first occurs when a 

lower layer is forced to pass control to a higher layer because it is not 

capable of dealing with the current situation. The latter occurs when a 

higher layer uses the facilities provided by a lower layer to achieve its goals. 

Typical flow will begin at the bottom when the reactive layer receives 

perceptual input; if this layer is capable of dealing with that perceptual 

input received it will do so; otherwise, it will pass control to the planning 

layer. If the planning layer is capable of dealing with the situation it will 

probably make use of top-down execution; otherwise, it will keep moving 

control higher to the next layer. In this way control flows from the lowest 

layer to a higher (if necessary) layer and back down again.
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�Summary
Throughout this chapter we introduced the concept of agents, looking at 

some of their most relevant properties and examining a practical problem 

where we transformed the cleaning robot from Chapter 2 into a cleaning 

agent that followed the agent’s model of an action function that receives a 

set of percepts and outputs an action. We also added state to this agent and 

compared it to a stateless agent that executes random actions. Finally, we 

presented various agent architectures: reactive, deliberative, and hybrid.

In the following chapter, we will look at a very interesting problem 

(Mars Rover) that will show us how agent architectures can be 

implemented in a real-life scenario.
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CHAPTER 4

Mars Rover
Following the route (agents) started during the last chapter, we will devote 

Chapter 4 to the introduction of a Mars Rover AI that is based on a hybrid 

architecture that includes a reactive layer for its immediate decisions and 

uses the BDI (Beliefs, Desires, Intentions) paradigm for implementing 

its deliberative layer. This practical problem will help us reinforce all 

the knowledge acquired in Chapter 3 (agent properties, agent state, 

architectures, and so on) and will aid us in understanding how we can 

assemble it all in a real-world problem.

Space exploration is a fascinating topic that combines well with the 

area of AI and has millions of followers worldwide. Since the conditions of 

space are pretty difficult and risky for humans, the use of robots is frequent 

and necessary. Therefore, the idea of using AI for machines that are 

involved in space exploration is logical, and many studies of it have been 

made in recent years.

The practical problem addressed throughout this chapter will include 

a visual application (Windows Forms) that shows the execution of a 

Mars Rover at any moment in a discrete environment of n x m (rows x 

columns). This application simulates the Mars environment with various 

rocks that are considered obstacles by the agent and hidden spots of 

water or remnants of water. The program will also show us its planning 

(sequence of actions conforming a plan will be denoted in yellow) and 

how it manages beliefs, desires, and intentions. The goal of a Mars Rover 
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is basically scientific research, and in our case there is the very important 

task of finding vestiges of any type of water on Mars, plus trying to remain 

active and avoid obstacles.

Note  Spirit and Opportunity are two of the most popular Mars 
Rovers; they both made incredible discoveries and exceeded their 
life expectancies by a big margin. Spirit was launched in June 2003, 
Opportunity in July 2003. Spirit remained active until 2010 (seven 
years of life) when its wheels were trapped in sand, and Opportunity, 
as of the writing of this book, remains active and roving Mars.

�What’s a Mars Rover?
Mars is today a desolate, dry planet that when seen from a distance 

appears to resemble our home planet of Earth very little. However, when 

approaching Mars’ orbit we can see on the surface what could have been 

ancient, now dried out lakes and canyons, suggesting that Mars may have 

harbored—three or four million years ago—not only water but also life.

Life in space is tough; it’s highly complicated for humans to survive out 

there, it’s risky, dangerous and reaching some of the closest planets could 

take many years, so in an effort to facilitate the research of other worlds, 

multiple space agencies (NASA, CSA, ESA, and so on) have been designing 

robots—or, as they are typically called, rovers—for the exploration and 

research of planets.

A Mars Rover is an automated motor vehicle that is loaded up with 

cameras to analyze its surroundings, research instruments to dig in and 

maybe analyze interesting rocks, communication equipment with which 

to send pictures and data and receive commands, solar panels to provide 

energy to itself, and so on (Figure 4-1). Rovers have the task of exploring 
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Mars and collecting significant data that will hopefully lead to the 

conclusion of the existence of water on the planet in the past—or maybe to 

the discovery of ancient life.

Mars Rovers tend to move very slowly, at nearly two inches per second 

(approximately 0.09 miles per hour). After all the trouble and cost that is 

involved when taking a rover to Mars, engineers prefer to play it safe and 

drive carefully; no one would like to see a $2.5 billion rover upside down 

because it was driving too fast. Another important point: most rovers 

receive a daily set of commands or instructions from the team on Earth; 

these instructions tell the rover where to go or what to do. In this sense, 

one could say that classic rovers are not as autonomous as we might think; 

they do of course include some autonomous behavior because the team 

on Earth is not on Mars and cannot watch their every step live. Therefore, 

the AI of the rover takes care of deciding when a rock is too big to go over 

(obstacle) or when the color and texture of a rock make it interesting to be 

examined. One could say that rovers are sort of autonomous and follow 

orders very well, kind of like human soldiers do. The mission of the rover 

is a two-sided job; on one side we have the engineers on Earth, planning 

Figure 4-1.  Mars Rover
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their daily moves, their large-scale strategies, and so forth, and on the 

other side we have the rovers, executing these actions, exploring, collecting 

data, and sending it back to Earth.

In this chapter, we will be demonstrating how to develop an AI for a 

completely autonomous Mars Rover that will consider obstacles in the 

terrain and will be searching for water under a hybrid architecture that 

includes a BDI (Beliefs, Desires, Intentions) deliberative mechanism and 

uses statistics and probabilities for injecting itself with new beliefs that will 

be drawn as conclusions from its state (past history).

Note  Mars is usually known as the Red Planet because of its reddish 
tint in the night sky. In general, Mars is mostly rust colored because of 
the iron in its soil. When exposed to the small amount of oxygen in the 
Martian atmosphere, the iron oxidizes, or rusts. That “rusty dust” can 
also blow into the air, turning the sky into a peach color.

�Mars Rover Architecture
Let’s take a brief moment to examine the hybrid architecture that we will 

be proposing for our Mars Rover AI (Figure 4-2).

Figure 4-2.  Mars Rover architecture
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The architecture is composed of three layers (reactive, BDI, and 

planning); different percepts or events (denoted in the smaller font in 

Figure 4-2) can cause a layer to execute. For instance, if there’s water at 

the rover’s current position then the reactive layer will act and conduct 

the rover to dig in that spot immediately. If there’s a percept related to 

water in nearby areas the reactive layer will also be triggered. The rover 

will incorporate a variable or field named SenseRadius that will determine 

the circle surrounding it and represent its field of view; the rover will be 

capable of perceiving everything in that circle. Since we are dealing with a 

discrete environment this circle will be an approximation of a real circle; in 

other words, it will be the discrete version of a circle.

Note  Mars Rovers like Spirit or Opportunity, both made by NASA, 
have fish-eye cameras or wide-angle cameras that allow them to 
catch a general view of the terrain in front of them. The photos these 
cameras take are analyzed to decide whether a certain rock on the 
path is too big to go over, and so on.

If the rover has some initial beliefs and there are no percepts of 

significant interest then control passes from the reactive layer to the BDI 

layer, where a process starts at the beliefs set; in this process the beliefs 

set is updated. A belief that we may have today could be proven wrong 

tomorrow. As for the rover, a location on the terrain where it believes there 

may be water could be incorrect, and as a result this database of beliefs 

must be constantly updated as new percepts arrive. In a second stage, 

desires are generated from beliefs. For the rover, its beliefs will consist 

of possible water locations and its desires will be these possible water 

locations ordered by proximity using the Manhattan distance (also known 

as Block distance) as measure. Thus, going to the closest water location 

will become the current intention of the rover.
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In order to accomplish its current intention the rover uses its plan 

library (in the planning layer) and selects a plan fitting the selected 

intention. Since we are considering, in this example, only intentions 

associated with possible water locations our plan library will merely 

consist of one type of plan: path finding.

Path-finding algorithms solve the problem of finding the shortest path 

between two given points; these algorithms not only consider obstacles 

on the grid/terrain but also the cost of each possible path. Some of its 

representatives are Breadth First Search (BFS), Djistkra’s algorithm, and 

A* search. For our rover, we developed BFS, the most inefficient of them 

all but also the simplest. The others perform better by using heuristics, 

dynamic programming, and so forth and avoid considering costly paths.

Once the rover has explored all of its beliefs it will wander around 

(making random moves) until it reaches a certain number of actions. At this 

point, we will inject beliefs into the rover by using a data structure (dictionary) 

that maintains its state, or past history, as a set of visited cells along with 

their visit frequency (number of times it has visited a cell), and a deliberation 

process that consists of applying simple concepts of probability and statistics.

In this deliberation process the terrain known by the rover is divided 

into four equal (or almost equal) sectors (could be divided into 2n 

sectors for further precision), and for each sector and each (location, 

frequency_visits) pair in that sector we calculate the relative frequency 

and sum up the results obtained in each individual sector, having as the 

final result four Total Relative Frequency values (one for each sector). The 

Relative Frequency (RF) calculation is made with the following formula:

RF c
freq c

N
( ) = ( )

where freq(c) represents the number of times cell c has been visited and N 

is the total number of elements in the set (sector) to which c belongs. Then, 

for each sector S its Total Relative Frequency would be:
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In the end, the rover will choose to “inject” the belief of water location 

in a corner of the sector with the lowest Total Relative Frequency, which 

should be the one least visited in the past. We could say that this approach 

is pretty much a heuristic; i.e., we have specific knowledge about this 

problem and we are embedding it, trying to achieve a better behavior from 

the rover in its task. This heuristic and others associated with this problem 

will be very simple and even naïve; the purpose right now is to illustrate 

how to create a hybrid agent architecture. Therefore, heuristics will not be 

at the core of this chapter. As a quick note, the strategy or heuristic where 

we always choose a corner of the selected sector for injecting a belief can 

be greatly improved in the same way the sector division and selection 

processes can be greatly improved.

Now that we have gotten a glimpse of our rover’s architecture and 

how it will actually make decisions every step of the way, it’s time to 

present its code.

�Mars Rover Code
The Mars Rover is coded in a C# class containing the following fields, 

properties, and constructor (Listing 4-1).

Listing 4-1.  Mars Rover Fields, Variables, and Constructor

public class MarsRover

    {

        public Mars Mars { get; set; }

        public List<Belief> Beliefs { get; set; }

        public Queue<Desire> Desires { get; set; }
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        public Stack<Intention> Intentions { get; set; }

        public List<Plan> PlanLibrary { get; set; }

        public int X { get; set; }

        public int Y { get; set; }

        public int SenseRadius { get; set; }

        public double RunningOverThreshold { get; set; }

        �// Identifies the last part of the terrain seen by the 

Rover

        public List<Tuple<int, int>> CurrentTerrain { get; set; }

        public Plan CurrentPlan { get; set; }

        public List<Tuple<int, int>> WaterFound { get; set; }

        private double[,] _terrain;

        private static Random _random;

        private Dictionary<Tuple<int, int>, int> _perceivedCells;

        private int _wanderTimes;

private const int WanderThreshold = 10;

        �public MarsRover(Mars mars, double [,] terrain, int 

x, int y, IEnumerable<Belief> initialBeliefs, double 

runningOver, int senseRadious)

{

            Mars = mars;

            X = x;

            Y = y;

_terrain = new double[terrain.GetLength(0), terrain.GetLength(1)];

            �Array.Copy(terrain, _terrain, terrain.GetLength(0) 

* terrain.GetLength(1));

            Beliefs = new List<Belief>(initialBeliefs);

            Desires = new Queue<Desire>();

            Intentions = new Stack<Intention>();

            PlanLibrary = new List<Plan>
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                              {

                                  �new  Plan(TypesPlan.

PathFinding, this),

                              };

            WaterFound = new List<Tuple<int, int>>();

            RunningOverThreshold = runningOver;

            SenseRadius = senseRadious;

            CurrentTerrain = new List<Tuple<int, int>>();

            _random = new Random();

            �_perceivedCells = new Dictionary<Tuple<int,  

int>, int>();

 }

}

The MarsRover class contains the following fields and variables:

•	 Mars: an object-oriented representation of the world 

or environment of Mars. The agent will use this object 

to inquire about water locations and obstacles on the 

actual terrain of Mars.

•	 X, Y: are both integers that represent the current 

position of the rover in the grid/Mars terrain.

•	 _terrain: matrix representing the Mars world or 

terrain as the rover has it conceived initially, before 

landing there and before it can be updated by means of 

perceptions. It is like a preconception of Mars given by 

engineers; it’s their map and could have mistakes, so it 

must be updated.
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•	 Beliefs: list representing the set of beliefs the rover 

has; these could have come from a set of initial beliefs 

coded by engineers before the rover landed on Mars, 

like for instance, WaterAt(2,3), etc., or the beliefs that 

the rover injects itself later through some deliberative 

logic process

•	 Desires: queue representing the set of desires the 

rover has; desires are born from beliefs and updated 

considering current intentions (if any). In the case 

of the rover, desires will consist of probable water 

locations, always ordered or prioritized by proximity.

•	 Intentions: stack of intentions the rover has; the one at 

the top represents the current intention and the one for 

which there’s a plan in motion

•	 PlanLibrary: represents a list of plans the rover can 

execute depending on the intention taken

•	 WaterFound: list of water locations found on Mars (if any)

•	 RunningOverThreshold: double value that indicates the 

threshold by which rocks on the terrain are considered 

obstacles for the rover

•	 SenseRadius: integer value that represents the radius 

of vision of the rover; i.e., the radius of the circle 

whose center is the current position of the rover and 

determines its “sight” around

•	 CurrentTerrain: represents the current terrain of 

the rover; i.e., the one defined by the circle of radius 

SenseRadius. This data structure is updated as the 

rover moves.
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•	 CurrentPlan: represents the current plan being 

executed by the rover

•	 _random: variable for obtaining random values (for 

when the rover wanders around)

•	 _perceivedCells: data structure storing the number 

of times a cell has been visited. It’s used for the 

Statistics-Probability component of the rover in 

deciding where to inject a belief of water when it has 

wandered around long enough.

•	 _wanderTimes: integer value conveying the number of 

times the rover has wandered around

•	 WanderThreshold: integer value that determines the 

number of actions the rover can take as “wandering 

around.” Once the rover executes WanderThreshold 

actions it will stop wandering and will auto inject a 

belief.

The Mars object (representation of Mars world) uses the class shown in 

Listing 4-2 as a blueprint.

Listing 4-2.  Mars Class

    public class Mars

    {

        private readonly double[,] _terrain;

        public Mars(double[,] terrain)

        {

            �_terrain = new double[terrain.GetLength(0), 

terrain.GetLength(1)];
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            �Array.Copy(terrain, _terrain, terrain.GetLength(0) 

* terrain.GetLength(1));

        }

        public double TerrainAt(int x, int y)

        {

            return _terrain[x, y];

        }

        public bool WaterAt(int x, int y)

        {

            return _terrain[x, y] < 0;

        }

    }

The Mars class is pretty straightforward; it incorporates a matrix 

describing the terrain (elevations) and two methods that allow the rover 

to inquire about the situation of the environment at a given location. This 

terrain represents the real Martian terrain; the rover also incorporates a 

representation of Mars’ environment, but this is a representation based on 

engineers’ maps and so forth. It’s not going to be as accurate as the actual 

terrain. Thus, the rover will have to deal with this object to make sure its 

data on the Martian environment is accurate and, if not, update it.

In order to work with beliefs, desires, and intentions we code them all 

as classes. The Intention class inherits from the Desire class (Listing 4-3).

Listing 4-3.  Belief, Desire, and Intention Classes

public class Belief

    {

        public TypesBelief Name { get; set; }

        public dynamic Predicate;
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        public Belief(TypesBelief name, dynamic predicate)

        {

            Name = name;

            Predicate = predicate;

        }

        public override string ToString()

        {

            var result = "";

            var coord = Predicate as List<Tuple<int, int>>;

            foreach (var c in coord)

                �result += Name + " (" + c.Item1 + "," + c.Item2 

+ ")" + "\n";

            return result;

        }

    }

    public class Desire

    {

        public TypesDesire Name { get; set; }

        public dynamic Predicate;

        public List<Desire> SubDesires { get; set; }

        public Desire() { SubDesires = new List<Desire>(); }

        public Desire(TypesDesire name)

        {

            Name = name;

            SubDesires = new List<Desire>();

        }
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        public Desire(TypesDesire name, dynamic predicate)

        {

            Name = name;

            Predicate = predicate;

            SubDesires = new List<Desire>();

        }

        �public Desire(TypesDesire name, IEnumerable<Desire> 

subDesires)

        {

            Name = name;

            SubDesires = new List<Desire>(subDesires);

        }

        �public Desire(TypesDesire name, params Desire[] 

subDesires)

        {

            Name = name;

            SubDesires = new List<Desire>(subDesires);

        }

        public List<Desire> GetSubDesires()

        {

            if (SubDesires.Count == 0)

                return new List<Desire>() { this };

            var result = new List<Desire>();

            foreach (var desire in SubDesires)

                result.AddRange(desire.GetSubDesires());

            return result;

        }

Chapter 4  Mars Rover



151

        public override string ToString()

        {

            return Name.ToString() + "\n";

        }

    }

    public class Intention: Desire

    {

        public static Intention FromDesire(Desire desire)

        {

            var result = new Intention

                             {

                                 Name = desire.Name,

                                 �SubDesires = new List<Desire> 

(desire.SubDesires),

                                 Predicate = desire.Predicate

                             };

            return result;

        }

    }

Beliefs are usually encoded as predicates, so we included a dynamic 

(could be anything) Predicate property to represent them. In this case, the 

rover will have as predicate a List<Tuple<int, int>> indicating beliefs 

of water locations. To adapt the class to hold different types of predicates, 

only the override ToString() method would need to change.

Desires not only include predicates but also subdesires, as explained in 

Chapter 3. The GetSubDesires() method will be in charge of getting leaves 

from the desires tree. Recall from Chapter 3 that a given desire may have 

subdesires that must be satisfied before the actual desire can be fulfilled, and 

these leaves or primary desires are the ones the agent must execute before 

any other (as the others depend on or are a consequence of the leaf desires).
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Finally, intentions inherit from desires. Remember: Intentions are a 

subset of desires, and we may have multiple desires, but not all of them 

need to be realistic at a given time; therefore, intentions are those desires 

to which we decide to commit at some point. To be able to convert a desire 

into an intention we included the FromDesire() method.

To define and easily work with a finite set of beliefs, desires, percepts, 

actions, and so on we declared the following (Listing 4-4) enums.

Listing 4-4.  Enum for Beliefs, Desires, Percepts, Plans, and Actions

    public enum TypePercept

    {

        WaterSpot, Obstacle, MoveUp, MoveDown, MoveLeft, MoveRight

    }

    public enum TypesBelief

    {

        PotentialWaterSpots, ObstaclesOnTerrain

    }

    public enum TypesDesire

    {

        FindWater, GotoLocation, Dig

    }

    public enum TypesPlan

    {

        PathFinding

    }

    public enum TypesAction

    {

        MoveUp, MoveDown, MoveLeft, MoveRight, Dig,

        None

    }
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To be able to handle percepts and plans a lot better we will incorporate 

into our program Percept and Plan classes as illustrated in Listing 4-5.

Listing 4-5.  Percept and Plan Classes

public class Percept

    {

        public TypePercept Type { get; set; }

        public Tuple<int, int> Position { get; set; }

public Percept(Tuple<int, int> position, TypePercept percept)

        {

            Position = position;

Type = percept;

        }

    }

public class Plan

    {

        public TypesPlan Name { get; set; }

        public List<Tuple<int, int>> Path { get; set; }

        private MarsRover _rover;

        public Plan(TypesPlan name, MarsRover rover)

        {

            Name = name;

            Path = new List<Tuple<int, int>>();

            _rover = rover;

        }
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        public TypesAction NextAction()

        {

            if (Path.Count == 0)

                return TypesAction.None;

            var next = Path.First();

            Path.RemoveAt(0);

            if (_rover.X > next.Item1)

                 return TypesAction.MoveUp;

            if (_rover.X < next.Item1)

                 return TypesAction.MoveDown;

            if (_rover.Y < next.Item2)

                return TypesAction.MoveRight;

            if(_rover.Y > next.Item2)

                return TypesAction.MoveLeft;

            return TypesAction.None;

        }

        �public void BuildPlan(Tuple<int, int> source, 

Tuple<int, int> dest)

        {

            switch (Name)

            {

                    case TypesPlan.PathFinding:

                        �Path = PathFinding(source.Item1, 

source.Item2, dest.Item1, dest.Item2).

Item2;

                        break;

            }

        }
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        �private Tuple<Tuple<int, int>, List<Tuple<int, int>>> 

PathFinding(int x1, int y1, int x2, int y2)

        {

            �var queue = new Queue<Tuple<Tuple<int, int>, 

List<Tuple<int, int>>>>();

            �queue.Enqueue(new Tuple<Tuple<int, int>, 

List<Tuple<int, int>>>(new Tuple<int, int>(x1, y1), 

new List<Tuple<int, int>>()));

            �var hashSetVisitedCells = new HashSet<Tuple 

<int, int>>();

            while(queue.Count > 0)

            {

                var currentCell = queue.Dequeue();

                var currentPath = currentCell.Item2;

                hashSetVisitedCells.Add(currentCell.Item1);

                var x = currentCell.Item1.Item1;

                var y = currentCell.Item1.Item2;

                if (x == x2 && y == y2)

                    return currentCell;

                // Up

                �if (_rover.MoveAvailable(x - 1, y) && 

!hashSetVisitedCells.Contains(new Tuple<int, 

int>(x - 1, y)))

                {

                    �var pathUp = new List<Tuple<int, 

int>>(currentPath);

                    pathUp.Add(new Tuple<int, int>(x - 1, y));

                    �queue.Enqueue(new Tuple<Tuple<int, int>, 

List<Tuple<int, int>>>(new Tuple<int, 

int>(x - 1, y), pathUp));   

                }
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                // Down

                �if (_rover.MoveAvailable(x + 1, y) && 

!hashSetVisitedCells.Contains(new Tuple<int, 

int>(x + 1, y)))

                {

                    �var pathDown = new List<Tuple<int, 

int>>(currentPath);

                    pathDown.Add(new Tuple<int, int>(x + 1, y));

                    �queue.Enqueue(new Tuple<Tuple<int, int>, 

List<Tuple<int, int>>>(new Tuple<int, 

int>(x + 1, y), pathDown));

                }

                // Left

                �if (_rover.MoveAvailable(x, y - 1) && 

!hashSetVisitedCells.Contains(new Tuple<int, 

int>(x, y - 1)))

                {

                    �var pathLeft = new List<Tuple<int, 

int>>(currentPath);

                    pathLeft.Add(new Tuple<int, int>(x, y - 1));

                    �queue.Enqueue(new Tuple<Tuple<int, int>, 

List<Tuple<int, int>>>(new Tuple<int, 

int>(x, y - 1), pathLeft));

                }

                // Right

                �if (_rover.MoveAvailable(x, y + 1) && 

!hashSetVisitedCells.Contains(new Tuple<int, 

int>(x, y + 1)))

                {

                    �var pathRight = new List<Tuple<int, 

int>>(currentPath);

                    pathRight.Add(new Tuple<int, int>(x, y + 1));
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                    �queue.Enqueue(new Tuple<Tuple<int, int>, 

List<Tuple<int, int>>>(new Tuple<int, 

int>(x, y + 1), pathRight));

                }

            }

            return null;

        }

        public bool FulFill()

        {

            return Path.Count == 0;

        }

    }

The Percept class is very simple; we are merely using it to make it 

easier for us to know where a percept has occurred. By using this class we 

can save the percept location. The Plan class, on the other hand, is a bit 

more complicated.

The Plan class contains a property List<Tuple<int, int>> Path, 

which defines the Path the agent created as a result of executing a plan; 

in this case, a path-finding plan. The BuildPlan() method will allow us 

to build different types of plans. It’s supposed to act as a plan-selection 

mechanism. The NextAction() method updates the Path property by 

returning and deleting the next action to execute in the present plan. 

Finally, the PathFinding() method implements the Breadth First Search 

(BFS) algorithm for finding the optimal route from a given source to 

a given destination or location in the terrain. We’ll see more of this 

algorithm in a future chapter; for now let us consider it an essential 

algorithm for different graph-related tasks and remember that it starts at 

the source, discovering new steps of the path from source to destination 

and escalating by levels (Figure 4-3). For this purpose it uses a queue for 

enqueuing all non-visited neighbors of the cell being examined at the time.
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The FulFill() method determines when a plan has been completely 

executed.

Now that we have gotten acquainted with all the classes that our Mars 

Rover will be using, let’s dive into the Mars Rover AI code.

Resembling the method implemented for the agent from Chapter 3,  

our Mars Rover includes a GetPercepts() method (Listing 4-6) that 

provides a list of percepts perceived by the agent at the current time and in 

its radius of sight.

Listing 4-6.  GetPercepts() Method

public List<Percept> GetPercepts()

        {

            var result = new List<Percept>();

            if (MoveAvailable(X - 1, Y))

                �result.Add(new Percept(new Tuple<int,int> 

(X - 1, Y), TypePercept.MoveUp));

Figure 4-3.  BFS is capable of discovering paths by levels; S is the 
source and D the destination. Each numbered cell determines a level 
in the search; i.e., level 1, 2, etc.
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            if (MoveAvailable(X + 1, Y))

                �result.Add(new Percept(new Tuple<int, int> 

(X + 1, Y), TypePercept.MoveDown));

            if (MoveAvailable(X, Y - 1))

                �result.Add(new Percept(new Tuple<int, int> 

(X, Y - 1), TypePercept.MoveLeft));

            if (MoveAvailable(X, Y + 1))

                �result.Add(new Percept(new Tuple<int,  

int>(X, Y + 1), TypePercept.MoveRight));

            result.AddRange(LookAround());

            return result;

        }

The GetPercepts() method makes use of the MoveAvailable() and 

LookAround() methods, both illustrated in Listing 4-7.

Listing 4-7.  MoveAvailable() and LookAround() Methods

        public bool MoveAvailable(int x, int y)

        {

            �return x >= 0 && y >= 0 && x < _terrain.

GetLength(0) && y < _terrain.GetLength(1)  

&& _terrain[x, y] < RunningOverThreshold;

        }

private IEnumerable<Percept> LookAround()

        {

            return GetCurrentTerrain();

        }
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Since we want to code our Mars Rover to be as generic as possible in 

the way it “looks around” (one may have a different definition of what it is 

to look around), the final implementation of this functionality is given by 

the GetCurrentTerrain() method shown in Listing 4-8.

Listing 4-8.  GetCurrentTerrain() Method

public IEnumerable<Percept> GetCurrentTerrain()

        {

            var R = SenseRadius;

            CurrentTerrain.Clear();

            var result = new List<Percept>();

            for (var i = X - R > 0 ? X - R : 0; i <= X + R; i++)

            {

                �for (var j = Y; Math.Pow((j - Y), 2) + Math.

Pow((i - X), 2) <= Math.Pow(R, 2); j--)

                {

                    �if (j < 0 || i >= _terrain.GetLength(0)) 

break;

                    // In the circle

                    �result.AddRange(CheckTerrain(Mars.

TerrainAt(i, j), new Tuple<int, int>(i, 

j)));

                    CurrentTerrain.Add(new Tuple<int, int>(i, j));

                    �UpdatePerceivedCellsDicc(new Tuple<int, 

int>(i, j));

                }
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                �for (var j = Y + 1; (j - Y) * (j - Y) + (i - X) 

* (i - X) <= R * R; j++)

                {

                    �if (j >= _terrain.GetLength(1) || i >=  

_terrain.GetLength(0)) break;

                    // In the circle

                    �result.AddRange(CheckTerrain(Mars.

TerrainAt(i, j), new Tuple<int, int>(i, j)));

                    CurrentTerrain.Add(new Tuple<int, int>(i, j));

                    �UpdatePerceivedCellsDicc(new Tuple<int, 

int>(i, j));

                }

            }

            return result;

        }

The method from Listing 4-8 includes several loops that depend on the 

circle circumference formula:

x h y k r-( ) + -( ) =2 2 2

where (h, k) represent the center of the circle, in this case the agent’s 

location; r represents the radius of the circle, or in this case the 

SenseRadius. These loops allow the rover to track every cell at distance 

SenseRadius of its current location. Within these loops we make calls to the 

UpdatePerceivedCellsDicc() and CheckTerrain() methods (Listing 4-9). 

The first simply updates the visited cells dictionary that we use in the Statistics 

and Probability component to inject new beliefs to the rover.

The latter checks a given cell from the terrain to see if it’s an obstacle 

or a water location. It also updates the internal _terrain data structure 

the rover has initially and maintains later by updating the value that 

corresponds to the perceived coordinate.
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Listing 4-9.  UpdatePerceivedCellsDicc() and CheckTerrain() 

Methods

        �private void UpdatePerceivedCellsDicc(Tuple<int,  

int> position)

        {

            if (!_perceivedCells.ContainsKey(position))

                _perceivedCells.Add(position, 0);

            _perceivedCells[position]++;

}

        �private IEnumerable<Percept> CheckTerrain 

(double cell, Tuple<int, int> position)

{

            var result = new List<Percept>();

            if (cell > RunningOverThreshold)

                �result.Add(new Percept(position,  

TypePercept.Obstacle));

            else if (cell < 0)

                �result.Add(new Percept(position,  

TypePercept.WaterSpot));

            // Update the rover's internal terrain

            _terrain[position.Item1, position.Item2] = cell;

            return result;

        }

The method responsible for generating the next action to be executed 

by the rover is the Action() method shown in Listing 4-10.
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Listing 4-10.  Action() Method

        public TypesAction Action(List<Percept> percepts)

        {

            // Reactive Layer

            �if (Mars.WaterAt(X, Y) && !WaterFound.Contains 

(new Tuple<int, int>(X, Y)))

                return TypesAction.Dig;

            �var waterPercepts = percepts.FindAll(p =>  

p.Type == TypePercept.WaterSpot);

            if (waterPercepts.Count > 0)

            {

                foreach (var waterPercept in waterPercepts)

                {

                    �var belief = Beliefs.FirstOrDefault(b => 

b.Name == TypesBelief.PotentialWaterSpots);

                    List<Tuple<int, int>> pred;

                    if (belief != null)

                        �pred = belief.Predicate as List<Tuple 

<int, int>>;

                    else

                    {

                        �pred = new List<Tuple<int, int>> 

{waterPercept.Position};

                        �Beliefs.Add(new Belief(TypesBelief.

PotentialWaterSpots, pred));

                    }

                    �if (!WaterFound.Contains 

(waterPercept.Position))

                        pred.Add(waterPercept.Position);
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                    else

                    {

                        pred.RemoveAll(

                            �t => t.Item1 == waterPercept.

Position.Item1 && t.Item2 == 

waterPercept.Position.Item2);

                        if (pred.Count == 0)

                            �Beliefs.RemoveAll(b => (b.Predicate as 

List<Tuple<int, int>>).Count == 0);

                    }

                }

                �if (waterPercepts.Any(p => !WaterFound.

Contains(p.Position)))

                    CurrentPlan = null;

            }

            if (Beliefs.Count == 0)

            {

                if (_wanderTimes == WanderThreshold)

                {

_wanderTimes = 0;

                    InjectBelief();

                }

_wanderTimes++;

                return RandomMove(percepts);

            }

            if (CurrentPlan == null || CurrentPlan.FullFill())

            {

                // Deliberative Layer

                Brf(percepts);
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                Options();

                Filter();

            }

            return CurrentPlan.NextAction();

        }

In this method we incorporate the reactive and deliberative layers of 

the agent. The first lines correspond to the reactive layer, and different 

scenarios are considered that demand an Fimmediate response:

	 1.	 There’s water at the current location of the rover, 

and that spot has not been discovered before.

	 2.	 There’s a percept of a possible water location in the 

surrounding areas (defined by the circle with radius 

SenseRadius) of the rover. In this case, and always 

checking that the possible water location has not 

been already found, we add a water belief to the 

rover.

	 3.	 If the water location perceived at step 2 has not been 

previously found then the current plan is deleted.  

A new one considering the new belief will be built.

	 4.	 If the rover has no beliefs it will execute a random 

action (Listing 4-11); i.e., wanders around. Once this 

“wandering around” reaches a certain number of 

actions (ten, in this case) then a belief is injected.

The four previous steps make up the reactive layer of our agent; 

the last part of the method composed of the Brf(), Options(), and 

Filter() methods represent the deliberative layer (BDI architecture). The 

InjectBelief() method is also part of this deliberative layer as it involves 

a “deliberative” process where the agent decides its next course of action.
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Listing 4-11.  RandomMove() Method

private TypesAction RandomMove(List<Percept> percepts)

        {

            �var moves = percepts.FindAll(p => p.Type.

ToString().Contains("Move"));

            var selectedMove = moves[_random.Next(0, moves.Count)];

            switch (selectedMove.Type)

            {

                case TypePercept.MoveUp:

                    return TypesAction.MoveUp;

                case TypePercept.MoveDown:

                    return TypesAction.MoveDown;

                case TypePercept.MoveRight:

                    return TypesAction.MoveRight;

                case TypePercept.MoveLeft:

                    return TypesAction.MoveLeft;

            }

            return TypesAction.None;

        }

The Statistics and Probability component of the rover, and the one that 

allows it to inject beliefs based on its past history, is represented by the 

InjectBelief() method, which can be seen in Listing 4-12 along with its 

helper methods.
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Listing 4-12.  InjectBelief(), SetRelativeFreq(), and RelativeFreq() 

Methods

private void InjectBelief()

        {

            var halfC = _terrain.GetLength(1) / 2;

            var halfR = _terrain.GetLength(0) / 2;

            �var firstSector = _perceivedCells.Where(k => k.Key.

Item1 < halfR && k.Key.Item2 < halfC).ToList();

            �var secondSector = _perceivedCells.Where(k => k.Key.

Item1 < halfR && k.Key.Item2 >= halfC).ToList();

            �var thirdSector = _perceivedCells.Where(k => k.Key.

Item1 >= halfR && k.Key.Item2 < halfC).ToList();

            �var fourthSector = _perceivedCells.Where(k => k.Key.

Item1 >= halfR && k.Key.Item2 >= halfC).ToList();

            var freq1stSector = SetRelativeFreq(firstSector);

            var freq2ndSector = SetRelativeFreq(secondSector);

            var freq3rdSector = SetRelativeFreq(thirdSector);

            var freq4thSector = SetRelativeFreq(fourthSector);

            �var min = Math.Min(freq1stSector, Math.

Min(freq2ndSector, Math.Min(freq3rdSector, 

freq4thSector)));

            if (min == freq1stSector)

                �Beliefs.Add(new Belief(TypesBelief.

PotentialWaterSpots, new List<Tuple<int, int>> 

{ new Tuple<int, int>(0, 0) }));
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            else if (min == freq2ndSector)

                �Beliefs.Add(new Belief(TypesBelief.Potential 

WaterSpots, new List<Tuple<int, int>> { new 

Tuple<int, int>(0, _terrain.GetLength(1) - 1) }));

            else if (min == freq3rdSector)

                �Beliefs.Add(new Belief(TypesBelief.Potential 

WaterSpots, new List<Tuple<int, int>> { new 

Tuple<int, int>(_terrain.GetLength(0) - 1, 0) 

}));

            else

                �Beliefs.Add(new Belief(TypesBelief.Potential 

WaterSpots, new List<Tuple<int, int>> { new 

Tuple<int, int>(_terrain.GetLength(0) - 1,  

_terrain.GetLength(1) - 1) }));

        }

        �private double SetRelativeFreq(List<KeyValuePair<Tuple 

<int, int>, int>> cells)

        {

            var result = 0.0;

            foreach (var cell in cells)

                �result += RelativeFrequency(cell.Value,  

cells.Count);

            return result;

        }

        private double RelativeFrequency(int absFreq, int n)

        {

            return (double) absFreq/n;

        }
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As it was detailed in the last section, the relative frequency is 

calculated for every cell of a given sector and then summed up in the 

SetRelativeFreq() method to obtain the total frequency of the group 

of cells. Note that in this case we decided to divide the terrain into four 

equal sectors, but you may decide to do it in as many sectors as you deem 

necessary or to the level of detail you believe necessary, like you would 

do in a QuadTree. One could even decide to divide the terrain into a 

certain number of sectors considering the SenseRadius of the rover and 

the time it wanders around. These values are all related, and most of them 

are considered in the heuristics attached to the rover. In this case—and 

seeking simplicity in the example proposed—we choose to attach truly 

naïve heuristics for the rover; for instance, always injecting a water belief 

at a corner of the selected sector could be a bad idea in different scenarios, 

as it’s not going to work well every time. Thus, the sector selection and 

cell-within-sector selection mechanisms need to be more generic for the 

rover to perform well in multiple environments. Let’s keep in mind that the 

heuristics presented here can be greatly improved, and as a result the rover 

will improve its performance.

Note A  QuadTree is a tree data structure where each internal node 
has exactly four children. They are often used to partition a two-
dimensional space or region by recursively subdividing it into four 
quadrants or regions.

Lastly, let’s examine the deliberative layer and all its methods, starting 

with the Beliefs Revision Function (Listing 4-13).
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Listing 4-13.  Brf() Method

        public void Brf(List<Percept> percepts)
        {
            var newBeliefs = new List<Belief>();

            foreach (var b in Beliefs)
            {
                switch (b.Name)
                {
                    case TypesBelief.PotentialWaterSpots:
                        �var waterSpots = new List<Tuple<int, 

int>>(b.Predicate);
                        �waterSpots = UpdateBelief(TypesBelief.

PotentialWaterSpots, waterSpots);
                        if (waterSpots.Count > 0)
                            �newBeliefs.Add(new Belief(TypesBelief.

PotentialWaterSpots, waterSpots));
                        break;
                    case TypesBelief.ObstaclesOnTerrain:
                        �var obstacleSpots = new List<Tuple<int, 

int>>(b.Predicate);
                        �obstacleSpots = UpdateBelief 

(TypesBelief.ObstaclesOnTerrain, 
obstacleSpots);

                        if (obstacleSpots.Count > 0)
                            �newBeliefs.Add(new Belief 

(TypesBelief.ObstaclesOnTerrain, 
obstacleSpots));

                        break;
                }
            }          

            Beliefs = new List<Belief>(newBeliefs);
        }
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In the Brf() method we examine every belief (possible water locations, 

possible obstacle locations) and update them, creating a new set of beliefs. 

The UpdateBelief() method is illustrated in Listing 4-14.

Listing 4-14.  UpdateBelief() Method

private List<Tuple<int, int>> UpdateBelief(TypesBelief belief, 
IEnumerable<Tuple<int, int>> beliefPos)
        {
            var result = new List<Tuple<int, int>>();

            foreach (var spot in beliefPos)
            {
                 �if (CurrentTerrain.Contains(new Tuple<int, 

int>(spot.Item1, spot.Item2)))
                 {
                    switch (belief)
                    {
                        case TypesBelief.PotentialWaterSpots:
                            �if (_terrain[spot.Item1, spot.

Item2] >= 0)
                                continue;
                            break;
                        case TypesBelief.ObstaclesOnTerrain:
                            �if (_terrain[spot.Item1, spot.

Item2] < RunningOverThreshold)
                                continue;
                            break;
                    }
                 }
                 result.Add(spot);
            }

            return result;
        }
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In the UpdateBelief() method we check every belief against the 

currently perceived terrain. If there’s a wrong belief—like, for instance, we 

thought or believed we would find water at location (x, y) and it happens 

that we were just there and there’s nothing—then that belief must be 

deleted.

The Options() method, which is responsible for generating desires, is 

shown in Listing 4-15.

Listing 4-15.  Options() Method

        public void Options()

        {

            Desires.Clear();

             foreach (var b in Beliefs)

             {

                  if (b.Name == TypesBelief.PotentialWaterSpots)

                  {

                      �var waterPos = b.Predicate as List<Tuple 

<int, int>>;

                      �waterPos.Sort(delegate(Tuple<int, int> 

tupleA, Tuple<int, int> tupleB)

                                        {

                                            �var distA = Manhattan 

Distance(tupleA, 

new Tuple<int, 

int>(X, Y));

                                            �var distB = Manhattan 

Distance(tupleB, 

new Tuple<int, 

int>(X, Y));

                                            if (distA < distB)

                                                return 1;
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                                            if (distA > distB)

                                                return -1;

                                            return 0;

                                        });

                      foreach (var wPos in waterPos)

                          �Desires.Enqueue(new Desire 

(TypesDesire.FindWater, new Desire 

(TypesDesire.GotoLocation, new Desire 

(TypesDesire.Dig, wPos))));

}

             }

        }

We will consider only one type of desire—the desire to find water at 

specific locations. Thus, using the set of beliefs as a base, we generate 

desires and sort them by proximity using the distance (Listing 4-16) as the 

proximity measure.

Listing 4-16.  Manhattan Distance

        �public int ManhattanDistance(Tuple<int, int> x, Tuple<int,  

int> y)

        {

return Math.Abs(x.Item1 - y.Item1) + Math.Abs(x.Item2 - y.Item2);

        }

Using the set of desires, we push new intentions into our Intentions 

set in the Filter() method; if there’s no plan in motion for the current 

intention then we choose one using the ChoosePlan() method  

(Listing 4-17).
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Listing 4-17.  Filter() and ChoosePlan() Methods

        private void Filter()

{

            Intentions.Clear();

             foreach (var desire in Desires)

            {

                if (desire.SubDesires.Count > 0)

                {

                    �var primaryDesires = desire.

GetSubDesires();

                    primaryDesires.Reverse();

                    foreach (var d in primaryDesires)

                        �Intentions.Push(Intention.

FromDesire(d));

                }

                else

                    �Intentions.Push(Intention.

FromDesire(desire));

            }

            if (Intentions.Any() && !ExistsPlan())

                ChoosePlan();

        }

        private void ChoosePlan()

        {

            var primaryIntention = Intentions.Pop();

            �var location = primaryIntention.Predicate as 

Tuple<int, int>;
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            switch (primaryIntention.Name)

            {

                case TypesDesire.Dig:

                    �CurrentPlan = PlanLibrary.First(p =>  

p.Name == TypesPlan.PathFinding);

                    �CurrentPlan.BuildPlan(new Tuple<int, 

int>(X, Y), location);

                    break;

            }

        }

To conclude, the ExistsPlan() method determines if there’s a plan in 

motion, and the ExecuteAction() method executes the action selected by 

the agent (Listing 4-18). The latter method is also responsible for updating 

the WaterFound data structure with the locations where water has been 

found.

Listing 4-18.  ExistsPlan() and ExecuteAction() Methods

        public bool ExistsPlan()

        {

            �return CurrentPlan != null && CurrentPlan.Path.

Count > 0;

        }

public void ExecuteAction(TypesAction action, List<Percept> 

percepts)

        {

            switch (action)

            {

                case TypesAction.MoveUp:

                    X -= 1;

                    break;
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                case TypesAction.MoveDown:

                    X += 1;

                    break;

                case TypesAction.MoveLeft:

                    Y -= 1;

                    break;

                case TypesAction.MoveRight:

                    Y += 1;

                    break;

                case TypesAction.Dig:

                    WaterFound.Add(new Tuple<int, int>(X, Y));

                    break;

            }

        }

In the next section, we’ll take a look at our Mars Rover in action 

as it is executed in a Windows Forms Application that we created for 

experimenting and seeing how its AI works on a test world.

�Mars Rover Visual Application
As mentioned at the beginning of this chapter, we created a Windows 

Forms application with which to test our Mars Rover and see how it would 

do on a test Mars world with hidden water locations and obstacles along 

the way. This example will not only help us to understand how to set up 

the MarsRover and Mars classes, but it will also demonstrate how the AI 

presented during this chapter will perform its decision-making process 

under different scenarios. The complete details of the Windows Form 

application (Listing 4-19) are beyond the scope of this book; we will simply 

present a fragment of it to illustrate to readers where the graphics are 

coming from. For further reference, the source code associated with this 

book can be consulted.
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Listing 4-19.  Fragment of Windows Forms Visual Application Code

public partial class MarsWorld : Form

    {

        private MarsRover _marsRover;

        private Mars _mars;

        private int _n;

        private int _m;

        public MarsWorld(MarsRover rover, Mars mars, int n, int m)

        {

            InitializeComponent();

            _marsRover = rover;

            _mars = mars;

            _n = n;

            _m = m;

        }

        private void TerrainPaint(object sender, PaintEventArgs e)

        {

            var pen = new Pen(Color.Wheat);

            var waterColor = new SolidBrush(Color.Aqua);

            var rockColor = new SolidBrush(Color.Chocolate);

            var cellWidth = terrain.Width/_n;

            var cellHeight = terrain.Height/_m;

            for (var i = 0; i < _n; i++)

                �e.Graphics.DrawLine(pen, new Point(i * 

cellWidth, 0), new Point(i * cellWidth, i * 

cellWidth + terrain.Height));

            for (var i = 0; i < _m; i++)

                �e.Graphics.DrawLine(pen, new Point(0, i * 

cellHeight), new Point(i * cellHeight + 

terrain.Width, i * cellHeight));
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            if (_marsRover.ExistsPlan())

            {

                foreach (var cell in _marsRover.CurrentPlan.Path)

                {

                    �e.Graphics.FillRectangle(new SolidBrush 

(Color.Yellow), cell.Item2 * cellWidth, 

cell.Item1 * cellHeight,

                    cellWidth, cellHeight);

                }

            }

            for (var i = 0; i < _n; i++)

            {

                for (var j = 0; j < _m; j++)

                {

                    �if (_mars.TerrainAt(i, j) > _marsRover.

RunningOverThreshold)

                        �e.Graphics.DrawImage(new 

Bitmap("obstacle-transparency.png"), 

j*cellWidth, i*cellHeight,

                        �cellWidth, cellHeight);

                    if (_mars.WaterAt(i, j))

                        �e.Graphics.DrawImage(new Bitmap("water-

transparency.png"), j * cellWidth,  

i * cellHeight, cellWidth, cellHeight);

                    // Draw every belief in white

                    foreach (var belief in _marsRover.Beliefs)

                    {

                        �var pred = belief.Predicate as 

List<Tuple<int, int>>;

                        �if (pred != null && !pred.Contains(new 

Tuple<int, int>(i, j)))

                            continue;
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                        �if (belief.Name == TypesBelief.

ObstaclesOnTerrain)

                        {

                            �e.Graphics.DrawImage(new 

Bitmap("obstacle-transparency.

png"), j * cellWidth, i * 

cellHeight, cellWidth, cellHeight);

                            �e.Graphics.DrawRectangle(new 

Pen(Color.Gold, 6), j * cellWidth, i 

* cellHeight, cellWidth, cellHeight);

                        }

                        �if (belief.Name == TypesBelief.

PotentialWaterSpots)

                        {

                            �e.Graphics.DrawImage(new 

Bitmap("water-transparency.png"),  

j * cellWidth, i * cellHeight,

                            �cellWidth, cellHeight);

                            �e.Graphics.DrawRectangle(new 

Pen(Color.Gold, 6), j * cellWidth, i 

* cellHeight, cellWidth, cellHeight);

                        }

                    }

                }   

            }

            �e.Graphics.DrawImage(new Bitmap("rover-

transparency.png"), _marsRover.Y * cellWidth,  

_marsRover.X * cellHeight, cellWidth, cellHeight);
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var sightColor = Color.FromArgb(80, Color.Lavender);

_marsRover.GetCurrentTerrain();

            foreach (var cell in _marsRover.CurrentTerrain)

                �e.Graphics.FillRectangle(new SolidBrush 

(sightColor), cell.Item2 * cellWidth, cell.

Item1 * cellHeight, cellWidth, cellHeight);

        }

        private void TimerAgentTick(object sender, EventArgs e)

        {

            var percepts = _marsRover.GetPercepts();

            agentState.Text = "State: Thinking ...";

            agentState.Refresh();

            var action = _marsRover.Action(percepts);

            _marsRover.ExecuteAction(action, percepts);

            �var beliefs = UpdateText(beliefsList, _marsRover.

Beliefs);

            �var desires = UpdateText(beliefsList, _marsRover.

Desires);

            �var intentions = UpdateText(beliefsList,  

_marsRover.Intentions);

            if (beliefs != beliefsList.Text)

                beliefsList.Text = beliefs;

            if (desires != desiresList.Text)

                desiresList.Text = desires;

            if (intentions != intentionsList.Text)

                intentionsList.Text = intentions;

            foreach (var wSpot in _marsRover.WaterFound)
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            {

                if (!waterFoundList.Items.Contains(wSpot))

                    waterFoundList.Items.Add(wSpot);

            }

            Refresh();

        }

        �private string UpdateText(RichTextBox list, IEnumerable 

<object> elems)

        {

            var result = "";

            foreach (var elem in elems)

                result += elem;

            return result;

        }

        private void PauseBtnClick(object sender, EventArgs e)

        {

            if (timerAgent.Enabled)

            {

                timerAgent.Stop();

                pauseBtn.Text = "Play";

            }

            else

            {  

                timerAgent.Start();

                pauseBtn.Text = "Pause";

            }

        }

    }
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From this code we may notice that the visual application consists of 

a grid where we have included Play/Pause buttons and used a timer to 

control rover actions and execute them every second.

In order to set up our Mars Rover and world we would need to define 

a set of initial beliefs, a terrain for the rover, and a real terrain of Mars 

(Listing 4-20).

Listing 4-20.  Setting Up the Mars Rover and World

var water = new List<Tuple<int, int>>

            {

                new Tuple<int, int> (1, 2),

                new Tuple<int, int> (3, 5),

            };

            var obstacles = new List<Tuple<int, int>>

            {

                new Tuple<int, int> (2, 2),

                new Tuple<int, int> (4, 5),

            };

            var beliefs = new List<Belief> {

                new Belief(TypesBelief.PotentialWaterSpots, water),

                �new Belief(TypesBelief.ObstaclesOnTerrain, 

obstacles),

            };

            var marsTerrain = new [,]

                              {

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0.8, -1, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0},
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                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

            };

var roverTerrain = new [,]

                              {

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0},

                                  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

            };

            var mars = new Mars(marsTerrain);

            �var rover = new MarsRover(mars, roverTerrain, 7, 8, 

beliefs, 0.75, 2);

            Application.EnableVisualStyles();

            �Application.SetCompatibleTextRenderingDefault(false);

            �Application.Run(new MarsWorld(rover, mars, 10, 10));

Once we run the application, a GUI like the one illustrated in Figure 4-4  

will show up. In this program, one can easily differentiate water locations 

(water drops images) from obstacle locations (rocks images).
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Notice the light-color cells surrounding the rover at all times; these are 

the cells that the rover can “see” or perceive at any given moment and are 

defined by the SenseRadius parameter (defined as a [Manhattan distance] 

value of 2 in the setup code) and the “discrete” circle whose radius is 

precisely the SenseRadius and whose center is the rover’s current location.

On the right side of the application we have a panel with various 

information sections, such as Beliefs, Desires, Intentions, WaterFoundAt. 

All of these are Windows Forms controls and ultimately use the 

ToString() overrides presented in the last section.

The time to see our Mars Rover agent in action has come. Let’s see 

what happens when we run the application (Figure 4-5).

Figure 4-4.  Windows Forms application showing the rover, its 
SenseRadius, beliefs of water locations and obstacles marked as 
yellow squares, and actual water and obstacle locations without any 
yellow square surrounding them
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Notice that the plan (sequence of actions) or path returned by our 

path-finding algorithm is denoted in yellow with the purpose of making 

it easier for us to comprehend where the rover is going and why. In this 

case, the rover is going after its closest water-location belief. Once it gets 

there (Figure 4-6), it discovers that its belief was wrong and there was no 

water in the pursued location as there was no obstacle in a cell adjacent to 

that water-location belief. The good news is that while exploring that area 

the rover perceived a water location nearby (in its sensing circle) and so it 

adventures to go there to find out more.

Figure 4-5.  The rover creates a plan to go to location (3, 5), its closest 
probable water location, and so it creates a plan or sequence of 
actions (denoted in yellow cells) to get there and dig in.
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The previous location sought by the agent is a water location, so the 

WaterFound data structure is updated, and the rover has found water on Mars! 

Afterward, it continues pursuing its next belief (Figure 4-7): water at (1, 2).

Once again when approaching (entering its perception or sense 

radius), the next water-location belief is discarded by the agent as well as 

another obstacle-location belief, and so the beliefs set is updated.

Figure 4-6.  The rover perceives a water location while exploring a 
belief and finds the first water location on Mars
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Now that the rover has exhausted its beliefs set it will wander around 

(during ten actions; it was hardwired like that in the code, see Figure 4-8) 

until our Statistics and Probability deliberative component is activated 

and causes the rover to inject itself with a new belief that is drawn from 

logical conclusions. In this case—and imitating what our human mind 

would do, because we are merely trying to mimic what a human would do 

in this situation—we would think that it’s more likely, or that our chances 

of finding water are far greater, in an unexplored area. In the “Heuristics 

and Metaheuristics” chapter 14 we will see that this concept is known 

as diversification and is very common in metaheuristics such as Genetic 

Algorithm, Tabu Search, and so on.

Figure 4-7.  The rover discards both a water-location belief and an 
obstacle-location belief
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In the same way we can have a diversification stage to explore 

poorly visited or unexplored areas of the terrain we can also have an 

intensification stage to better explore areas where water has been 

previously found; that is, promising areas of the terrain. In our case the 

intensification phase could involve having the rover wander around in 

some sector of the terrain.

As we shall see in future chapters, finding a balance between the 

intensification and diversification stages (sometimes called the explore–

exploit tradeoff) in search-related problems is essential, and most 

problems we face in our daily lives are search problems or optimization 

problems that in the end are search problems, as we search in the space 

of all possible solutions for one that is the best or optimal. Thus, many 

problems can be reduced to merely searching, and this is a complicated 

task that typically requires cleverness.

Figure 4-8.  The rover wanders around after having exhausted its 
beliefs set
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Figure 4-9.  The rover injects itself with a belief of a possible water 
location on the lower-left corner of the third sector

Continuing with our Mars Rover example, Figure 4-9 shows the rover 

after it finishes its wandering-around stage and injects itself with a belief of 

water at the lower-left corner cell of the third sector, and so it sets course to 

reach that cell.

The injection of this belief allows the rover to find an actual water 

location that was in the vicinity of the injected water-location belief. Thus, 

by diversifying the search to unexplored areas we found an actual water 

location (Figure 4-10). This process is repeated again; the rover wanders 

around (random moves), eventually injects a new belief, and moves to that 

location (Figure 4-11).
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Figure 4-10.  The rover follows the injected belief and in the process 
finds an actual water location
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Figure 4-11.  The rover repeats the process, wanders around, and 
then injects a new water-location belief

The Mars Rover presented in this chapter has multiple features 

that can be refined to improve its performance. For instance, the 

WanderThreshold may be adjusted since the rover spends more and 

more time on Mars, looking to prolong the time it stays wandering in a 

certain area; this decision may be dependent on the square area of the 

sector where it’s wandering. The strategy of always choosing a corner of 

the less-frequently visited sector to inject the water-location belief can 

also change and be made dependent on various conditions related to the 

rover’s history or state. The choice can also be made randomly; i.e., choose 

a random cell in the selected sector to inject the water-location belief 

or maybe choose the least-visited cell in that sector. The division of the 

terrain may also change; we could use a set of division patterns collected 
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in a database to divide the terrain in different ways (not always with 2n 

subdivisions) and give the rover the opportunity to explore different areas 

of diverse shapes. The possibilities are endless, and it’s up to the reader 

to use the skeleton provided in this chapter and create their perfect Mars 

Rover.

Now that we have examined a complete practical problem of an agent 

and an agent’s architecture, we can move forward and explore multi-agent 

systems in which various agents coexist and maybe collaborate or compete 

to achieve certain goals that could be common to them all. This will be the 

main focus of the next chapter.

�Summary
Throughout this chapter we presented the practical problem of designing 

a Mars Rover AI using a hybrid architecture composed of a reactive 

layer and a deliberative layer that implements the BDI (Beliefs, Desires, 

and Intentions) paradigm. The Mars Rover example included a visual 

application (Windows Forms) that demonstrated how the rover reacts 

to different scenarios, how it’s able to plan via a path-finding algorithm, 

and how it’s able to provide timely responses to immediately perceived 

situations. We also presented a Statistics and Probability component in 

the agent that acts as a deliberative component and allows it to explore 

unexplored or poorly visited areas of the terrain.
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CHAPTER 5

Multi-Agent Systems
Thus far we have studied agents as single entities interacting with the 

environment; in real life many problems can be solved much more quickly 

and efficiently when multiple agents collaborate to achieve a common goal.

Recall the cleaning agent from Chapters 2 and 3; this agent was dealing 

with the problem of cleaning an entire terrain on its own. Undoubtedly, 

this task could be completed much quicker if various cleaning robots were 

on the terrain communicating and helping each other to complete, in a 

shorter time, the task that for a single agent would take much longer and at 

higher resource consumption.

Nowadays, multi-agent systems (MAS) are applied in real-world 

applications such as computer games, military defense systems, air traffic 

control, transportation, graphic information systems (GIS), logistics, 

medical diagnosis, and so on. Other uses involve mobile technologies, 

where they are applied to achieve automatic, dynamic load balancing 

and high scalability.

Throughout this chapter we will examine multi-agent systems in 

which multiple agents may collaborate, coordinate, communicate, or 

compete to achieve a certain goal. MAS fall into an area where distributed 

systems and AI join to form what is known as distributed artificial 

intelligence. At the end of this part, which will take the next three chapters, 

we will present a practical problem where various cleaning robots will 

collaborate to clean a room.
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Note  Multi-agent systems represent distributed computing systems. 
As with any distributed system, they are composed of a number of 
interacting computational entities. However, unlike classical distributed 
systems, their constituent entities are intelligent and have the capacity 
to have intelligent interactions with one another.

�What’s a Multi-Agent System?
As occurred with the logic and agent terms previously presented, there’s no 

global agreement on a definition for multi-agent system. In this book, we’ll 

provide a personal definition that we regard as logical and that considers 

other MAS definitions taken from the scientific literature.

A multi-agent system (MAS) is a set S of agents that interact with 

each other in either a competitive manner—looking to achieve the 

goals defined by the subset S' of agents to which they belong (S' belongs 

to a partition of S)—or a collaborative manner—seeking to achieve a 

common goal defined in S. Additionally, it can happen that every agent 

in S is acting to achieve its own goals; in such cases we say that we are 

dealing with an independent MAS.

In Table 5-1 we can see a first and very frequent scenario of an MAS 

being applied to air traffic control; in this scenario, Agent Controller 1 (A1) 

deals directly with pilots and collaborates with Agent Controller 2 (A2) 

in finding them a runway available for landing. Refer to Table 5-1 for a 

complete dialogue between the two collaborative agents.
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Now that we have introduced a self-definition for the MAS term we’ll 

continue presenting other relevant, related concepts.

A coalition is said to be a subset of the set of agents; for an MAS such as 

basketball, baseball, or soccer games there are always two coalitions—the 

two teams competing.

A strategy is a function that receives the current state of the 

environment and outputs the action to be executed by a coalition. The 

strategy for Team A usually depends on the actions executed by each agent 

in Team B at the current moment.

A platform, also known as a multi-agent infrastructure, is a framework, 

base, or support that describes the agent architecture, the multi-agent 

organization, and their relations or dependencies. It allows agents to 

interact without taking into consideration the properties of such a platform 

(centralized or not, embedded into the agents or not, and so on), and it 

usually provides agents with a set of services (agent location and so forth) 

depending on the system needs, with the aim of enhancing MAS activity 

and organization; it is considered a tool for agents.

Table 5-1.  MAS Example in Air Traffic Control Scenario

Pilot Agent Controller 1 (A1) Agent Controller 2 (A2)

To A1: Can I land?

To A2: Any runway available?

To A1: Runway P.

To Pilot: Clear for P.

To A1: OK

To A2: Runway P is busy now.
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Agent architecture describes the layers or modules constituting a single 

agent as well as the relations and interactions among them. For instance, 

agents (in the context of MAS) regularly have a communication module 

to augment communication with users and other agents. As we know 

(from Chapters 3 and 4), some types of agents also have a planning layer. 

Normally, incoming messages arriving at the communication module will 

affect the planning layer by some connection, and the planning layer may 

create outgoing messages to be handled by the communication module.

A multi-agent organization describes the manner in which multiple 

agents are organized to form an MAS. Relations, interactions between 

agents, and their specific roles within the organization constitute a multi-

agent organization. Agent architecture is not part of the multi-agent 

organization even though interrelations among them are common.

An agent is said to be autonomous in an MAS if it’s autonomous with 

respect to every other agent in the set of agents making up the MAS; in 

other words, if it’s beyond the control or power of any other agent.

An MAS is discrete if it is independent and the goals of the agents bear 

no relation to one another. Thus, discrete MAS involve no cooperation as 

each agent will be going its own way trying to achieve its own goals.

Modularity is one of the benefits of MAS; sometimes solving a complex 

problem is subdivided into easier subproblems of the original problem, 

and each agent can be specialized in the solution of one of these particular 

types of problem, therefore leading to reusability. Imagine an MAS dealing 

with a city disaster like an earthquake. Such an MAS would be composed 

of different agents (policemen, firemen, and so forth) where each agent 

would be devoted to a single task and all of them would have the global 

assignment of establishing order and saving lives.

Problem solving through MAS leads to efficiency; the solution to 

a problem can often be achieved much quicker if various concurrent, 

parallel agents are working at the same time to solve the problem.
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An MAS also provides improved reliability because we may have 

multiple agents taking care of a single task, and if one of them fails then the 

others can continue its work by distributing among the rest.

One last important benefit that MAS provides us is flexibility; we can 

add or delete agents from an MAS at will, and different agents that have 

complementary skills may form coalitions to work together and solve 

problems.

In the following sections we’ll be exploring some key concepts in the 

area of distributed AI and especially on the topic of MAS: communication, 

cooperation, negotiation, and coordination. We’ll also take a deeper look 

at some of the concepts previously presented.

Note  One of the services a platform can offer is agent location; in 
other words, the facility by which an agent or a third party is able to 
locate another agent in an MAS environment.

�Multi-Agent Organization
Earlier in the chapter we provided a definition for the term multi-agent 

organization. In this section, we will detail some of the most common 

multi-agent organizations one can find:

•	 Hierarchical: organization in which agents can only 

communicate by following a hierarchical structure. 

Because of this restriction there’s no need to have an 

agent-location mechanism. Instead a set of facilitators 

act as middle men and receive and send all messaging 

between agents. These facilitators are usually at the 

upper levels of the hierarchy. Consequently, lower 

levels usually depend on higher levels. Communication 

is really reduced in this type of organization.
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•	 Flat or Democracy: organization in which agents 

can communicate directly with one another. There’s 

no fixed structure in this type of organization, but 

agents can form their own structures if they judge it is 

necessary to solve some specific task. Furthermore, no 

control of one agent over another is assumed. Agent 

location must be provided as part of the infrastructure 

or platform or the system must be closed; in other 

words, every agent must know about the others 

at all times. This type of organization can lead to 

communication overhead.

•	 Subsumption: organization in which agents 

(subsumed) can be components of other agents 

(container). This type of organization resembles 

that of the hierarchical model except that in this 

case subsumed agents surrender all control to their 

container agents. As occurs with the hierarchical 

organization, it involves low communication overhead.

•	 Modular: organization in which the MAS is composed 

of various modules, and each of these can be conceived 

of as a stand-alone MAS. The partition of the system 

into modules is usually done by considering measures 

such as geographical vicinity or a necessity for extreme 

interaction among agents and services within the same 

module. Modularity increases the efficiency of task 

execution and reduces communication overhead.

Hybrids of these organization types and dynamic changes from one style 

to another are possible. From the multi-agent organizations detailed in the 

previous points we can easily see that communication plays a vital role in 

defining the architecture and way of functioning of agents. We’ll devote the 

next section to explaining some key aspects of this very important topic.
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Note I n recent years, a large variety of agent architectures have 
been proposed. In the case of MAS architectures, this number greatly 
decreases because for an agent to be incorporated in an MAS it must 
be equipped with vital components (communication, coordination, 
and so on) that would allow it to properly interact with other agents.

�Communication
Agents in an MAS must coordinate their actions to solve problems. In this 

scenario, coordination is achieved by means of communication, which 

plays a vital role in providing agent interaction and facilitating not only 

coordination but also information sharing and cooperation.

In the last section we discussed MAS organizations and how they can 

affect agent communication depending on the type of organization they 

are in. Now, we’ll look at some detailed aspects of this topic.

The communication link established between agents can be classified as:

•	 Point to Point: agents communicate directly with each 

other

•	 Broadcast/Multicast: agents are capable of sending 

information to a subset of the set of agents. If this 

subset equals the set of agents then the agent is 

broadcasting; otherwise, it is multicasting.

•	 Mediated: communication between agents is mediated 

by a third party (facilitators; see Figure 5-1).

Chapter 5  Multi-Agent Systems



200

Considering the nature of the medium by which messages travel from 

one agent to another, communication can be classified as:

•	 Direct routing: Messages are sent directly to other 

agents with no loss of signal.

•	 Signal-propagation routing: Agents send a signal whose 

intensity decreases as distance increases.

•	 Public-notice routing: using blackboard systems

Blackboard systems and direct message passing are two options for 

establishing agent communication.

A blackboard system (Figure 5-2) represents a common, shared space 

for every agent to place their data, information, and knowledge. Each 

agent can write and read from the blackboard at any given time, and in this 

centralized system there’s no direct communication between agents. The 

blackboard also acts as a dispatcher, handling agent requests, data of the 

common problem, current state of the solution, current task of each agent, 

and so on. Since the blackboard system consists of a shared resource, one 

must be aware of all the concurrent issues that can arise in such a model 

(various agents trying to access the same info, agents using partial, not 

updated data written by other agents, and so on).

Figure 5-1.  Agent 1 and Agent 2 communicate via a facilitator acting 
as middle man
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In the other variant (message passing), information is passed from 

one agent (sender) to another (receiver). Communication among agents 

means more than communication in distributed systems; therefore, it is 

more appropriate to speak about interaction instead of communication. 

When we communicate we perform more than an exchange of messages 

with a specified syntax and a given protocol, as in distributed systems. 

Therefore, a more elaborate type of communication that tends to be 

specific to MAS is communication based on the Speech Act Theory (Searle, 

1969; Vanderveken, 1994), which is the one that best describes the 

message-passing alternative for establishing agent communication.

�Speech Act Theory
The origin of the Speech Act Theory (also called Communicative Act 

Theory) can be traced back to John Austin’s book How to Do Things with 

Words (1962); most treatments of communication in MAS are inspired in 

this theory. The main point behind this theory is that we should consider 

communication as a form of action. Furthermore, Austin noticed that 

some utterances are like physical actions and appear to change the state 

of the world. Examples of this could be a declaration of war or simply “I 

declare you man and wife.”

Figure 5-2.  The blackboard system is a centralized, common space 
for all agents to place and share their information
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Austin argued that all communications could be phrased via 

declarative forms using the appropriate performative verbs. Therefore, 

a simple informative phrase such as “the jazz concert will take place on 

October 10th” can be treated as “I inform you that the jazz concert will take 

place on October 10th.” Directives—as, for example, “give me that bottle of 

rum”—can be treated as “I request (demand) that you give me that bottle 

of rum.” A commissive such as “I’ll give you $100 for your furniture” can be 

treated as “I promise I’ll give you $100 for your furniture.”

Everything we utter is said with the intention of satisfying some goal; 

a theory of how utterances are used to achieve intentions is Speech Act 

Theory, and by using the different types of speech acts agents can interact 

effectively.

Note  Communicative act theories are theories of language use; 
they try to explain how language is used by people every day to 
achieve their goals and intentions.

Examples of some speech-act constructs are presented here:

•	 Inform other agents about some data.

•	 Query others about their state or current situation.

•	 Answer questions.

•	 Request others to act.

•	 Promise to do something.

•	 Offer deals.

•	 Acknowledge offers and requests.
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Searle (1969) classified speech acts into the following categories:

•	 Representatives: when we are informing, asserting, 

claiming, describing; for example, it’s cloudy

•	 Directives: an attempt to make the hearer do 

something; in other words, requesting, commanding, 

advising, forbidding; for example, bring me that bottle 

of rum

•	 Commissives: when we commit the speaker to do 

something, such as when promising, agreeing, offering, 

threatening, inviting; for example, I promise I'll bring 

you tea

•	 Expressives: when the speaker expresses a mental 

state; in other words, congratulating, thanking, 

apologizing; for example, I’m sorry you did not make it 

to Harvard

•	 Declarations: when the speaker brings about a state of 

affairs; in other words, declaring, marrying, arresting; 

or example, I declare (pronounce) you man and wife

A speech act has two components: a performative verb (for example, 

inform, declare, request, and so on) and a propositional content (for 

example, the bottle is open). Constructing speech acts involves combining a 

performative verb with a propositional content. See the following examples:

Performative = inform

Content = the bottle is open

Speech act = the bottle is open.

Performative = request

Content = the bottle is open

Speech Act = please open the bottle.
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Performative = inquiry

Content = the bottle is open

Speech Act = is the bottle open?

Performative = refuse

Content = the bottle is open

Speech Act = I refuse to open the bottle

Performative = agree

Content = the bottle is open

Speech Act = I agree to open the bottle

In the same way we typically create a language for communication 

among co-workers at work, an MAS containing different agents that might 

be running in different machines, under different operating systems 

requires an agent communication language standardized to allow the 

exchange of messages in a standard format.

�Agent Communication Languages (ACL)
Agent communication languages began to emerge in the 1980s; at first, 

they were dependent on the projects for which they were created and also 

on the internal representation of the agents that used them; there were no 

standard languages at that time.

Around the same time, but more generic than its predecessors, 

appeared the Knowledge Query and Manipulation Language, commonly 

known as KQML. It was created by the DARPA Knowledge Sharing Effort 

and was supposed to be a complement to the studies being made on 

knowledge-representation technologies, specifically on ontologies.

KQML is comprised of two parts: the language itself acts as an “outer” 

language, and the Knowledge Interchange Format (KIF) acts as an “inner” 

language; the first describes performatives, while the latter describes 

propositional content and is largely based on first-order predicate 

calculus. KQML represents knowledge that relies on the construct of a 
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knowledge base; thus, instead of using a specific internal representation, it 

assumes that each agent maintains a knowledge base described in terms 

of knowledge assertions. KQML proposed a number of performatives 

such as query and tell. The idea was that each performative could be 

given semantics based on the effect it had on the knowledge bases of the 

communicating agents. Moreover, an agent would send a tell performative 

for some content only if it believed in the content sent; in other words, if it 

thought the content belonged in its knowledge base. An agent that receives 

a tell performative for some content would insert that content into its 

knowledge base; in other words, it would begin believing what it was told.

Note  An ontology is an explicit description of a domain (concepts, 
properties, restrictions, individuals, and so on). It defines a vocabulary 
and is used to share an understanding of the structure of information 
among computer agents or humans. In the Blocks World, Block 
represents a concept and OnTop represents a relationship.

The elegance of KQML is that all information for understanding the 

content of the message is included in the communication itself. Its generic 

syntax is described in Figure 5-3; notice it resembles the Lisp programming 

language:

Figure 5-3.  Basic structure of a KQML message
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In the following lines we show an example of a KQML dialogue 

between AgentX and AgentY:

 (stream-about

:sender AgentX

:receiver AgentY

:language KIF

:ontology CleaningTerrains

     :query

:reply-for query_from_AgentY

:content cell_i cell_j

)

(query

:sender AgentX

:receiver AgentY

:content(> (dirt cell_i) (0))

)

(tell

:sender AgentX

:receiver AgentY

:content(= (cell_j) (1))

)

(eos

:sender AgentX

:receiver AgentY

:query

:reply-for query_from_AgentY

)
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In this little fragment of a KQML message, AgentX asks AgentY if 

there’s dirt at cell i; it also replies to a previous query received from AgentY 

and tells it that cell j has 1 of dirt; eos stands for End of Signal. Note that 

the value of the content field is written in the language defined by the 

language tag, in this case KIF.

Note  KIF, a particular logic language, has been proposed as a 
standard to describe things within expert systems, databases, 
intelligent agents, and so on. One could say that KIF is a mediator 
used in the translation of other languages. Even though KQML is 
usually combined with KIF as content language, it can also be used in 
combination with other languages like Prolog, Lisp, Scheme, and so on.

In 1996, the Foundation for Intelligent Physical Agents (FIPA), a stand-

alone non-profit organization now part of IEEE Computer Society, started 

working on several specifications for agent-based applications; one of 

these specifications was for an ACL of the same name as the organization; 

i.e., FIPA-ACL.

The basic structure of FIPA is quite similar to that of KQML, as 

illustrated in Figure 5-4.

Figure 5-4.  Components of a FIPA message
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The parameters admitted by the FIPA language specification are the 

following:

•	 :sender — who sends the message

•	 :receiver — who is the recipient of the message

•	 :content — content of the message

•	 :reply-with — identifier of the message

•	 :reply-by — deadline for replying to the message

•	 :in-reply-to — identifier of the message being 

replied to

•	 :language — language in which the content is written

•	 :ontology — ontology used to represent the domain

•	 :protocol — communication protocol to be followed

•	 :conversation-id — identifier of the conversation

Table 5-2 details some FIPA performatives and the purpose for which 

they were created.
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Table 5-2.  Some FIPA Performatives

Performative Passing
Info

Requesting
Info

Negotiation Perform
Actions

Error
Handling

accept-proposal x

agree x

cancel x x

cfp x

confirm x

disconfirm

failure

x x

inform x

inform-if x

inform-ref x

not-understood x

propose x

query-if x

query-ref x

refuse x

reject-proposal x

request x

request-when x

request-whenever x

subscribe x

Chapter 5  Multi-Agent Systems



210

Inform and Request represent two basic performatives, while the 

others are defined in terms of these. Their meaning is composed of two 

parts: a precondition list that states what must be true for the speech act to 

succeed and a rational effect—i.e., what the sender of the message hopes 

to achieve.

In the FIPA inform performative, content is a statement, and sender 

informs the receiver that a given proposition is true; sender states the 

following:

•	 Some proposition is true.

•	 The receiving agent must also believe that the 

proposition is true.

•	 The receiver has no knowledge whatsoever of the truth 

of the proposition.

The next lines show an example of a FIPA inform performative:

(inform

:sender(agent-identifier :x)

:receiver(agent-identifier :y)

:content dirt( cell_i, 0 )

       :language Prolog

)

On the other hand, content in the request performative consists of 

an action; in this case, the sender requests the receiver to perform some 

action; sender states the following:

•	 The action content is to be performed.

•	 Recipient is capable of performing this action.

•	 Does not believe that receiver already intends to 

perform the action.
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In this section, we analyzed a critical topic in MAS design: 

communication. Even though this is an essential aspect of every MAS, 

there are other components that are also relevant, one of which is 

coordination. We need our agents to coordinate and avoid problems like 

having two of them executing the same action at the same time (both 

trying to go through the same door at the same time) when it might be 

impossible. Coordination will be the focus point of the next section.

�Coordination & Cooperation
An agent that is part of an MAS exists and performs its decision making 

in an environment where other agents exist as well. To avoid chaos and 

to ensure rational behavior in this environment we need our agents to 

coordinate and achieve their goals in a concise, logical manner. There are 

two main criteria points for assessing MAS: coherence and coordination.

Coherence refers to how well the MAS behaves considering some 

criteria of evaluation (solution quality, efficiency in applying resources, 

logical decision making, and so forth). A common problem for an MAS 

is how it can maintain overall coherence while lacking explicit global 

control. In such cases, agents must be able on their own to determine goals 

they share with other agents; they must also determine common tasks, 

avoid unnecessary conflicts, and collect knowledge. Having some form of 

organization among the agents is useful in this scenario.

Coordination refers to the ability of agents to avoid, by means of 

synchronization, irrational activities in which two or more agents could be 

involved. It implies the consideration of the actions of other agents when 

planning and executing one agent’s actions. It is also a means to achieve 

the coherent behavior of the MAS, and it may imply cooperation. When 

agents in an MAS cooperate, they work toward achieving common goals. 

When they are competing, they have opposite goals. Coordination in both 

cases is essential because the agent must take into account the actions 
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of others when competing or asking for a given resource or offering a 

service. Examples of coordination include ensuring the actions of agents 

are synchronized, providing opportune information to other agents, and 

avoiding redundant problem solving.

Cooperation is coordination among non-antagonistic agents. Typically, 

to cooperate successfully, each agent must maintain a model of the 

other agents and also develop a model of future interactions; this implies 

sociability.

For agents in an MAS to work together they must be able to share 

tasks and information. If we had an MAS where agents were designed by 

different individuals then we could end up having an MAS with various 

goals, all derived from different agents. Alternatively, if we are responsible 

for designing the entire system then we can have agents helping each 

other whenever we deem necessary; our best interest is going to be their 

best interest. In this cooperative model we say that agents are benevolent 

because they are working all together to achieve a common goal. A 

benevolent MAS, or those in which all agents are benevolent, simplifies the 

design task of the system significantly.

When agents represent the interests of individuals, organizations, 

companies, and so on, we say that they are self-interested. These agents will 

have their own set of goals, apart from the goals of other agents in the MAS, 

and will act to achieve them even at the expense of other agents’ welfare; 

this could potentially lead to conflict between some of them.

Note  Self-interested agents complicate the design task of an MAS 
seriously. For an MAS with self-interested agents, we typically have to 
incorporate mechanisms for intelligent behavior, such as those based 
on game theory or rule-based algorithms.

Figure 5-5 illustrates a tree with some of the possible approaches for 

achieving coordination.
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Figure 5-5.  Taxonomy for agent coordination possibilities

A basic strategy for cooperation in an MAS is to decompose and then 

distribute tasks among agents. This divide-and-conquer approach can 

certainly reduce the complexity of the global task because by dividing it 

into smaller subtasks the global solution can be obtained in a shorter time 

and using fewer resources. In general, task sharing can be divided into 

three stages:

•	 Problem decomposition (Divide)

•	 Sub-problem solution

•	 Solution synthesis (Conquer)

In the problem decomposition stage the global problem is divided into 

subproblems, typically by a recursive or hierarchical procedure. Deciding 

how to do the division is a design choice and is problem dependent. 

Deciding who makes the problem decomposition and how it’s made can 
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be left to an agent that we appoint as task distributor. This agent may not 

take care of anything other than distributing tasks among other agents in 

what would be a centralized design. Alternatively, it could be part of the 

subproblem solution team and act as any other agent but with the special 

attribute of being a work organizer.

Once the problem decomposition stage has provided us with a division 

of the global problem, each agent contributes to the subproblem assigned. 

During this process agents may need to share some information and update 

others on their current situation. Finally, in the solution synthesis stage all 

solutions to subproblems are joined (recursively or hierarchically).

In this cooperative model we can distinguish two main activities that 

will most likely be present during MAS execution: task sharing and results 

sharing. In the first, components of the task are distributed to agents, while 

in the latter partial or complete results are also distributed.

We can use a Subscribe/Notify (Publisher/Subscriber) pattern for 

results sharing; in such a pattern an object (subscriber) subscribes to 

another object (informant), requesting a notification for when event evt 

occurs. Once evt has occurred the informant notifies the subscriber of its 

occurrence, and they proactively exchange information in this manner.

At this point we have some unanswered questions. How is the process 

of allocating or matching tasks to agents done? How do we assemble a 

solution from the solved parts? In order to answer the first question we will 

look at a task-sharing protocol known as Contract Net.

Note  Some of the commonly used mechanisms for task sharing 
include the Market mechanism, where tasks are assigned to agents 
by generalized agreement or mutual selection; multi-agent planning, 
where planning agents have the responsibility of task assignment; 
and Contract Net protocol, one of several task-sharing mechanisms.
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�Negotiation Using Contract Net
The Contract Net mechanism is an interaction mechanism for task 

sharing among agents. It follows the model used by entities (governments, 

corporations, and so forth) to regulate the exchange of goods and services. 

Contract Net offers a solution to the problem of finding an appropriate 

agent to work on a task.

The agent who wants a task done is called manager. The candidate 

agents who can fulfill the task are known as contractors. The Contract Net 

process can be summarized in the next stages (Figure 5-6):

	 1.	 Announcement: The manager sends out an 

announcement of the task, which includes a 

specification of the task to be achieved. This 

specification must include a description of the task,  

any constraints (deadlines, etc.), and meta task info 

(bids must be submitted prior to deadline, due date, etc.). 

The announcement is broadcast.

	 2.	 Bidding: Agents receive the broadcast 

corresponding to the manager’s announcement and 

decide for themselves whether they want to bid for 

the task. In this process they must take into account 

various factors like capacity to carry out the task 

and being able to meet all constraints. If they finally 

decide to bid then they submit a tender.

	 3.	 Awarding: The manager must choose between bids 

and decide on an agent to award the contract to. 

The result of this process is communicated to every 

agent that submitted a bid.

	 4.	 Expediting: The winner or successful contractor 

expedites the task.
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Figure 5-6.  Contract Net process
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Generally, any agent can act as manager and any agent can act as 

contractor by replying to task announcements. Because of this flexibility, 

task decomposition can be taken further to different depth levels. 

Furthermore, if a contractor is unable to complete or provide a suitable 

solution for a task then the manager can look for other contractor 

candidates, and as long as there are agents in the MAS the manager can 

seek a candidate contractor that at some point in time will be available to 

execute a task according to the manager’s requirements.

From the contractor’s perspective, he receives various offers 

(announcements) from various managers and decides upon what he thinks 

is the best offer. This decision is made based on some criteria (proximity, 

reward, etc.), and he sends a bid to the corresponding manager.

From the manager’s perspective, he receives and evaluates bids for 

each task announcement. Any bid for a given task that is considered 

satisfactory will be accepted and always before the expiration time of the 

task announcement is met. Afterward, the manager notifies the winning 

contractor and possibly all other candidates who sent a bid with an “award 

notice” announcement that the task has been awarded.

Perhaps one could say that a negative point of the Contract Net 

mechanism is that the awarded agent does not have to be the best or most 

suitable agent for the task, as the most suitable agent for the task could be 

busy at award time.

Note T here exist several reasons why a manager may not receive 
bids on an announcement. All agents might be busy at the time of 
receiving the announcement, a candidate contractor (agent) ranks 
the task announced below other offered tasks, or no contractor is 
capable of working on the announced task.
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The FIPA-ACL specification was projected to support the Contract Net 

negotiation mechanism. The cfp (call for proposals) performative is used 

to announce the task; the propose and refuse performatives are used to 

propose or refuse a proposal; accept and reject are used to accept or 

decline a proposal, and inform and failure are used to communicate 

completion of the task with its corresponding result.

�Social Norms & Societies
Classical AI has been concerned with designing single agents that 

incorporate reasoning and control logics implemented using a von 

Neumann architecture. However, agents are not always in isolation; they 

exist in an environment where they might find other agents and be in need 

of some type of interaction to complete their task in an optimal manner. 

Thus, it’s logical to see agents as a society where well-known rules govern 

their behavior and actions. Sociability is vital in cooperative MAS and aims 

to aid true peer-to-peer distributed and flexible paradigms that recent 

applications require and where agents can find their utmost contribution.

A social commitment in an MAS is an obligation created between an 

agent and another agent or group of agents, constraining the behavior 

of the first to follow a given prearranged commitment or rule. Imagine 

an MAS where agents must stay together at the same line of work in a 2D 

space, but AgentX moves faster than the remaining agents and always 

tends to go ahead and leave the team behind. A social commitment from 

this agent to the others could be to always stay in the same line and not 

move ahead and leave someone behind.

To establish rules for an MAS, we can design social norms or laws to 

rule agents’ behavior (Figure 5-7). A social law is a set of constraints, and 

a constraint comes in the form of a pair (S, A) stating that an agent cannot 

execute an action A while being in state S.
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The set of focal states is the set of states we want our agent to have 

access to; thus, from any focal state there must exist a path to the 

remaining focal states. A useful law is one that does not stop agents from 

getting to one state from another; the law from Figure 5-5 is a useful law.

Now that we have set the grounds for MAS terminology, concepts, 

and ideas we will introduce in the following chapter a complete 

practical application consisting of multi-agent communication 

software that allows various agents to exchange messages using a WCF 

Publisher/Subscriber pattern in a two-sided (service, client) program. 

This communication program will be used later (in Chapter 7) to create 

a complete example of a multi-agent system where a set of cleaning 

robots will communicate, coordinate, and cooperate to clean an n x m 

room of its dirt.

Figure 5-7.  Social law determining agent movement in a grid of 3 × 3.  
This law prevents collisions.
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�Summary
In this chapter, we introduced the field of multi-agent systems. We 

presented various definitions and concepts that set us on the right path to 

getting acquainted with some MAS terminology necessary for diving into 

the scientific literature associated with this topic. We examined multi-

agent organizations, agent communication, and its subfields (Speech 

Act Theory and Agent Communication Languages), and we concluded 

the chapter by detailing the vital topics of coordination and cooperation 

among agents. We also included in this final part the topics of negotiation 

and social norms. In the next chapter, we’ll present a very interesting 

practical problem where we’ll have a set of N agents exchanging messages 

in a WCF application created under the Publisher/Subscriber pattern.
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CHAPTER 6

Communication 
in a Multi-Agent 
System Using WCF
In the previous chapter, we examined the basics of multi-agent systems 

(MAS) and got acquainted with concepts like MAS platform, coordination, 

cooperation, and communication. In this chapter, we will describe an 

application that uses Windows Communication Foundation (WCF)  

to create a network of agents capable of interacting with and  

passing messages among each other. This application will use the 

Publisher/Subscriber design pattern to set up the communication 

component that every agent in the MAS will incorporate. We will use the 

application described throughout this chapter again in the next chapter, 

adapting it as the communication module of every agent in an MAS 

consisting of cleaning agents whose task is cleaning a room of its dirt.

WCF emerged in 2006 as a development kit and eventually became 

part of the .NET Framework; it’s an application programming interface 

(API) for developing connected systems where both security and reliability 

in any communication between internal systems of an organization or 

systems over the internet is possible and provided. It is designed to offer 

a manageable approach to distributed computing, broad interoperability, 
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and direct support for service orientation. WCF represents Microsoft’s 

alternative to a platform that collects a set of industry standards that define 

different protocols, service interactions, type conversion, marshalling, and 

so forth. It provides developers with the fundamental predesigned tools 

that every network application might require, and its first release included 

many useful facilities for creating services (hosting, service-instance 

management, asynchronous calls, reliability, transaction management, 

disconnected queued calls, security, and so on).

Applications built using WCF as the runtime environment will allow 

us to use Common Language Runtime (CLR) types as services and will 

allow us to consume other services as CLR types. Concepts such as service, 

contract, binding, endpoint, and others will be explained throughout this 

chapter as we develop our MAS communication example.

Note  Windows Communication Foundation (WCF) is a framework 
for developing and deploying services on Windows. Using WCF, we 
can build service-oriented applications (SOAs). WCF replaced the 
older ASMX web services technologies.

�Services
A service is a functional component made accessible to its consumers via a 

network that could be the internet or a local internal network. A calculator 

could very well be a service offered to different clients in a network so they 

can connect to the service and request any operation between any given 

numbers. In a service-oriented application (SOA) we aggregate services 

the same way we aggregate objects when developing an object-oriented 

application; the service becomes the first-class citizen in this type of 

application.
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Services communicate using any communication protocol previously 

agreed on, and they can use any language, platform, versioning, or 

framework without needing to have any agreement on those. Thus, one 

can say that services are dependent on the communication protocol 

applied but independent in any other area.

The client of a service is the part making use of the service’s 

functionality. In the calculator service example the client would be the 

program requesting that the calculator solve mathematical expressions. 

The client can be any type of program, from a console application to 

a Windows Forms, an ASP.NET MVC site, a WPF program, or another 

service. In WCF, the client never interacts with the service directly, not 

even with a local service. Instead, the client always uses a proxy to forward 

calls to the service. The proxy acts as a middle man, presenting the same 

operations as the service in addition to some proxy-related methods.

Note T here has been an evolution from applications where 
functions were the first-class citizen to applications where objects 
were the first-class citizen (object-oriented programming), passing 
through component-oriented applications (component-object  
model, COM) and leading to the most recent step in this evolution, 
service-oriented applications (SOAs).

WCF most often uses Simple Object Access Protocol (SOAP) messages 

to communicate; SOAP is a protocol for data exchange. It can be seen as a 

set of components that can be invoked, published, and discovered. These 

messages are independent of transport protocols, and, contrasting with 

web services, WCF services can communicate over a variety of transports, 

not just HTTP. WCF clients are capable of interoperating with non-WCF 

services, and WCF services can interact with non-WCF clients.
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�Contracts
We deal with contracts often in our daily life, especially in business-related 

affairs, to make sure parts engaging in a relationship agree on various 

points. In WCF, a contract is a standard way of describing what a service 

does; it’s a way for service consumers and providers to correlate correctly. 

In an SOA application, having a properly defined contract can give its 

consumers a pretty good idea of how to work with the service even though 

they might not know how it’s implemented.

WCF defines various types of contracts:

•	 Service Contract, Operation Contract: used to represent 

a service and describe the operations that the client can 

perform on the service

•	 Data Contract: used to represent an agreement on the 

data that will be exchanged between the service and 

the client. WCF defines implicit contracts for built-in 

types such as int and string and gives you the option 

of defining explicit data contracts for custom types.

•	 Fault Contract: used to define which errors are raised 

by the service by associating custom exception types 

with certain service operations and describing how the 

service handles and propagates errors to its clients

•	 Message Contract: used by the service to interact 

directly with messages, altering its format or 

manipulating the service messages to modify other 

features like the SOAP header and so forth

There are different ways or patterns for defining contracts in WCF; 

we could define them using the One-Way pattern, the Request–Response 

pattern, or the Duplex pattern. These are all message-exchange patterns.
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•	 One-Way: When an operation has no returned values 

and the client application is not interested in the 

success or failure of the invocation, we may have this 

“fire & forget” invocation called One-Way. After the 

client issues the call, WCF generates a request message, 

but no reply message will ever head back to the client. 

Consequently, One-Way operations can’t return values, 

and any exception thrown on the service side will not 

make its way back to the client.

 

•	 Request–Response: In this pattern, a service operation 

call consists of a message sent and a reply expected 

from the service. Operations using this pattern have 

an input parameter and an associated return value. 

The client is always the one to initiate communication 

between the parties.

 

•	 Duplex: This exchange pattern allows for a random 

number of messages to be sent by a client and received 

in any order. It resembles a conversation where each 

word spoken is seen as a message. Any part can initiate 

communication.
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In order to implement a service in WCF you typically go through the 

following steps:

	 1.	 Define the service contract. A service contract 

specifies the signature of a service, the data it 

exchanges, and other contractually required data. 

The following code shows the service version of the 

very classic Hello World program:

[ServiceContract]

                       interface IHelloWorld

{

[OperationContract(IsOneWay = true)]

                             void HelloMessage();

}

	 2.	 Implement the contract by inheriting from the 

service contract definition (prearrangement 

interface) and create the class that implements the 

contract:

public class Hello: IHelloWorld

{

          public void HelloMessage()

         {

                �Console.WriteLine("Hello World");

         �}

}

	 3.	 Configure the service by specifying endpoint 

information and other behavior information. We’ll 

see more about this in the next section.
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	 4.	 Host the service in IIS or in an application; it could 

be a console application, Windows Forms, WPF, ASP 

.NET, etc.

	 5.	 Create a client application; it could be a console 

application, Windows Forms, WPF, ASP .NET, etc.

Note that methods declared on the IHelloWorld service contract 

that do not have the OperationContract attribute will not be considered 

as WCF methods; in other words, they won’t be invokable over WCF 

applications. You can mix non-WCF methods with WCF methods with the 

intention of having some subliminal processing, but only for that purpose.

�Bindings
WCF allows us to send messages using different transport protocols, 

such as HTTP, HTTPS, TCP, MSMQ, and so on, and using different XML 

representations, such as text, binary, or MTOM (Message Transport 

Optimization Mechanism); this last one is known as the message 

encoding in WCF. Furthermore, we can improve specific messaging 

interactions using a suite of SOAP protocols, such as the multiple WS-X 

(WSHttpBinding, WSDualHttpBinding, etc.) specifications. Improvements 

could be related to security, reliable messaging, and transactions. These 

communication concepts (transport, message encoding, and protocol) are 

vital to understanding what happens on the wire at runtime.

In WCF, bindings are represented by the System.ServiceModel.

Channels.Binding class, and all binding classes must derive from this base 

class; Table 6-1 illustrates some of the built-in bindings that WCF provides.
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Bindings like BasicHttpBinding and WSHttpBinding were created for 

scenarios where interoperability is essential. Thus, they both use HTTP 

as the transport protocol and simple text for message encoding. On the 

other hand, bindings that have the Net prefix are optimized to function 

with the .NET Framework on both ends (service, client). As a result, these 

bindings are not designed for interoperability and perform better in 

Windows environments. A binding is part of another component of a WCF 

application known as an endpoint; endpoints will be the topic of the next 

section.

Note  As of .NET Framework 4.5 the NetPeerTcpBinding binding 
has been marked as obsolete and may disappear in the future.

Table 6-1.  WCF Built-in Bindings

Binding Class Transport Message  
Encoding

Message Version

BasicHttpBinding HTTP Text SOAP 1.1

WSHttpBinding HTTP Text SOAP 1.2 WS-Addressing 1.0

WSDualHttpBinding HTTP Text SOAP 1.2 WS-Addressing 1.0

NetTcpBinding TCP Binary SOAP 1.2

NetPeerTcpBinding P2P Binary SOAP 1.2

NetMsmqBinding MSMQ Binary SOAP 1.2

CustomBinding Up to you Up to you Up to you
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�Endpoints
WCF services are exposed through service endpoints that provide access 

points for clients to exploit the functionality provided by the WCF service. 

Service endpoints consist of what is known as the ABC of a service.  

A stands for Address, which defines where the service is (for example, 

http://localhost:9090/mas/). B stands for Binding, which defines how 

to communicate with the service, and C stands for Contract, which defines 

what the service can do. Hence, an endpoint can be seen as a tuple  

<A, B, C>: an address, a binding, and a contract.

We must define endpoints in both our service and client applications; 

this can be done programmatically or through the app.config file, as 

shown in the next example (Listing 6-1).

Listing 6-1.  Defining Two Endpoints in the app.config File

<service name = "HelloWorld">

<endpoint

      address  = "net.tcp://localhost:8001/service/"

      binding  = "netTcpBinding"

      contract = "IHelloWorld"

   />

<endpoint

      address  = "http://localhost:8002/otherService/"

      binding  = "wsHttpBinding"

      contract = "IHelloWorld"

   />

</service>

There’s no significant technical difference in the programmatic way 

and the configuration setting of the app.config file way for defining 

endpoints in WCF. Eventually .NET will parse the app.config file and 

execute its defined configuration in a programmatic manner. Now that we 
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have been over the basics of WCF, we will look at the Publisher/Subscriber 

pattern that WCF supports and that we will be using in communicating 

with various agents.

�Publisher/Subscriber Pattern
Real-time applications are those that provide a live feed or update 

(basketball game, baseball game, and so on) of a particular event  

occurring at a short, prior time from the time the feed is provided.  

Real-time apps implement one of two possible mechanisms for giving 

updated information to clients: pushing and pulling.

To understand how these mechanisms work, let’s imagine a scenario 

where we would like to be updated on the results of a baseball game. 

We are part of a network that consists of a server, which has the updated 

information (live updates), and several other computers. Assuming we 

get the live feed in our browser (client) via HTTP, and considering the 

use of a pulling mechanism, our computer would be constantly sending 

update requests and pulling new information (if any) from the server. It 

would basically be like asking the server from time to time “Do you have 

anything new for me?” On the other hand, if we were to follow a pushing 

mechanism our client would tell the server, “Keep me updated on the 

score of this game,” and the server would automatically “push” updates to 

the client whenever they were available. The Publisher/Subscriber model 

follows the latter approach, the pushing mechanism; the server plays the 

role of publisher and the client the role of subscriber, and it requires a 

duplex service to be established between both parts.

A duplex service consists of two contracts, one at the server and 

another at the client. The contract implemented at the server will be 

used by the subscriber (client) to subscribe for a particular data feed. The 

contract implemented at the client will be used by the server to make a 

call whenever new data needs to be “pushed.” The contract implemented 
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at the client side is known as a callback contract. We’ll see more of the 

Publisher/Subscriber pattern, as well as callback contracts and duplex 

services, in the following sections when we look at a practical problem that 

puts all these pieces together in a complete, functional example.

�Practical Problem: Communicating 
Among Multiple Agents Using WCF
In this section, we will create a WCF application where several agents 

contribute to a shared message list and each agent is aware of the current 

message list; in other words, everyone has an updated copy of the 

actual list. The service in this scenario acts as a message broker, sending 

new messages coming from a given agent to all other agents. This is an 

application that clearly follows the Publisher/Subscriber pattern; in 

Figure 6-1 we can see its architecture.

Figure 6-1.  An agent adds a message to the list and the service 
communicates the updated list to all other agents

Beginning with the implementation process, we first need to define 

our service contract. Since we are going to create a duplex application, 

the service contract definition will need to be accompanied by a callback 

contract. The callback contract specifies the operations that the service 
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can invoke on the client. To create a WCF service in Visual Studio, go to the 

Solution Explorer and right-click in the project or folder you wish to be the 

container of the project; select “Add a New Item,” then look for the “WCF 

Service” option (Figure 6-2).

Figure 6-2.  Adding a WCF service to our project

Once you add the service you will see two files have been added to 

your project—a class (contract implementation) and an interface (service 

contract). You’ll also notice the addition of references to namespaces 

System.ServiceModel and System.ServiceModel.Description, which 

are the namespaces containing the binding classes, the ServiceHost class, 

and so forth.

Note  Operations on a duplex service are usually marked as OneWay 
= true to prevent deadlocks. A deadlock occurs when various units 
are waiting on the others to finish and as a consequence neither ever 
does.

The implementations of both the service and callback contracts are 

illustrated in Listing 6-2.
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Listing 6-2.  Service and Callback Contracts

[ServiceContract(CallbackContract = typeof(IAgentCommunication 

Callback))]

    public interface IAgentCommunicationService

    {

        [OperationContract(IsOneWay = true)]

        void Subscribe();

        [OperationContract(IsOneWay = true)]

        void Send(string from, string to, string message);

}

public interface IAgentCommunicationCallback

{

        [OperationContract(IsOneWay = true)]

        void SendUpdatedList(List<string> messages);

}

Notice that in the previous code we are defining a relationship 

by specifically telling the service contract that its callback contract is 

IAgentCommunicationCallback. Thus, we are telling the service to use 

that callback contract to notify the client (notification will be achieved 

by calling the SendUpdateList() method on the callback) whenever 

new updates are available. The service contract contains two operations: 

Subscribe(), which subscribes the agent to the service, and Send(), which 

sends a new message to the message list. The callback contract has an 

operation named SendUpdatedList(), which is used to send the latest 

message list to all agents.

Chapter 6  Communication in a Multi-Agent System Using WCF



234

Note  All operations in IAgentCommunicationService and 
IAgentCommunicationCallback return void because that’s a 
requirement of the attribute setting IsOneWay = true. One-Way 
operations will block until the outbound data has been written to the 
network connection.

Now that we know the agreement on operations established by the 

service and callback, let’s look at their concrete implementations.  

Listing 6-3 shows the service implementation.

Listing 6-3.  Service Implementation

[ServiceBehavior(InstanceContextMode = InstanceContextMode.

Single, ConcurrencyMode = ConcurrencyMode.Multiple)]

    �public class AgentCommunicationService : 

IAgentCommunicationService

    {

        �private static List<IAgentCommunicationCallback> _callback 

Channels = new List<IAgentCommunicationCallback>();

        private static List<string> _messages = new List<string>();

        private static readonly object _sycnRoot = new object();

        public void Subscribe()

        {

            try

            {

                var callbackChannel =

                    �OperationContext.Current.GetCallbackChannel

<IAgentCommunicationCallback>();

                lock (_sycnRoot)

                {
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                    if (!_callbackChannels.Contains(callbackChannel))

                    {

                        _callbackChannels.Add(callbackChannel);

                        �Console.WriteLine("Added Callback 

Channel: {0}", callbackChannel.GetHash 

Code());

                        callbackChannel.SendUpdatedList(_messages);

                    }

                }

            }

            catch

            {

            }

        }

        public void Send(string from, string to, string message)

        {

            lock (_sycnRoot)

            {

                _messages.Add(message);

                Console.WriteLine("-- Message List --");

                �_messages.ForEach(listItem => Console.

WriteLine(listItem));

                Console.WriteLine("------------------");

                �for (int i = _callbackChannels.Count - 1;  

i >= 0; i--)

                {

                    �if (((ICommunicationObject)_callback 

Channels[i]).State != CommunicationState.

Opened)

                    {
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                        �Console.WriteLine("Detected Non-Open 

Callback Channel: {0}", _callback 

Channels[i].GetHashCode());

                        _callbackChannels.RemoveAt(i);

                        continue;

                    }

                    try

                    {

                        �_callbackChannels[i].SendUpdatedList 

(_messages);

                        �Console.WriteLine("Pushed Updated List 

on Callback Channel: {0}", _callback 

Channels[i].GetHashCode());

                    }

                    catch (Exception ex)

                    {

                        �Console.WriteLine("Service threw 

exception while communicating on 

Callback Channel: {0}", _callback 

Channels[i].GetHashCode());

                        �Console.WriteLine("Exception Type: 

{0} Description: {1}", ex.GetType(), 

ex.Message);

                        _callbackChannels.RemoveAt(i);

                    }

                }

            }

        }

    }
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Notice the AgentCommunicationService class has the 

attributes InstanceContextMode = InstanceContextMode.Single, 

ConcurrencyMode = ConcurrencyMode.Multiple defined by the 

ServiceBehavior class; as its name suggests, this class allows us to define 

various behaviors for the service. The first sets it as a Singleton class; 

thus, all service calls will be handled by the same service instance, and 

all agents will refer to the same message and client callback channel list, 

as those fields were declared static. The latter allows for concurrency to 

occur and for you to have a multi-thread service, thus permitting each call 

to be handled in parallel. The synchronization of the service object will be 

handled using the SyncRoot pattern and the lock statement in C#.

Note L ocking public objects is not a good practice. A public object 
can be locked by anyone, creating unexpected deadlocks. As a result, 
you should use caution when locking an object that is exposed to the 
outside world. The SyncRoot pattern guarantees that this scenario 
does not occur by using a private, internal object to do the locking.

The lock statement acts as a key for objects. Imagine a man who wants 

to enter a room and obtains a key from the owner, and while he is in the 

room no one else can access it. When he leaves he gives the key back to the 

owner so the next person in the line can obtain the key and enter the room. 

The code that prevents multiple threads from accessing and modifying 

data simultaneously is called thread-safe code.

The Subscriber() method (operation) gets the callback channel of the 

client and checks whether it has been added in the callback channel list, 

adding it in case it has not been. If the client has not accessed the service 

before it sends it the latestMessage list.

In the Send() method we must ensure that only one thread at a time 

obtains access to the list, as that’s the reason for the lock statement. Once 

we have added the message we loop through every callback channel and 
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inform the rest of the agents (clients) of the new addition by calling their 

SendUpdatedList() method. This iteration process is done backward 

because we will need to remove any channel that may have changed its 

state to close or throw an exception.

As mentioned before, we need to create a Proxy class to interact with the 

service. To create a duplex proxy we need to design a class that inherits from 

DuplexClientBase<T> and then create the service contract (Listing 6-4).

Listing 6-4.  Proxy Implementation

public class AgentCommunicationServiceClient : DuplexClientBase

<IAgentCommunicationService>, IAgentCommunicationService

    {

        �public AgentCommunicationServiceClient(Instance 

Context callbackInstance, WSDualHttpBinding binding, 

EndpointAddress endpointAddress)

            : base(callbackInstance, binding, endpointAddress) 

{ }

        public void Subscribe()

        {

            Channel.Subscribe();

        }

       public void Send(string from, string to, string message)

        {

            Channel.Send(from, to, message);

        }

    }

As we can see from Listing 6-4, the implementation of the proxy class is 

pretty straightforward—simply forward every call to the Channel property 

(of type IAgentCommunicationService) provided by the parent class  
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DuplexClientBase<IAgentCommunicationService>. In the Send method, 

we included arguments string from, string to. We’ll use these 

arguments in the next chapter to filter messages from and to agents.

The concrete implementation of the callback contract class is shown in 

Listing 6-5.

Listing 6-5.  Callback Contract Implementation

[CallbackBehavior(UseSynchronizationContext = false)]

    �public class AgentCommunicationCallback : IAgent 

CommunicationCallback

    {

public event EventHandler<UpdatedListEventArgs> 

ServiceCallbackEvent;

 �privateSynchronizationContext _syncContext = AsyncOperation 

Manager.SynchronizationContext;

        public void SendUpdatedList(List<string> items)

        {

            �_syncContext.Post(new SendOrPostCallback(OnService 

CallbackEvent), new UpdatedListEventArgs(items));

        }

        private void OnServiceCallbackEvent(object state)

        {

            �EventHandler<UpdatedListEventArgs> handler = 

ServiceCallbackEvent;

            var e = state as UpdatedListEventArgs;

            if (handler != null)

            {

                handler(this, e);

            }

        }

    }
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Let’s remember that the callback contract is the one handling the 

“push updates” received from the service contract. By default, the callback 

contract synchronizes all calls on the current synchronization context.  

If your client is a Windows Forms application this behavior would result  

in the code’s being executed on the user-interface thread, which is not a 

good idea.

In order to communicate the results obtained on the operation 

thread to the UI thread we will use AsyncOperationManager, a class that 

.NET incorporates for concurrency management. This class contains a 

SynchronizationContext property, which returns the synchronization 

context for the application calling it. The purpose, in the end, for using these 

classes is sharing data between the UI thread and the operation thread.

Note  A synchronization context provides a way to queue a unit 
of work to a particular context. It could allow worker threads to 
dispatch messages to the UI synchronization context. Only the UI 
synchronization context is allowed to manipulate the UI controls; 
therefore, if we attempted to update the UI from another context 
it would result in an illegal operation, causing an exception to be 
thrown.

We’ll use the Post method of the SynchronizationContext class to 

asynchronously queue messages to the UI synchronization context. The 

Post method takes two arguments: a delegate called SendOrPostCallback 

representing the callback method we need to execute after the message 

is dispatched to the UI synchronization context, and an object that is 

submitted to the delegate. We create the SendOrPostCallback delegate 

by passing in the OnServiceCallbackEvent method that has been 

implemented in the Callback class. We also create an instance of the 

UpdatedListEventArgs (Listing 6-6) class and submit the new list of 

messages in the constructor. The delegate and the event arguments class 
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instance are used as arguments to the Post method. In this manner, our 

event-invocation method is capable of obtaining the event arguments 

when it is being marshalled from the worker thread to the UI thread. 

Subscribers (clients such as Windows Forms, console application, and so 

on) to our ServiceCallbackEvent can then handle the event when it is 

triggered.

Setting the UseSynchronizationContext attribute to false allows the 

callback operations to be distributed among different threads.

Listing 6-6.  Class Used as Event Argument to Update the Message 

List on the Client Application (Windows Forms)

public class UpdatedListEventArgs : EventArgs

    {

        public List<string> MessageList { get; set; }

        public UpdatedListEventArgs(List<string> messages)

        {

            MessageList = messages;

        }

    }

Now that we have presented concrete implementations for all 

contracts, let’s present the application acting as host for the service  

(Listing 6-7).

Listing 6-7.  Service Being Hosted in a Console Application

 static void Main(string[] args)

        {

            // Step 1 Create a URI to serve as the base address.

            var baseAddress = new Uri("http://localhost:9090/");
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            // Step 2 Create a ServiceHost instance

            �var selfHost = new ServiceHost(typeof(Agent 

CommunicationService), baseAddress);

            try

            {

                // Step 3 Add a service endpoint.

                �selfHost.AddServiceEndpoint(typeof(IAgent 

CommunicationService),

                    �new WSDualHttpBinding(WSDualHttpSecurity 

Mode.None), "AgentCommunicationService");

                �// Step 4 Enable Metadata Exchange and Add MEX 

endpoint

                �var smb = new ServiceMetadataBehavior { 

HttpGetEnabled = true };

                selfHost.Description.Behaviors.Add(smb);

                �selfHost.AddServiceEndpoint(ServiceMetadata 

Behavior.MexContractName,

                    �MetadataExchangeBindings.

CreateMexHttpBinding(), baseAddress + "mex");

                // Step 5 Start the service.

                selfHost.Open();

                Console.WriteLine("The service is ready.");

                 �Console.WriteLine("Listening at: {0}", 

baseAddress);

                �Console.WriteLine("Press <ENTER> to terminate 

service.");

                Console.WriteLine();

                Console.ReadLine();

                �// Close the ServiceHostBase to shut down the 

service.

Chapter 6  Communication in a Multi-Agent System Using WCF



243

                selfHost.Close();

            }

            catch (CommunicationException ce)

            {

                �Console.WriteLine("An exception occurred: {0}", 

ce.Message);

                selfHost.Abort();

            }

        }

The steps for creating the service are clearly presented in Listing 6-7. 

In this case, we are hosting our service in a console application. Notice 

that we will not be using or editing the app.config file; on the contrary, all 

binding, address, and contract configuration is made programmatically.

Note T he WCF bindings supporting duplex services are WSDualHttp 
Binding, NetTcpBinding, and NetNamedPipeBinding.

The client application will be a Windows Forms application that has 

the code shown in Listing 6-8.

Listing 6-8.  Client Application

public partial class AgentClient : Form

    {

        �private const string ServiceEndpointUri = "http://

localhost:9090/AgentCommunicationService";

        public AgentCommunicationServiceClient Proxy { get; set; }

        public AgentClient()

        {
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            InitializeComponent();

            InitializeClient();

        }

        private void InitializeClient()

        {

            if (Proxy != null)

            {

                try

                {

                    Proxy.Close();

                }

                catch

                {

                    Proxy.Abort();

                }

            }

            var callback = new AgentCommunicationCallback();

            �callback.ServiceCallbackEvent += 

HandleServiceCallbackEvent;

            var instanceContext = new InstanceContext(callback);

            �var dualHttpBinding = new WSDualHttpBinding(WSDual 

HttpSecurityMode.None);

            �var endpointAddress = new EndpointAddress(Service 

EndpointUri);

            �Proxy = new AgentCommunicationServiceClient(instance 

Context, dualHttpBinding, endpointAddress);

            Proxy.Open();

            Proxy.Subscribe();

        }
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        �private void HandleServiceCallbackEvent(object sender, 

UpdatedListEventArgs e)

        {

            List<string> list = e.MessageList;

            if (list != null && list.Count > 0)

                messageList.DataSource = list;

         }

        private void SendBtnClick(object sender, EventArgs e)

        {

            Proxy.Send("", "", wordBox.Text.Trim());

            wordBox.Clear();

        }

    }

As expected, the client application (Figure 6-3) contains a field of 

type AgentCommunicationServiceClient, which represents the proxy it 

will be using for subscribing and communicating with the service. The 

HandleServiceCallbackEvent is the event that will be triggered when 

a new message is added to the list; this is directly related to the callback 

contract and the OnServiceCallbackEvent event we recently described. 

The SendBtnClick event is fired when a user clicks the Send button of the 

client’s UI and sends a new message.

Figure 6-3.  Client UI in Windows Forms
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Now that we have all the pieces together, let’s test the application and 

see how different agents communicate and receive messages.

First, let’s run the console application that is hosting the service.

Note Y ou would typically need administrator rights to launch the 
service application. If you are experiencing any issues running the 
application, try running it as administrator.

Then, let’s run as many clients as we want. In this case, we would be 

satisfied by just executing three clients. The scenario described would be 

the one illustrated in Figure 6-4.

Figure 6-4.  Executing the service and three clients
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Now we can play with the application and send messages from any 

of the clients. The result will be a shared list of all messages as seen in 

Figure 6-5.

Figure 6-5.  Agents exchanging messages in a WCF Publisher/
Subscriber application

In the next chapter, we will slightly modify the WCF communication 

application introduced in the last few sections to adjust it to our multi-

agent system of cleaning agents example. In the cleaning agents MAS 

program, clients will be agents that will be communicating through a WCF 

service that is acting as a message broker (publisher). Concepts examined 

in Chapter 5, such as cooperation, coordination, Contract Net, and social 

laws will be covered again in the cited example and in a practical manner 

will be implemented via classes and methods in C#.
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�Summary
In this chapter, we explained some of the basics of WCF (services, 

contracts, addresses, bindings, and endpoints) and also a common 

pattern in network applications, the Publisher/Subscriber model. We 

introduced and described duplex services and some of their features, like 

the callback contract. We implemented a WCF program that simulated 

the communication of several agents, using a service hosted on a console 

application as message broker and a Windows Forms application for 

clients. In the following chapter, we will insert this application into a much 

bigger program that simulates the process of a multi-agent system whose 

task is getting rid of all the dirt in an n x m room.
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CHAPTER 7

Cleaning Agents: 
A Multi-Agent System 
Problem
Throughout Chapters 5 and 6 we studied multi-agent systems (MAS) 

and multi-agent communication. We introduced concepts such as agent 

platform, agent architecture, coordination, cooperation, social laws, and 

much more; we also detailed a practical problem where we created a 

multi-agent communication module using Windows Communication 

Foundation (WCF).

In this chapter, we’ll analyze a complete practical problem where we 

will put all the pieces together and develop an MAS where n cleaning 

agents will be dealing with the task of cleaning an n x m room of its dirt. 

This problem will allow us to include many of the concepts and definitions 

studied before and also attach the WCF communication module created 

in Chapter 6 as the MAS communication module that every agent in the 

system will integrate.

The cleaning problem is a great benchmark or scenario by which to 

understand how we can use an MAS to solve a task, such as cleaning, in a 

much shorter time and using fewer resources than with just a single agent.
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Note  Every robot in the cleaning problem will be using WCF at the 
core of their communication module and Windows Forms to display 
messages received.

�Program Structure
The application will have a structure like the one depicted in Figure 7-1. 

The program comprises Communication, GUI (Graphical User Interface), 

Negotiation, Planning, and Platform modules. The Communication and 

Planning modules will not be analyzed in this chapter (except for the 

communication language, FipaAcl C# class) as they were previously 

studied. For further reference please download the source code associated 

with this book.

Figure 7-1.  Program structure

The GUI module will contain two Windows Forms applications—one 

for graphically representing the room with every agent on it and their 

interactions, the other for representing the agent message board.
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The Negotiation module will contain an implementation of the 

Contract Net task-sharing method, with every stage implemented as a 

static C# method within a ContractNet class.

The Platform module will contain an implementation of an agent 

platform and some of its functionalities (agent location via dictionary, 

Decide Roles service for task sharing, references to manager and 

contractors, and so forth). It will serve as support for other classes.

Within the Communication module we’ll include the Agent 

Communication Language (ACL) module, which contains a tiny, 

simplified version of a FIPA-ACL, including a few performatives.

Note I n order to simplify the planning task in this MAS example, we 
will assume that the number of columns (M ) is always divisible by 
the number of agents (S ) in the MAS, i.e., M % S == 0. This will allow 
us to simply assign M / S columns to each agent for cleaning.

�Cleaning Task
To represent and encode the cleaning task we have created the class 

illustrated in Listing 7-1.

Listing 7-1.  CleaningTask Class

public class CleaningTask

{

        public int Count { get; set; }

        public int M { get; set; }

        public List<Tuple<int, int>> SubDivide { get; set; }

        public IEnumerable<string> SubTasks { get; set; }
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        public CleaningTask(int m, int agents)

        {

            M = m;

            Count = agents;

            SubDivide = new List<Tuple<int, int>>();

            Divide();

            SubTasks = BuildTasks();

        }

        /// <summary>

        /// For the division we assume that M % Count = 0, i.e.  

        /// �the number of columns is always divisible by the 

number of agents.

        /// </summary>

        private void Divide()

        {

            var div = M / Count;

            for (var i = 0; i < M; i += div)

                SubDivide.Add(new Tuple<int, int>(i, i + div - 1));

        }

        private IEnumerable<string> BuildTasks()

        {

            var result = new string[SubDivide.Count];

            for (var i = 0; i < SubDivide.Count; i++)

                �result[i] = "clean(" + SubDivide[i].Item1 + "," 

+ SubDivide[i].Item2 + ")";

            return result;

        }

    }

Chapter 7  Cleaning Agents: A Multi-Agent System Problem



253

The class contains the following fields or properties:

•	 Count: integer representing the number of agents 

participating in the cleaning task

•	 M: integer representing the number of columns in the 

room

•	 SubDivide: List<Tuple<int, int>> representing 

the equitable column division made considering the 

number of agents and columns

•	 SubTasks: IEnumerable<string> representing the set 

of tasks that need to be executed in order to complete 

the global task (cleaning the entire room). Each task is 

defined in a self-created inner language that our mini 

FipaAcl will be using.

On the other hand, the CleaningTask class exposes these methods:

•	 Divide(): divides the global task of cleaning a room 

into smaller subtasks. Each subtask will consist of a 

subset of contiguous columns to be cleaned. It stores in 

the SubDivide property a set of tuples, each defining a 

range of columns to be cleaned; e.g., (0, 2) will indicate 

the subtask of cleaning columns 0 up to 2.

•	 BuildTasks(): returns an IEnumerable<string> 

containing every subtask in a self-created language that 

will be used later for transmitting information via the 

communication module and using FIPA as ACL.

In trying to maintain a well-modularized application, the 

CleaningTask class merely deals with operations related to cleaning 

issues. In the next section, we’ll take a look at the Cleaning Agent platform.
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�Cleaning Agent Platform
The Cleaning Agent platform is represented by the CleaningAgentPlatform 

class, whose code can be seen in Listing 7-2.

Listing 7-2.  CleaningAgentPlatform Class

public class CleaningAgentPlatform

{

        �public Dictionary<Guid, MasCleaningAgent> Directory { 

get; set; }

        public IEnumerable<MasCleaningAgent> Agents { get; set; }

        �public IEnumerable<MasCleaningAgent> Contractors { get; 

set; }

        public MasCleaningAgent Manager { get; set; }

        public CleaningTask Task { get; set; }

        �public CleaningAgentPlatform(IEnumerable<MasCleaning

Agent> agents, CleaningTask task)

        {

            Agents = new List<MasCleaningAgent>(agents);

            Directory = new Dictionary<Guid, MasCleaningAgent>();

            Task = task;

            foreach (var cleaningAgent in Agents)

            {

                Directory.Add(cleaningAgent.Id, cleaningAgent);

                cleaningAgent.Platform = this;

            }

            DecideRoles();

        }
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        public void DecideRoles()

        {

            // Manager Role

            �Manager = Agents.First(a => a.CleanedCells.Count == 

Agents.Max(p => p.CleanedCells.Count));

            Manager.Role = ContractRole.Manager;

            // Contract Roles

            �Contractors = new List<MasCleaningAgent>(Agents.

Where(a => a.Id != Manager.Id));

            foreach (var cleaningAgent in Contractors)

                cleaningAgent.Role = ContractRole.Contractor;

            (Contractors as List<MasCleaningAgent>).Add(Manager);

        }

    }

This class contains the following properties or fields:

•	 Directory: dictionary containing the ID of the agent 

and a reference to it as key–value pairs

•	 Agents: IEnumerable containing the set of agents

•	 Contractors: IEnumerable containing the set of 

contractors in a Contract Net

•	 Manager: reference to the manager in a Contract Net

•	 Task: cleaning task to be executed

This class contains two functions: a constructor and the 

DecideRoles() method. In the constructor, we initialize every property 

and then add every agent to the directory, referencing the Platform 

property of agents to point to this platform. The DecideRoles() method 

decides which agent is selected as manager, while the rest are regarded as 

contractors. In this case, the criteria for manager selection is to select the 

agent with the highest number of cells cleaned; this is equivalent to saying 

“Pick the most experienced agent, the one who has worked the most.”

Chapter 7  Cleaning Agents: A Multi-Agent System Problem



256

Note I n this case, we also add the manager to the list of contractors 
because we would like him not only to direct the operation but also to 
take part in it and clean a range of columns of the room as any other 
contractor would do.

�Contract Net
The Contract Net task-sharing mechanism is represented by the ContractNet 

class; the role assumed by each agent is defined in the ContractRole enum. 

Both are described in Listing 7-3.

Listing 7-3.  ContractNet Class

public class ContractNet

{

        �public static IEnumerable<string> 

Announcement(CleaningTask cleaningTask, 

MasCleaningAgent manager, IEnumerable<MasCleaningAgent> 

contractors, FipaAcl language)

        {

            var tasks = cleaningTask.SubTasks;

            foreach (var contractor in contractors)

            {

                foreach (var task in tasks)

                    �language.Message(Performative.Cfp,  

manager.Id.ToString(),  

contractor.Id.ToString(), task);

            }
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            return tasks;

        }

        �public static void Bidding(IEnumerable<string> tasks, 

IEnumerable<MasCleaningAgent> contractors)

        {

             foreach (var contractor in contractors)

                contractor.Bid(tasks);

        }

        �public static void Awarding(List<string> messages, 

MasCleaningAgent manager, IEnumerable<MasCleaningAgent> 

contractors, CleaningTask task, FipaAcl language)

        {

            �var agentsAssigned = new 

List<Tuple<MasCleaningAgent, Tuple<int, int>>>();

            �var messagesToDict = messages.ConvertAll(FipaAcl.

MessagesToDict);

            // Processing bids

            foreach (var colRange in task.SubDivide)

            {

                var firstCol = colRange.Item1;

                var secondCol = colRange.Item2;

               // Bids for first column

                �var bidsFirstCol = new List<KeyValuePair 

<MasCleaningAgent, List<Tuple<double, 

Tuple<int, int>>>>>();

// Bids for second column

 var bidsSecondCol = �new List<KeyValuePair<MasCleaningAgent, 

List<Tuple<double, Tuple<int, int>>>>>();
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                foreach (var contractor in contractors)

                {

// Skip agents that have been already assigned

                    �if (agentsAssigned.Exists(tuple => tuple.

Item1.Id == contractor.Id))

                        continue;

                    var c = contractor;

// Get messages from current contractor

                    �var messagesFromContractor = messagesToDict.

FindAll(m => m.ContainsKey("from") && 

m["from"] == c.Id.ToString());

                    �var bids = FipaAcl.GetContent(messagesFrom

Contractor);

// Bids to first column in the range column

var bidsContractorFirstCol = �bids.FindAll(b => b.Item2.Item2 == 

firstCol);

// Bids to second column in the range column

var bidsContractorSecondCol = �bids.FindAll(b => b.Item2.Item2 

== secondCol);

                    if (bidsContractorFirstCol.Count > 0)

                    {

                        bidsFirstCol.Add(

                            �new KeyValuePair<MasCleaningAgent, 

List<Tuple<double, Tuple<int, 

int>>>>(contractor,

                                      bidsContractorFirstCol));

                    }

                    if (bidsContractorSecondCol.Count > 0)

                    {
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                        bidsSecondCol.Add(

                            �new KeyValuePair<MasCleaningAgent, 

List<Tuple<double, Tuple<int, 

int>>>>(contractor,

                                    bidsContractorSecondCol));

                    }

                }

                �// Sorts to have at the beginning of the list 

the best bidders (closest agents)

                bidsFirstCol.Sort(Comparison);

                bidsSecondCol.Sort(Comparison);

                �var closestAgentFirst = bidsFirstCol.

FirstOrDefault();

                �var closestAgentSecond = bidsSecondCol.

FirstOrDefault();

                // Sorts again to find closest end

                if (closestAgentFirst.Value != null)

                    closestAgentFirst.Value.Sort(Comparison);

                if (closestAgentSecond.Value != null)

                    closestAgentSecond.Value.Sort(Comparison);

                // Assigns agent to column range

                �if (closestAgentFirst.Value != null && 

closestAgentSecond.Value != null)

                {

                    �if (closestAgentFirst.Value.First().Item1 >= 

closestAgentSecond.Value.First().Item1)

                        �agentsAssigned.Add(new 

Tuple<MasCleaningAgent, Tuple<int, 

int>>(closestAgentSecond.Key,

                        closestAgentSecond.Value.First().Item2));

Chapter 7  Cleaning Agents: A Multi-Agent System Problem



260

                    else

                        �agentsAssigned.Add(new 

Tuple<MasCleaningAgent, Tuple<int, 

int>>(closestAgentFirst.Key,

                        closestAgentFirst.Value.First().Item2));

                }

                else if (closestAgentFirst.Value == null)

                    �agentsAssigned.Add(new 

Tuple<MasCleaningAgent, Tuple<int, 

int>>(closestAgentSecond.Key,

                    closestAgentSecond.Value.First().Item2));

                else

                    �agentsAssigned.Add(new 

Tuple<MasCleaningAgent, Tuple<int, 

int>>(closestAgentFirst.Key,

                    closestAgentFirst.Value.First().Item2));

            }

                         �// Transmits the accepted proposal for 

each agent.

            foreach (var assignment in agentsAssigned)

                �language.Message(Performative.Accept, manager.

Id.ToString(),

                    �assignment.Item1.Id.ToString(), "clean(" + 

assignment.Item2.Item1 + "," + assignment.

Item2.Item2 + ")");

        }

        �private static int Comparison(Tuple<double, Tuple<int, 

int>> tupleA, Tuple<double, Tuple<int, int>> tupleB)

        {

            if (tupleA.Item1 > tupleB.Item1)

                return 1;
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            if (tupleA.Item1 < tupleB.Item1)

                return -1;

            return 0;

        }

        �private static int Comparison(KeyValuePair<MasCleaning 

Agent, List<Tuple<double, Tuple<int, int>>>> 

bidsAgentA, KeyValuePair<MasCleaningAgent, 

List<Tuple<double, Tuple<int, int>>>> bidsAgentB)

        {

            �if (bidsAgentA.Value.Min(p => p.Item1) > 

bidsAgentB.Value.Min(p => p.Item1))

                return 1;

            �if (bidsAgentA.Value.Min(p => p.Item1) < 

bidsAgentB.Value.Min(p => p.Item1))

                return -1;

            return 0;

        }

    }

    public enum ContractRole

    {

        Contractor, Manager, None

    }

This class contains the following static methods:

•	 Announcement(): a message is sent from the manager 

to every contractor, announcing every task to be 

completed

•	 Bidding(): each agent is asked for a bid that considers 

the set of tasks to be completed. Bidding on the 

agent side is executed in the Bid() method of the 

MasCleaningAgent class.
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•	 Awarding(): method executing the final stage of the 

task-sharing mechanism. To award a range of columns 

x - x' to a contractor (agent), it calculates the distance of 

every agent to the four ends of that column range—i.e., 

cells(0, x), (n - 1, x) at the first column and cells(0, x'), 

(n - 1, x') at the second column—and then awards that 

column range to the agent that is the closest (minimum 

Block or Manhattan distance) to any of the four ends. 

The bid of the agent contains a tuple<int, int> 

defining the closest end and a double representing the 

distance to that end. Refer to the code comments for 

more details.

•	 Comparison(): Both methods relate to sorting a list of 

elements by considering a double value that indicates 

its distance to a column.

Every method was created as a service of the class; in other words, as a 

static method that requires no instance of the class to be called.

�FIPA-ACL
In order to communicate cleaning-related issues among agents, we created 

a tiny language for processing these types of commands. This mini-language 

resembles the FIPA language and contains an inner language that merely 

includes the clean(x, y) statement telling agents to clean all columns from 

x to y. The FipaAcl class and the Performative enum are both illustrated in 

Listing 7-4.
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Listing 7-4.  FipaACL Class

public class FipaAcl

{

        �public AgentCommunicationServiceClient Communication { 

get; set; }

        �public FipaAcl(AgentCommunicationServiceClient 

communication)

        {

            Communication = communication;

        }

        �public void Message(Performative p, string senderId, 

string receiverId, string content)

        {

            switch (p)

            {

                case Performative.Accept:

                    �ThreadPool.QueueUserWorkItem(delegate { 

Communication.Send(senderId, receiverId, 

"accept[content:" + content + ";]"); });

                    break;

                case Performative.Cfp:

                    �ThreadPool.QueueUserWorkItem(delegate { 

Communication.Send(senderId, receiverId, 

"cfp[content:" + content + ";]"); });

                    break;
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                case Performative.Proposal:

                    �ThreadPool.QueueUserWorkItem(delegate { 

Communication.Send(senderId, receiverId, 

"proposal[from:" + senderId + ";content:" + 

content + "]"); });

                    break;

            }

        }

        public static string GetPerformative(string task)

        {

            return task.Substring(0, task.IndexOf('['));

        }

        public static string GetInnerMessage(string task)

        {

            �return task.Substring(task.IndexOf('[') + 1,  

task.LastIndexOf(']') - task.IndexOf('[') - 1);

        }

        �public static Dictionary<string, string> 

MessageToDict(string innerMessage)

        {

            var result = new Dictionary<string, string>();

            var items = innerMessage.Split(';');

            var contentItems = new List<string>();

            foreach (var item in items)

                if (!string.IsNullOrEmpty(item))

                    contentItems.AddRange(item.Split(':'));

            for (int i = 0; i < contentItems.Count; i += 2)

                result.Add(contentItems[i], contentItems[i + 1]);

            return result;

        }
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        �public static Dictionary<string, string> 

MessagesToDict(string message)

        {

            return MessageToDict(GetInnerMessage(message));

        }

        �public static List<Tuple<double, Tuple<int, int>>> 

GetContent(List<Dictionary<string, string>> 

messagesFromContractor)

        {

            �var result = new List<Tuple<double, Tuple<int, 

int>>>();

            foreach (var msg in messagesFromContractor)

{

                var content = msg["content"];

                var values = content.Split(',');

                �result.Add(new Tuple<double, Tuple<int, 

int>>(double.Parse(values[0]),

                    �new Tuple<int, int>(int.Parse(values[1]), 

int.Parse(values[2]))));

}

            return result;

        }

    }

    public enum Performative

    {

        Accept, Cfp, Inform, Proposal

    }
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Notice that every agent communication is executed using the 

QueueUserWorkItem method of the ThreadPool class. Starting a new 

thread can be a very expensive operation; therefore, we use the thread-

pool facilities to reuse threads and reduce cost. In this manner, we queue 

methods for execution under different threads that are drawn from the 

thread pool.

The FipaACL class includes an AgentCommunicationServiceClient 

communication property (recall from Chapter 6 that 

AgentCommunicationServiceClient is the proxy that establishes 

communication between client and service) that is used to transmit 

messages to other agents. FipaACL incorporates the following methods:

•	 Message(): depending on the type of performative, 

creates and sends a new message using the senderId, 

receiverId, and content strings provided as 

arguments.

•	 GetPerformative(): gets the performative of the 

message provided as argument; e.g., for a message such 

as cfp[content: clean(0,2)] the performative would 

be cfp

•	 GetInnerMessage(): gets the inner message; e.g., if 

the entire message is something like cfp[from: 2312; 

content: clean(0,2)] then from: 2312; content: 

clean(0,2) represents the inner message

•	 MessageToDict(): assuming an inner message is 

supplied as argument, it translates that inner message 

into a dictionary; e.g., from an inner message such 

as from: 2312; content: clean(0,2) the resulting 

dictionary would be { 'from': 2312, 'content': 

'clean(0,2)' }
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•	 MessagesToDict(): gets the inner message of a 

message submitted as an argument and returns the 

dictionary resulting from the MessageToDict() method

•	 GetContent(): gets the set of values contained within 

the content label of the inner message. It assumes each 

message corresponds to a contractor’s bid; therefore, it 

contains three elements: a distance double and a pair 

of integers matching a column range; e.g., 2.0, 1, 1 

will add the tuple <2.0, <0, 2>>

The only components of the MAS cleaning example presented 

in this chapter that use the FipaAcl class are the ContractNet and 

MasCleaningAgent classes; the latter will be the topic of the next section.

�MAS Cleaning Agent
Agents in the cleaning MAS example are objects of the MasCleaningAgent 

class, which contains the set of properties, fields, and constructor shown in 

Listing 7-5.

Listing 7-5.  MasCleaningAgent Class, Including Fields, Properties, 

and Constructor

public class MasCleaningAgent

    {

        public Guid Id { get; set; }

        public int X { get; set; }

        public int Y { get; set; }

        public bool TaskFinished { get; set; }

        public Timer ReactionTime { get; set; }

        public FipaAcl Language { get; set; }
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        public CleaningAgentPlatform Platform { get; set; }

        public List<Tuple<int, int>> CleanedCells;

        public ContractRole Role { get; set; }

        public Color Color;

        public bool AwaitingBids { get; set; }

        public bool AwaitingTaskAssignment { get; set; }

        public bool AnnouncementMade { get; set; }

        public bool TaskDistributed { get; set; }

        public Plan Plan { get; set; }

        public bool InCleaningArea { get; set; }

        public List<Tuple<int, int>> AreaTobeCleaned;

        private readonly int[,] _room;

        private readonly Form _gui;

        private Messaging _messageBoardWin;

        �private readonly List<Tuple<double, Tuple<int,  

int>>> _wishList;

        �public MasCleaningAgent(Guid id, int[,] room, Form gui, 

int x, int y, Color color)

        {

Id = id;

 X = x;

Y = y;

 _room = room;

CleanedCells = new List<Tuple<int, int>>();

Role = ContractRole.None;

_wishList = new List<Tuple<double, Tuple<int, int>>>();

Color = color;

 _gui = gui;

Run();

        }

}
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This class exposes the following properties and fields:

•	 Id: represents a unique identifier for the agent

•	 X: integer representing the x-coordinate of the agent in 

the room

•	 Y: integer representing the y-coordinate of the agent in 

the room

•	 TaskFinished: Boolean value indicating whether the 

task has been completed

•	 ReactionTime: timer defining the reaction time of the 

agent; i.e., the frequency by which it executes an action

•	 Language: mini-Fipa language represented by the 

FipaAcl class that will be used for parsing and 

transmitting messages

•	 Platform: agent platform used for different services 

(agent location) and for deciding the role (manager 

or contractor) of each agent. It’s represented by the 

CleaningAgentPlatform class.

•	 CleanedCells: list of Tuple<int, int> indicating the 

cells on the terrain that have already been cleaned by 

the agent

•	 Role: role assumed by the agent (contractor, manager, 

none)

•	 Color: color used by the agent on the room; i.e., on the 

Windows Forms picture box representing the room

•	 AwaitingBids: Boolean value indicating whether the 

agent is awaiting a bid (for the manager role)
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•	 AwaitingTaskAssignment: Boolean value indicating 

whether the agent is awaiting a task assignment (for the 

contractor role)

•	 AnnouncementMade: Boolean value indicating whether an 

announcement has been made (for the manager role)

•	 TaskDistributed: Boolean value indicating whether 

tasks have been distributed (for the manager role)

•	 Plan: instance of the Plan class used for executing 

path-finding algorithms. This is the Plan class 

presented in Chapter 4, “Mars Rover.”

•	 InCleaningArea: Boolean value indicating whether the 

agent is in the cleaning area assigned by the manager 

after a Contract Net task-sharing mechanism has been 

executed

•	 AreaTobeCleaned: list of cells the agent must clean

•	 _room: reference to the integer matrix representing the 

room to be cleaned. A value greater than 0 in any cell 

represents dirt; a value of 0 indicates the cell is clean.

•	 _gui: reference to the Windows Forms object that 

represents the room

•	 _messageBoardWin: reference to the Windows Forms 

representing the message board where all messages 

received by the agent will be displayed

•	 _wishList: list of Tuple<double, Tuple<int, int>> 

representing the wish list or bid list (for the contractor 

role) of the agent. The second item indicates a cell of 

the room, and the first item indicates the distance to 

that cell. This field is used in the bidding process to find 

the closest column end.
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In the constructor, we initialize various fields and properties and 

eventually call the Run() method (Listing 7-6), which will set up everything 

to start running the agent.

Listing 7-6.  Run() Method Starts the Agent by Enabling the Timer 

and Connecting the Tick Event to the ReactionTimeOnTick() Method

private void Run()

        {

_messageBoardWin = new Messaging (Id.ToString())

                                      {

                                        �StartPosition = 

FormStartPosition.

WindowsDefaultLocation,

                                        BackColor = Color,

                                        �Size = new Size 

(300, 300),

                                        Text = Id.ToString(),

                                        Enabled = true

                                      };

            Language = new FipaAcl(_messageBoardWin.Proxy);

            _messageBoardWin.Show();

            �ReactionTime = new Timer { Enabled = true,  

Interval = 1000 };

            ReactionTime.Tick += ReactionTimeOnTick;

        }

In the Run() method we initialize the _messageBoardWin variable as an 

instance of the Messaging class (Form class that will contain all messages 

received by the agent). We also initialize the Language property, passing as 

an argument the proxy created in the Messaging class. Finally, the Timer  
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of the agent is enabled and subscribed to the ReactionTimeOnTick  

(Listing 7-7). This method, which will be executed every second, causes 

the agent to take action.

Listing 7-7.  ReactionTimeOnTick() Method Executed

private void ReactionTimeOnTick(object sender, EventArgs 

eventArgs)

{

            // There's no area assigned for cleaning

            if (AreaTobeCleaned == null)

            {

                �if (Role == ContractRole.Manager && 

AnnouncementMade && !TaskDistributed)

                {

                    �ContractNet.Awarding(_messageBoardWin.

Messages, Platform.Manager, Platform.

Contractors, Platform.Task, Language);

                    TaskDistributed = true;

                }

                �if (Role == ContractRole.Manager && 

!AnnouncementMade)

                {

                    �ContractNet.Announcement(Platform.Task, 

Platform.Manager, Platform.Contractors,

                                             Language);

                    AnnouncementMade = true;

                    Thread.Sleep(2000);

                }

                �if (Role == ContractRole.Contractor && 

AwaitingTaskAssignment || Role == ContractRole.

Manager && TaskDistributed)

Chapter 7  Cleaning Agents: A Multi-Agent System Problem



273

                {

                    �AreaTobeCleaned = SetSocialLaw 

(_messageBoardWin.Messages);

                }

                �if (Role == ContractRole.Contractor && 

!AwaitingTaskAssignment)

                {

                    Thread.Sleep(2000);

                    �ContractNet.Bidding(_messageBoardWin.

Messages, Platform.Contractors);

                    AwaitingTaskAssignment = true;

                }

            }

            else

            {

                if (!InCleaningArea)

                {

                    if (Plan == null)

                    {

                        �Plan = new Plan(TypesPlan.PathFinding, 

this);

                        �Plan.BuildPlan(new Tuple<int, int>(X, Y), 

AreaTobeCleaned.First());

                    }

                    else if (Plan.Path.Count == 0)

                        InCleaningArea = true;

                }

                Action(Perceived());

            }

            _gui.Refresh();

}
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Notice that we put the thread to sleep for 2000 milliseconds to wait for 

certain operations of other agents to complete. This time may need to be 

increased as the cardinality of the set of agents increases.

The ReactionTimeOnTick() method uses a logic that depends on two 

scenarios: the agent has a cleaning area assigned or no area has been 

assigned. If no area has been assigned, that indicates no task sharing has 

been accomplished among agents, and so a Contract Net mechanism must 

be started. The different scenarios for when no cleaning area has been 

defined for the agent are the following:

•	 If the agent is a manager and an announcement has 

been made and tasks have not been distributed yet 

then the agent must enter an awarding phase.

•	 If the agent is a manager and no announcement 

has been made then the agent must enter an 

announcement phase.

•	 If the agent is a contractor and is awaiting a task 

assignment or the agent is a manager and tasks have been 

distributed then it should assign an area to be cleaned by 

setting a social law; we will detail this social law soon.

•	 If the agent is a contractor and is awaiting a task 

assignment then it must enter a bidding phase.

The bidding process of the agent follows the logic described by the 

code shown in Listing 7-8.

Listing 7-8.  Bid Method of the Agent

public void Bid(IEnumerable<string> tasks)

        {

            var n = _room.GetLength(0);

            _wishList.Clear();
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            foreach (var task in tasks)

            {

                var innerMessage = FipaAcl.GetInnerMessage(task);

                �var messageDict = FipaAcl.

MessageToDict(innerMessage);

                var content = messageDict["content"];

                �var subtask = content.Substring(0, content.

IndexOf('('));

                var cols = new string[2];

                switch (subtask)

                {

                    case "clean":

                        �var temp = content.Substring(content.

IndexOf('(') + 1, content.Length - 

content.IndexOf('(') - 2);

                        cols = temp.Split(',');

                        break;

                }

                �var colRange = new Tuple<int, int>(int.

Parse(cols[0]), int.Parse(cols[1]));

                �for (var i = colRange.Item1; i < colRange.

Item2; i++)

                {

                    // Distance to extreme points for each column

                    var end1 = new Tuple<int, int>(0, i);

                    var end2 = new Tuple<int, int>(n - 1, i);

                    �var dist1 = ManhattanDistance(end1, new 

Tuple<int, int>(X, Y));
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                    �var dist2 = ManhattanDistance(end2, new 

Tuple<int, int>(X, Y));

                    �_wishList.Add(new Tuple<double, Tuple<int, 

int>>(dist1, end1));

                    �_wishList.Add(new Tuple<double, Tuple<int, 

int>>(dist2, end2));

                }

            }

            _wishList.Sort(Comparison);

            foreach (var bid in _wishList)

                �Language.Message(Performative.Proposal, 

Id.ToString(), Platform.Manager.Id.ToString(), 

bid.Item1 + "," + bid.Item2.Item1 + "," + bid.

Item2.Item2);

        }

The Bid() method receives the list of tasks as input, parses every task 

message contained in the list, and then, having the column range detailed 

in each incoming message task, finds the distance to the four possible 

column ends. Finally, it sorts the _wishList of all possible distances to 

column ends and transmits them (as proposals) to the manager ordered 

from lowest to highest.

When a cleaning area has been assigned, the agent must design a plan 

(path-finding technique from Chapter 4) to reach its cleaning area. Once in 

its cleaning area, the agent will follow a social law defined by the method 

illustrated in Listing 7-9.
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Listing 7-9.  SetSocialLaw() Method

private List<Tuple<int, int>> SetSocialLaw(List<string> messages)

{

            �if (!messages.Exists(m => FipaAcl.

GetPerformative(m) == "accept"))

                return null;

            �var informMsg = messages.First(m => FipaAcl.

GetPerformative(m) == "accept");

var content = FipaAcl.MessageToDict(FipaAcl.

GetInnerMessage(informMsg));

            var directive = content["content"];

var temp = directive.Substring(directive.IndexOf('(') + 1, 

directive.Length - directive.IndexOf('(') - 2);

var pos = temp.Split(',');

var posTuple = new Tuple<int, int>(int.Parse(pos[0]), int.

Parse(pos[1]));

var colsTuple = new Tuple<int, int>(posTuple.Item2, posTuple.

Item2 + _room.GetLength(1) / Platform.Directory.Count - 1);

            var result = new List<Tuple<int, int>>();

            var startRow = _room.GetLength(0) - 1;

            var dx = -1;

            // Generate path to clean

            �for (var col = colsTuple.Item1; col <= colsTuple.

Item2; col++)

            {

                �startRow = startRow == _room.GetLength(0) - 1 ? 

0 : _room.GetLength(0) - 1;

                dx = dx == -1 ? 1 : -1;
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                �for (var row = startRow; row < _room.GetLength(0) 

&& row >= 0; row+=dx)

                    result.Add(new Tuple<int, int>(row, col));

            }

            return result;

    }

While in their cleaning area, and for the purpose of having an ordered, 

uniform way of executing their cleaning task, the SetSocialLaw() method 

will define the path followed by agents during their cleaning process; this 

social law is illustrated in Figure 7-2.

Figure 7-2.  Social law followed by agents

If there’s an active plan (for going to the designated cleaning area) 

then a move from this plan is executed and deleted from the plan’s path. 

According to the percepts received (clean, dirty), the agent will choose to 

update its state or clean the dirty cell. If the area to be cleaned still contains 

some unvisited cells, then we move to that cell. If the area to be cleaned 

has no more cells, then the task can be considered finished. This is the 

process executed by the Action() method seen in Listing 7-10.
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Listing 7-10.  Action() Method

public void Action(List<Tuple<TypesPercept, Tuple<int, int>>> 

percepts)

        {

            if (Plan.Path.Count > 0)

            {

                var nextAction = Plan.NextAction();

                �var percept = percepts.Find(p => p.Item1 == 

nextAction);

                Move(percept.Item1);

                return;

            }

            �if �(percepts.Exists(p => p.Item1 == TypesPercept.

Clean))

                UpdateState();

            �if (percepts.Exists(p => p.Item1 == TypesPercept.

Dirty))

            {

                Clean();

                return;

            }

            if (AreaTobeCleaned.Count > 0)

            {

                var nextCell = AreaTobeCleaned.First();

                AreaTobeCleaned.RemoveAt(0);

                Move(GetMove(nextCell));

            }
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            else

            {

                if (!TaskFinished)

                {

                    TaskFinished = true;

                    MessageBox.Show("Task Finished");

                }

            }

        }

Other methods of the MasCleaningAgent class, such as Clean(), 

IsDirty(), Move(), GetMove(), UpdateState(), ManhattanDistance(), 

MoveAvailable(), and Perceived() share a high degree of similitude with 

methods of the same name defined in the example from Chapter 2; thus, 

we will not be including their codes in this chapter. For further reference 

please consult the source code associated with this book.

�GUI
As mentioned before, we will include in the project two Windows Forms 

applications—one for showing a list of messages received by the agent and 

another for graphically representing the room. The Messaging class of the 

message board acts as a client; it incorporates the code presented in the 

last chapter in the client’s Windows Forms application. The service in this 

case is called from a console application in similar fashion to the one we 

detailed in Chapter 6. Even though the code of the Room class is merely a 

Windows Forms code, we present it in Listing 7-11 to serve as reference.
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Listing 7-11.  Room Class

public partial class Room : Form

{

        public List<MasCleaningAgent> CleaningAgents;

        private int _n;

        private int _m;

        private int[,] _room;

        public Room(int n, int m, int[,] room)

        {

            _n = n;

            _m = m;

            _room = room;

            CleaningAgents = new List<MasCleaningAgent>();

            InitializeComponent();

        }

        �private void RoomPicturePaint(object sender, 

PaintEventArgs e)

        {

            var pen = new Pen(Color.Wheat);

            var cellWidth = roomPicture.Width / _m;

            var cellHeight = roomPicture.Height / _n;

            // Draw room grid

            for (var i = 0; i < _m; i++)

                �e.Graphics.DrawLine(pen, new Point 

(i * cellWidth, 0), new Point(i * cellWidth,  

i * cellWidth + roomPicture.Height));
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            for (var i = 0; i < _n; i++)

                �e.Graphics.DrawLine(pen, new Point(0, i * 

cellHeight), new Point(i * cellHeight + 

roomPicture.Width, i * cellHeight));

            // Draw agents

            for (var i = 0; i < CleaningAgents.Count; i++)

                �e.Graphics.FillEllipse(new SolidBrush 

(CleaningAgents[i].Color), CleaningAgents[i].Y 

* cellWidth, CleaningAgents[i].X * cellHeight, 

cellWidth, cellHeight);

            // Draw Dirt

            for (var i = 0; i < _n; i++)

            {

                for (var j = 0; j < _m; j++)

                    if (_room[i, j] > 0)

                        �e.Graphics.DrawImage(new Bitmap("rock-

transparency.png"), j * cellWidth, i * 

cellHeight, cellWidth, cellHeight);

            }

        }

        private void RoomPictureResize(object sender, EventArgs e)

        {

            Refresh();

        }

}

In the Room class, we implemented the Paint event and the 

PictureResize event of the PictureBox, where all elements (dirt, agents) 

are graphically represented. Agents are drawn as ellipses of a color defined 
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by the Color agent property, and dirt is drawn as images. When agents 

clean dirty cells, the dirt will vanish (image no longer painted), and the 

global task will end when no cell contains a picture of dirt.

�Running the Application
Now that we’ve finished building an MAS program that incorporates all 

topics described in the preceding three chapters, let us run and look at the 

complete application and how the agents cooperate, coordinate, and are 

actually capable of cleaning an n x m room. Remember we are assuming 

the number of columns is divisible by the number of agents, which 

simplifies our planning process. The reader can easily change this strategy, 

transforming it into a more general strategy—one that will allow him to 

plan the cleaning task for any number of agents.

We embed the WCF service in the console application where we also 

declare all agents, platform, and the room GUI (Listing 7-12).

Listing 7-12.  Setting Up and Starting the Application in a Console 

Application Project

var room = new [,]

                           {

                               {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                               {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                               {0, 0, 0, 0, 0, 0, 1, 0, 0, 0},

                               {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                               {2, 0, 0, 1, 0, 0, 0, 0, 0, 0},

                               {0, 0, 0, 0, 0, 0, 0, 0, 0, 1},

                               {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                               {0, 0, 0, 0, 0, 0, 0, 1, 0, 0},

                               {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

                               {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

                           };
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            Application.EnableVisualStyles();

            Application.SetCompatibleTextRenderingDefault(false);

            const int N = 10;

            const int M = 10;

            var roomGui = new Room(N, M, room);

            // Starts the WCF service.

            InitCommunicationService();

var clAgent1 = �new MasCleaningAgent(Guid.NewGuid(), room, 

roomGui, 0, 0, Color.Teal);

            �var clAgent2 = new MasCleaningAgent(Guid.NewGuid(), 

room, roomGui, 1, 1, Color.Yellow);

            �var clAgent3 = new MasCleaningAgent(Guid.NewGuid(), 

room, roomGui, 0, 0, Color.Tomato);

            �var clAgent4 = new MasCleaningAgent(Guid.NewGuid(), 

room, roomGui, 1, 1, Color.LightSkyBlue);

            �var clAgent5 = new MasCleaningAgent(Guid.NewGuid(), 

room, roomGui, 1, 1, Color.Black);

roomGui.CleaningAgents = new List<MasCleaningAgent> { clAgent1, 

clAgent2, clAgent3, clAgent4, clAgent5 };

            �var platform = new CleaningAgentPlatform(roomGui.

CleaningAgents, new CleaningTask(M, roomGui.

CleaningAgents.Count));

            Application.Run(roomGui);

The InitCommunicationService() method contains the exact lines 

of code as in the agent service detailed in Chapter 6. The result is the one 

shown in Figure 7-3, where the MAS application starts by having all agents 

exchange messages in a Contract Net mechanism.
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Figure 7-3.  Agents exchanging messages in a Contract Net 
mechanism; messages received are shown in their Message Board 
windows
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Once an agreement has been reached and every agent is aware of 

its designated cleaning area, the cleaning process starts by following the 

social law previously described. When they complete their subtask, a 

message box with a “Task Finished” message is displayed (Figure 7-4). 

Each agent thread is put to sleep for a certain time while cleaning a unit of 

dirt from the room; that way we simulate the cleaning process as it would 

occur in real life.
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Figure 7-4.  Agents cleaning their designated area and displaying the 
“Task Finished” message once they have completed cleaning their area
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We have finally reached the closing stages of our cleaning agent MAS 

application. In this particular example, a 10 x 10 room was successfully 

cleaned by five agents, which distributed the global task of cleaning the 

entire room into subtasks of cleaning just portions of it; these portions 

were defined by column ranges. Moreover, communication via a WCF 

service resulted in a coordination and cooperation strategy. As occurred 

with the Mars Rover program from Chapter 4, the reader can use this 

example in an experimental application or improve it with new strategies 

or methods. The cleaning MAS developed in this book can serve as the 

foundation or base application for solving other problems that require a 

more efficient solution when various agents interact and collaborate.

�Summary
Chapter 7 ends for now the “Agents” topic of this book, the closing practical 

problem not only encompassing many of the points studied in Chapters 5 

and 6 but also going beyond the scope of detail included in those chapters 

to be the most thorough, precise chapter up to this point. Going back to 

the cleaning MAS application, you’ll notice that topics such as logic, first-

order logic, and agents are incorporated as inevitable components of a 

multi-agent program. In Chapter 8, we’ll begin describing an area that is 

deeply related to probability and statistics—the very interesting topic of 

simulation.
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CHAPTER 8

Simulation
Modeling is a basic tool of the human mind that provides us with the ability 

to create abstract versions of the world, or part of it. These abstract versions 

can embody a convenient, simplified representation of a situation, object, 

and so forth and can be used to find a solution to a given problem. Modeling 

involves imagination and creativity; it underlies our capacity to communicate, 

generalize, and express meaning or patterns in an intelligent manner.

It is usually accepted that modeling is a way of making decisions and 

predictions about the world and that the purpose of a model must be well 

defined and understood before the model is created. Models are typically 

classified as descriptive (they explain or describe the world) or prescriptive 

(they formulate optimal solutions to problems and are related to the area 

of optimization). Examples of models of the first type are maps, 3D objects 

created using computer graphics, or video games. Models of the latter type are 

heavily related to math and specifically to optimization; in these models, we 

define a set of constraints for a problem and a goal function to be optimized.

Every model possesses three basic features:

•	 Reference: It represents something, either from the real 

world or an imaginary world; e.g., building, city.

•	 Purpose: It has a logical intention with respect to that 

which it references; e.g. study, analysis.

•	 Cost-effectiveness: It is more effective to use the model 

than the reference, e.g. blueprint vs. real building, map 

vs. real city.
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Simulation is considered a variety of modeling whose purpose is 

comprehension, planning, prediction, and manipulation. It can be defined 

broadly as a behavioral or phenomenological approach to modeling; that 

is, a simulation is an active behavioral analog of its referent.

Note  Modeling is one of the most important processes that occurs 
in the human mind. When modeling we try to create abstract versions 
of our reality, simplifying it many times to help us solve a problem. 
Examples of models are maps (such as Google Maps), which 
represent abstract versions of the world.

�What Is Simulation?
As occurs with the logic and agent words (it seems like the AI community 

should get together and try to agree on several definitions), there’s no 

consensus on what the word simulation means. There is, however, a 

consensus on the fact that simulation is an imitative and dynamic type 

of modeling used to model phenomena that must be researched or 

understood for some reason.

When we implement a simulation as a computer program we obtain 

high flexibility; being in a programming-language environment means 

that in principle it is possible to refine, maintain, evolve, and extend 

a computer simulation in ways that are difficult to match in any other 

environment. Modern programming languages such as C# facilitate 

the development of modular data and program code, allowing new 

simulations to be built using pieces or modules of existing ones.

Computer simulation is usually divided into analytic and discrete-

event approaches. The analytic approach involves mathematical analysis 

and problems that can be understood or approximated from an analytic 
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perspective. For instance, if the reality being modeled can be accurately 

described by a set of differential equations (as in the flow of heat over a 

surface), analytic solutions for those equations can be used to generate the 

time-dependent behavior required for the simulation. The mathematical 

elegance of analytic simulation makes it in many scenarios cryptic and 

incomprehensible; by reducing reality to an abstract mathematical 

relationship the understanding required could get obscured. There are 

also cases in which analytic solutions are known but feasible means 

of computing these solutions are not available. Nonetheless, analytic 

simulations are indispensable in many situations, particularly when 

dealing with complex physical phenomena involving enormous numbers 

of relatively small and relatively similar entities whose individual 

interactions are relatively simple and whose aggregate interactions 

follow the “law of large numbers”; in other words, they permit statistical 

treatment. In such cases, analytic models often represent at least one form 

of complete understanding.

Note  There is a large class of problems that are not well enough 
understood to be handled analytically—i.e., for which no formal 
mathematical solutions exist. These problems are modeled and 
simulated by means of discrete-event simulations (DES).

When we have a system that is composed of several entities, and we 

understand each entity in isolation and also their pairwise interactions, 

but fail to comprehend the behavior and relations of the system as a whole, 

then we can make use of a simulation to encode the pairwise interactions 

and then run the simulation to try to approximate the relations or behavior 

of the system as a whole; one of these simulations is known as a  

discrete-event simulation (DES).
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�Discrete-Event Simulation
Time is essential in a DES, and the simulation can be seen as a succession 

of discrete events in which entities interact. Time advances in a discrete 

manner by means of fixed ticks or a simulated clock.

A DES is often the last alternative for modeling certain kinds of 

intractable problems. Its power lies in its capacity to expose patterns of 

interaction for the whole system that cannot be acknowledged in other 

ways. It’s frequently possible to enumerate and describe a collection of 

entities and their properties, relations, and immediate interactions without 

knowing where these interactions lead. If this knowledge is encoded in 

a DES simulation and the behavior of the resulting model is observed, 

then we could acquire a better understanding of the system and the 

interaction among its entities; this is typically the main purpose behind the 

development of a DES.

When developing a DES there are six key elements to consider:

•	 Objects, which represent elements of the system, 

have properties, relate to events, consume resources, 

and enter and leave queues over time. In an airport 

simulation (soon to be examined), objects would be 

airplanes. In a health-care system, objects might be 

patients or organs. In a warehouse system, objects 

would be products in stock. Objects are supposed 

to interact with each other or the system and can be 

created at any time during the simulation.

•	 Properties, which are features particular to every object 

(size, takeoff time, landing time, sex, price, and so 

on), are stored in some manner and help determine 

a response to a variety of scenarios that might arise 

during the simulation; such values can be modified.
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•	 Events, which are incidents that can occur in the system 

and are usually related to objects, can be things like 

the landing of an airplane, the arrival of a product to a 

warehouse, the appearance of a particular disease, and 

so forth. Events can occur and reoccur in any order.

•	 Resources, which are elements that provide services to 

objects (for example, a runway at the airport, storage 

cells in a warehouse, and doctors at a clinic), are finite. 

When a resource is occupied and an object needs it, 

the object must queue and wait until the resource is 

available. We’ll see such a scenario in the practical 

problem of this chapter.

•	 Queues, which are the means by which objects are 

organized to await the release of some resource that’s 

currently occupied, can have a maximum capacity 

and can have different calling approaches: First-In-

First-Out (FIFO), Last-In-First-Out (LIFO), or based 

on some criteria or priority (disease progression, fuel 

consumption, and the like).

•	 Time (as mentioned before and occurs in real life) is 

essential in simulation. To measure time, a clock is 

started at the beginning of the simulation and can be 

used to track particular periods of time (departure 

or arrival time, transportation time, time spent with 

certain symptoms, and so on). Such tracking is 

fundamental because it allows you to know when the 

next event should occur.

Discreet Events Simulation (DES) are closely related to probability and 

statistics because they model real-life scenarios where randomized and 

probabilistic events occur; DES must rely on probabilistic distributions, 

random variables, and other statistics and probability tools for events 

generation.
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�Probabilistic Distributions
A discrete random variable is one whose set of values is finite or countably 

infinite; in other words, its values can be listed as a finite or infinite 

sequence, such as 1, 2, 3 . . . and so on. The probability distribution for 

a discrete random variable is any graph, table, or formula that assigns a 

probability to each possible value. The sum of all probabilities must be 1, 

and each individual probability must be between 0 and 1. For example, 

when we throw a fair die (all sides equally probable), the discrete random 

variable X representing the possible outcomes will have the probability 

distribution X(1) = 1/6, X(2) = 1/6, …, X(6) = 1/6. All sides are equally 

probable, so the assigned probability for every value of the random 

variable is 1/6.

Parameter μ will indicate the mean (expected value) in their 

corresponding distributions. The mean represents the value that the 

random variable takes on average. In other words, it’s the sum E=[(each 

possible outcome) × (probability of that outcome)], where E denotes the 

mean. In the case of the die, the mean would be E = 1/6 + 2/6 + 3/6 + 4/6 +  

5/6 + 6/6 = 3.5. Notice that the result 3.5 is actually halfway between all 

possible values the die can take; it’s the expected value when the die is 

rolled a large number of times.

Parameter σ2 will indicate the variance of the distribution. Variance 

represents the dispersion of possible values of the random variable; it’s 

always non-negative. Small variances (close to 0) indicate values are close 

to each other and the mean; high variances (close to 1) indicate great 

distance among values and from the mean.

Poisson is a discrete distribution expressing probabilities concerning 

the number of events per time unit (Figure 8-1). It’s usually applied when 

the probability of an event is small and the number of opportunities for its 

occurrence is large. The number of misprints in a book, airplanes arriving 

at an airport, cars arriving at traffic lights, and deaths per year in a given 

age group are all examples of applications of the Poisson distribution.
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An exponential distribution expresses time between events in a Poisson 

process (Figure 8-2). For instance, if you’re dealing with a Poisson process 

describing the number of airplanes arriving at an airport during a certain 

time then you may be interested in a random variable that would indicate 

how much time passed before the first plane arrived. An exponential 

distribution can serve this purpose, and it could also be applied to physics 

processes; for example, to represent the lifetime of particles where the λ 

parameter would indicate the rate at which the particle ages.

Figure 8-1.  Poisson distribution

Figure 8-2.  Exponential distribution
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The normal distribution describes a probability that converges around 

a central value, no bias left or right, as shown in Figure 8-3. Normal 

distributions are symmetric and possess bell-shaped density curves with 

a single peak at the mean. Fifty percent of the distribution lies to the left of 

the mean and fifty percent to the right. The standard deviation indicates 

the spread or belt of the bell curve; the smaller the standard deviation the 

more concentrated the data. Both the mean and the standard deviation 

must be defined as parameters of the normal distribution. Many natural 

phenomena strongly follow a normal distribution: blood pressure, people’s 

height, errors in measurements, and many more.

Figure 8-3.  Normal distribution

So far we have described what a DES is, its components, and some of 

the most important probability distributions that can be applied for event 

time-generation in this type of simulation. In the next section, we will start 

looking at a practical problem, where we will see how to put all the pieces 

together in an airport simulation example.
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�Practical Problem: Airport Simulation
Let’s imagine a scenario in which we would like to simulate the operation 

of a five-runway airport where airplanes transporting a certain number of 

passengers arrive, spend some time at the airport to refuel, and eventually 

depart in a timeframe that depends, among others, on the probability that 

the airplane might have gotten broken up. This is the airport simulation 

that we will be implementing in this chapter. The IDistribution, Poisson, 

and Continuous classes (interfaces) seen in future code are part of the 

MathNet.Numerics package.

The time between arrival to the airport of one plane and another 

distributes as a Poisson function with a lambda parameter specified by 

Table 8-1.

Table 8-1.  Arrivals of Airplanes at the 

Airport According to Timeframes

Time Lambda

06:00–14:00 7 mins

14:00–22:00 10 mins

22:00–06:00 20 mins

When an airplane arrives at the airport it lands on an available runway, 

selecting it uniformly from any of the available runways. If there’s no 

runway available, the airplane is enqueued into a line of airplanes asking 

permission to land. Once the airplane finally lands, it processes its cargo 

in an amount of time that distributes by an exponential function whose 

parameter gets its value by considering the number of passengers traveling 

on the plane, as shown in Table 8-2.
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While an airplane is processing its cargo, it’s considered to be 

occupying the runway. An airplane can get broken down with a probability 

of 0.15, in which case the reparation will distribute by an exponential 

function with parameter lambda = 80 mins.

In order to start analyzing the code of our airport simulation, let’s 

consider the Airplane class as described in Listing 8-1.

Listing 8-1.  Airplane Class

public class Airplane

    {

        public Guid Id { get; set; }

        public intPassengersCount{ get; set; }

        public double TimeToTakeOff{ get; set; }

        public intRunwayOccupied{ get; set; }

        public bool BrokenDown{ get; set; }

        public Airplane(int passengers)

        {

            Id = Guid.NewGuid();

PassengersCount = passengers;

RunwayOccupied = -1;

        }

    }

Table 8-2.  Time to Process Cargo for Any 

Airplane and Dependant on Number of 

Passengers

Passengers Lambda

0–150 50 mins

150–300 60 mins

300–450 75 mins
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The Airplane class contains the following properties:

•	 Id: It’s initialized in the constructor and will uniquely 

identify every airplane.

•	 PassengersCount: defines the number of passengers in 

the airplane

•	 TimeToTakeOff: defines the time (in minutes) at which 

the airplane is supposed to take off from the landing 

strip

•	 RunwayOccupied: identifies whether an airplane is 

occupying a runway at the airport, and, if so, this 

property matches the index of the runway being 

occupied. When its value is less than 0 it means the 

airplane is not occupying any runway.

•	 BrokenDown: has value True if the airplane has broken 

down, False otherwise

In Listing 8-2 we can see the AirportEvent<T> abstract class, which 

will serve as the parent of the other three classes representing different 

events taking place in the AirportSimulation. The intention is to shorten 

the code, compacting all lines that can be logically compacted or included 

in one single parent class, thus taking advantage of inheritance in C#.

Listing 8-2.  AirportEvent<T> Abstract Class

public abstract class AirportEvent<T> where T: IComparable

 {

        protected double[] Parameters;

        protected List<Tuple<T, T>> Frames;

        public double[] DistributionValues;

        public List<IDistribution> Distributions;
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        protected AirportEvent(params double[] lambdas)

        {

            Distributions = new List<IDistribution>();

DistributionValues = new double[lambdas.Length];

            Frames = new List<Tuple<T, T>>();

            Parameters = lambdas;

        }

        �public virtual void SetDistributionValues(Distribution

Type type)

        {

foreach (var lambda in Parameters)

            {

                switch (type)

                {

                    case DistributionType.Poisson:

Distributions.Add(new Poisson(lambda));

                        break;

                    case DistributionType.Exponential:

Distributions.Add(new Exponential(lambda));

                        break;

                }

            }

            // Sampling distributions

            for (vari = 0; i<Frames.Count; i++)

DistributionValues[i] = type == DistributionType.Poisson

                                        �? ((Poisson)

Distributions[i]).Sample()

                                        �: (1 - ((Exponential) 

Distributions[i]).

Sample()) * 

Parameters[i];

        }
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        public virtual double GetEvtFrequency(T elem)

        {

            for (vari = 0; i<Frames.Count; i++)

            {

                �if (elem.CompareTo(Frames[i].Item1) >= 0 

&&elem.CompareTo(Frames[i].Item2) < 0)

                    return DistributionValues[i];

            }

            return -1;

        }

    }

    public enumDistributionType

    {

        Exponential, Poisson

    }

Note  In the AirportEvent<T> class we are requiring, by use of 
the where keyword, that the T parameter be of type IComparable. 
We need this prerequisite to be able to compare them later in the 
most generic way possible.

The AirportEvent<T> class includes the following properties:

•	 Parameters: an array of doubles storing the lambda 

parameters to be used in the different distributions

•	 Frames: a list of tuples of type T defining the timeframes 

or numeric frames of an event, corresponding with a 

probability distribution and a parameter as indicated 

in Tables 8-1 and 8-2. The cardinality of this list must 

match that of the Parameters array and also of the next 

two properties that we will list.
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•	 DistributionValues: array of doubles used to store 

at index i the value resulting from calculating the 

probability distribution i using parameter i from array 

Parameters

•	 Distributions: list of distributions to be used; when 

calculating a probability distribution we consider some 

parameter lambda, and the value resulting from this 

calculation is stored in the DistributionValues array

Apart from the previous properties, the class also includes the 

following methods:

•	 SetDistributionValues(): depending on the 

type of distribution indicated as argument, it adds 

new distributions to the Distributions list and 

samples these distributions with the Parameters 

specified, leaving every sampled value in the 

DistributionValues array

•	 GetEvtFrequency(): This method receives as argument 

a type T, which is Icomparable, and compares it against 

the time or numeric frames to decide the portion to 

which it belongs and therefore the distribution value 

for it. For instance, if frames are (0, 100), (100, 200),  

(200, 250) and T = 110, then T would fall into the 

second frame and match the second (index=1) 

distribution value.

Additionally, we have the DistributionType enum indicating the two 

types of distributions that we will be considering in this example (Poisson, 

Exponential).

The AirplaneEvtArrival (Listing 8-3) class inherits from 

AirportEvent<T>; in this case, T becomes a TimeSpan. This class represents 

the event that an airplane arrived at the airport.
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Listing 8-3.  AirplaneEvtArrival<TimeSpan> Class

public class AirplaneEvtArrival :AirportEvent<TimeSpan>

    {

        �public AirplaneEvtArrival(params double[] lambdas) : 

base(lambdas)

        {

Frames = new List<Tuple<TimeSpan, TimeSpan>>

                             {

                                 �new Tuple<TimeSpan, 

TimeSpan>(new TimeSpan(0, 6, 0, 

0), new TimeSpan(0, 14, 0, 0)),

                                 �new Tuple<TimeSpan, 

TimeSpan>(new TimeSpan(0, 14, 0, 

0), new TimeSpan(0, 22, 0, 0)),

                                 �new Tuple<TimeSpan, 

TimeSpan>(new TimeSpan(0, 22, 0, 

0), new TimeSpan(0, 6, 0, 0))

                             };

        }

    }

The class merely contains a constructor, where the Frames list is 

defined as a set of tuples where each tuple details a time range.

Similarly, the AirplaneEvtProcessCargo class (Listing 8-4), which also 

inherits from AirportEvent<int>, defines in its constructor a list of Frames 

containing tuples of integers that indicate ranges of passengers. These 

ranges ultimately match some value (in minutes) that is the time it takes to 

process that amount of passengers (recall Table 8-2).
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Listing 8-4.  AirplaneEvtProcessCargo<int> Class

public class AirplaneEvtProcessCargo :AirportEvent<int>

    {

        �public AirplaneEvtProcessCargo(params double[] lambdas) 

: base(lambdas)

        {

            Frames = new List<Tuple<int, int>>

                             {

                                 new Tuple<int, int>(0, 150),

                                 new Tuple<int, int>(150, 300),

                                 new Tuple<int, int>(300, 450)

                             };

        }

        public double SampleAt(intelem)

        {

            for (vari = 0; i<Frames.Count; i++)

            {

                �if (elem.CompareTo(Frames[i].Item1) >=0&&elem.

CompareTo(Frames[i].Item2) < 0)

return  (1 - ((Exponential) Distributions[i]).Sample()) * 

Parameters[i];

            }

            return -1;

        }

    }

The class also contains a SampleAt() method, which returns the 

probability distribution value of the element supplied as argument and 

considers the range imposed on the class by the Frames list.
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In Listing 8-5 we can see the AirplaneEvtBreakdown class, which 

inherits from AirportEvent<TimeSpan>; its code is very simple, as it simply 

calls the constructor of its parent class.

Listing 8-5.  AirplaneEvtBreakdown<TimeSpan> Class

public class AirplaneEvtBreakdown :AirportEvent<TimeSpan>

    {

public AirplaneEvtBreakdown(params double[] lambdas): base(lambdas)

{

}

    }

Lastly, the Simulation class includes various properties, fields, and 

constructor, as shown in Listing 8-6.

Listing 8-6.  Constructor, Fields, and Properties of the Simulation Class

public class Simulation

    {

        public TimeSpanMaxTime{ get; set; }

        private TimeSpan _currentTime;

        private readonlyAirplaneEvtArrival _arrivalDistribution;

        �private readonlyAirplaneEvtProcessCargo  

_processCargoDistribution;         

private readonlyAirplaneEvtBreakdown _airplaneBreakdown;

        private readonly bool [] _runways;

        private readonlyint _planeArrivalInterval;

        private readonly Queue<Airplane> _waitingToLand;

        private readonly List<Airplane> _airplanes;

        private List<Airplane> _airplanesOnLand;

        private static readonly Random Random = new Random();
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        �public Simulation(TimeSpanstartTime, TimeSpanmaxTime, 

IEnumerable<Airplane> airplanes)

        {

MaxTime = maxTime;

            _runways = new bool[5];

            �_arrivalDistribution = new AirplaneEvtArrival(7, 10, 20);

            �_processCargoDistribution = new 

AirplaneEvtProcessCargo(50, 60, 75);

            _airplaneBreakdown = new AirplaneEvtBreakdown(80);

            _waitingToLand = new Queue<Airplane>();

            _airplanes = new List<Airplane>(airplanes);

            _airplanesOnLand = new List<Airplane>();

            _currentTime = startTime;

            // For 1st day set distribution values.

            �_arrivalDistribution.SetDistributionValues 

(DistributionType.Poisson);

            �_processCargoDistribution.SetDistributionValues 

(DistributionType.Exponential);

            �_airplaneBreakdown.SetDistributionValues(Distribution

Type.Exponential);

            �_planeArrivalInterval = (int) _arrivalDistribution.

GetEvtFrequency(startTime);

        }

}

The properties and fields of the Simulation class are as follows:

•	 MaxTime: the maximum time the simulation will last

•	 _currentTime: current time in the simulation

•	 _arrivalDistribution: object describing the event of 

an airplane arrival

•	 _processCargoDistribution: object describing the 

event of an airplane processing its cargo
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•	 _airplaneBreakdown: object describing the event of an 

airplane being broken down

•	 _runways: set of runways at the airport

•	 _planeArrivalInterval: interval by which an airplane 

arrives at the airport. This value is calculated using the 

_arrivalDistribution.

•	 _waitingToLand: queue of airplanes waiting for an 

available runway to land

•	 _airplanes: list of airplanes arriving at the airport

•	 _airplanesOnLand: list of airplanes that have already 

landed at the airport

•	 Random: random variable

The constructor of the Simulation class receives as arguments the start 

time and end time of the simulation and the list of airplanes scheduled 

to land at the airport. Inside the constructor, we initialize the fields and 

properties according to the values described in Tables 8-1 and 8-2.

In the Execute() method (Listing 8-7) we execute the simulation; 

everything occurs within an outer while loop that runs until the current 

time of the simulation exceeds the maximum time allowed.

Inside the outer while loop, we first try to give landing permission 

to airplanes that have been queued for landing. We’ll soon examine the 

TryToLand() method, which attempts to perform a landing for some 

airplane. Then, we take care of the airplane arrival event, checking first if 

there are still airplanes waiting to land and if the current time in minutes 

leaves a remainder of zero when divided by the interval by which airplanes 

are supposed to arrive at the airport; this is equivalent to saying that the 

current minute belongs to the residual class defined by the value of the 

arrival-time interval previously calculated.
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Ultimately, we loop through every airplane on land, checking for those 

that must depart at the current minute or looking into the possibility of an 

airplane’s having a breakdown. We also update the list of airplanes and 

airplanes on land and the list of runways occupied at any given moment. 

To conclude and start another cycle of the simulation, we add a minute to 

the current time.

Listing 8-7.  Execute() Method

public void Execute()

        {

            while (_currentTime<MaxTime)

            {

Console.WriteLine(_currentTime);

                // Process airplanes on queue for landing

foreach (var airplane in _waitingToLand)

                {

                    if (!TryToLand(airplane))

                        break;

                }

                // Plane arrival event

                �if (_currentTime.Minutes % _planeArrivalInterval 

== 0 && _airplanes.Count> 0)

                {

varnewPlane = _airplanes.First();

                    _airplanes.RemoveAt(0);

Console.WriteLine("Plane {0} arriving ...", newPlane.Id);

                    if (TryToLand(newPlane))

                        _airplanesOnLand.Add(newPlane);

                }
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                // For updating list of airplanes on the ground

varnewAirplanesOnLand = new List<Airplane>();

                // Update airplane status for this minute

foreach (var airplane in _airplanesOnLand)

                {

airplane.TimeToTakeOff--;

                    if (airplane.TimeToTakeOff<= 0)

                    {

                        _runways[airplane.RunwayOccupied] = false;

airplane.RunwayOccupied = -1;

Console.WriteLine("Plane {0} took off", airplane.Id);

                    }

                    else

newAirplanesOnLand.Add(airplane);

                    // Odds of having a breakdown

                    �if (Random.NextDouble() < 0.15 && 

!airplane.BrokenDown)

                    {

airplane.BrokenDown = true;

airplane.TimeToTakeOff += _airplaneBreakdown.

DistributionValues.First();

Console.WriteLine("Plane {0} broke down, take off time is now 

{1} mins", airplane.Id, Math.Round(airplane.TimeToTakeOff, 2));

                    }

                }

                �_airplanesOnLand = new List<Airplane>(newAirplanes

OnLand);
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                // Add a minute

                �_currentTime = _currentTime.Add(new TimeSpan 

(0, 0, 1, 0));

            }

        }

In Listing 8-8, we can see the RunwayAvailable() and TryToLand() 

methods. The first is very simple and allows us to know whether there’s a 

runway available, returning its index in that case. The latter tries to provide 

landing permission to an airplane by checking first if there are runways 

available. Assuming there is, then it updates the corresponding list and 

properties and sets the time the airplane will consume at the airport; 

i.e., its takeoff time. In case there’s no runway available, the airplane is 

enqueued for an eventual landing.

Listing 8-8.  RunwayAvailable() and TryToLand() Methods

        public intRunwayAvailable()

        {

            return _runways.ToList().IndexOf(false);

        }

        public bool TryToLand(Airplane newPlane)

        {

varrunwayIndex = RunwayAvailable();

            if (runwayIndex>= 0)

            {

                _runways[runwayIndex] = true;

newPlane.RunwayOccupied = runwayIndex;

newPlane.TimeToTakeOff = _processCargoDistribution.

SampleAt(newPlane.PassengersCount);
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Console.WriteLine("Plane {0} landed successfully", newPlane.Id);

Console.WriteLine("Plane {0} time for take off {1} mins", 

newPlane.Id, Math.Round(newPlane.TimeToTakeOff, 2));

                return true;

            }

            _waitingToLand.Enqueue(newPlane);

            return false;

        }

    }

To initialize and test the simulation we can rely upon the code shown 

in Listing 8-9, which corresponds to a console application in C#.

Listing 8-9.  Initiating the Simulation

var airplanes = new List<Airplane>

                                {

                                    new Airplane(100),

                                    new Airplane(300),

                                    new Airplane(50),

                                    new Airplane(250),

                                    new Airplane(150),

                                    new Airplane(200),

                                    new Airplane(120)

                                };

var sim = new Simulation.Airport.Simulation(new TimeSpan(0, 13, 

0, 0), new TimeSpan(0, 15, 0, 0), airplanes);

sim.Execute();

Chapter 8  Simulation



312

Once we execute the simulation we will get a peek at the various events 

taking place in the simulation, such as time, airplane arriving, airplane 

taking off, airplane broke down, and so on. These will all be printed in the 

console application, as Figure 8-4 illustrates.

Figure 8-4.  Console application displaying diverse events occurring 
at the simulation

In our airport simulation we considered events such as arrival, 

departures, and breakdowns. As usual, the suggestion to the reader is to 

try to expand the simulation and consider new events or maybe adjust the 

parameters to make them fit a more realistic scenario.
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�Summary
Throughout this chapter, we introduced the concepts of modeling and 

simulation. We described what a discrete-events simulation (DES) is 

and also described its components (events, queue, and so forth). We 

studied various probabilistic distributions and their relation to simulation 

applications. Ultimately, we presented a full example where we simulated 

the functioning of an airport during a given time and were able to see how 

every piece came together to create a program that simulated the working 

hours of an airport while considering several events (arrivals, departures, 

breakdowns). In the following chapter, we will start diving into the 

interesting and vast world of supervised learning.
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CHAPTER 9

Support Vector 
Machines
In this chapter, we’ll begin the study of supervised learning, a branch of 

machine learning whose algorithms resemble the type of learning we 

would have at school where we learn from experience and from many 

examples introduced by a professor during class or training.

Many supervised learning algorithms are composed of two phases: a 

training phase where the learner is presented with a set of training data, 

having each data as a vector along with its correct classification, and a 

prediction phase where the learner, having learned the function that 

corresponds to the training data, is now supposed to predict the correct 

classification or value of new incoming data. For instance, a training data 

set could be defined as follows:

{  { (2, 3), 1}, { (1, 1), -1}, { (3, 3), 1}  }

Notice that each pair (x, y) is accompanied by a classification or class, 

in this case 1 or -1.

The training data is usually expressed as a pair (v, c) where v is an 

n-dimensional vector (typically known as a feature vector) representing 

different properties of an object and c is the classification or label of that 

object considering the problem at hand. The object could be anything, 

from people, flowers, and chemical compounds to cities, states, and 
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basically anything we can imagine or can be classified. The vector could 

indicate various properties of the object, such as location, height, weight, 

strength, sex, population, oxygen, and so on.

In general, the learning process of a classification (we’ll examine soon 

what classification means in this context) supervised learning algorithm 

follows the following points:

•	 Training: From the training data received as input, 

a function f(x) is inferred. This function describes 

the structure of the data and attempts to classify new 

input data considering the structure learned from the 

training data.

•	 Prediction: Assuming a new data x has been received, 

it classifies it as f(x); i.e., uses the learned function f to 

classify the new input data.

Two of the most significant problems that supervised learning tries to 

solve are classification and regression.

In the first type of problem, we map incoming data into a predefined, 

discrete number of categories. Therefore, we categorize incoming 

data by labeling it with some class. In such cases, we claim that the 

supervised learning algorithm is a classifier. In the latter problem, we do 

not categorize or classify an object; rather, we provide an estimate of the 

odds of some variable belonging to a class. In this type of problem we are 

interested in finding a good relation that represents the set of data. This 

relation could be embodied by the line that best approximates this set as 

it occurs in a type of regression known as linear regression; a method that 

solves this type of problem is known as a regressor.
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Note I n classification algorithms, output variables take on discrete, 
categorical values. In regression algorithms, output variables take 
continuous, real values. A regression algorithm would predict the 
temperature on a given day; a classification algorithm would simply 
tell us whether it’s going to be hot or not.

In Figure 9-1 we can graphically see the difference between a classifier 

and a regressor. The classifier (b) is able to partition the space into various 

subspaces or classes (two classes in Figure 9-1), and the regressor (a) 

simply tries to find a structure (line in Figure 9-1) that best approximates 

the shape of the set of data at hand; because this set has a linear structure a 

linear regressor is a good approximator.

Figure 9-1.  a) represents a regressor and b) represents a classifier
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Throughout this chapter, we’ll be studying support vector machine 

algorithms, which are applied in data classification and consequently 

are regarded as classifiers. The purpose of this chapter is to describe the 

support vector machine algorithm and present the full code in C# of such 

an algorithm, accompanied by a visual application in Windows Forms 

to validate the results obtained(graphically shown) and serve as a tool 

for testing and clarification. We’ll use two approaches when developing 

our support vector machine. One will use an optimization library to find 

a solution to the optimization problem that support vector machines 

attempt to solve, and the second will use Platt’s Sequential Minimal 

Optimization (SMO) algorithm to find a solution for the same problem. 

We’ll soon examine what element support vector machine provides us that 

allows us to predict the class of new incoming data.

Note  Statistical learning theory is a branch of machine learning 
dealing with the problem of finding a predictive function based on 
data. Statistical learning theory has led to successful applications in 
fields such as computer vision, speech recognition, text classification, 
pattern recognition, bioinformatics, and more.

�What Is a Support Vector Machine (SVM)?
A support vector machine (SVM) is an optimization technique usually 

applied to classification problems. It’s commonly referred to as a classifier 

but has also been adapted to other optimization problems such as 

regression; thus, we can affirm that SVMs can be both classifiers and 

regressors. SVM algorithms were introduced by Vladimir Vapnik during 

the 1960s and rely heavily on statistical learning theory and mathematical 

optimization. As a matter of fact, the training phase of an SVM reduces to 
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solving an optimization problem that provides us with a set of weights and 

a value (bias) that allows us to classify new incoming data.

As occurs with many areas of machine learning, SVMs are about 

learning structure from data. In the binary classification case (only two 

classes), an SVM algorithm finds the hyperplane that gives the widest 

margin with respect to vectors on the frontier of each class.

A hyperplane of an n-dimensional space is the subspace of n - 1 

dimension. For example, when n = 1 our space is a line, therefore its 

hyperplanes are points; when n = 2 our space is the usual two-dimensional 

coordinate space, thus its hyperplanes are lines; when n = 3 our space 

is the three-dimensional space, therefore its hyperplanes are two-

dimensional planes, and so on. Figure 9-1 b) shows a two-dimensional 

space with an orange line that represents a hyperplane in that space.

Note  SVMs are used for text-classification tasks such as category 
assignment, detecting spam, and sentiment analysis. It is also 
commonly used for image-recognition challenges, performing 
particularly well in aspect-based recognition and color-based 
classification. SVMs also play a vital role in many areas of 
handwritten-digit recognition, such as postal-automation services.

We may also notice that this hyperplane separates the blue points from 

the red points; we can say that this is a classifying hyperplane because it’s 

separating the space into two classes. As illustrated in Figure 9-2, there can 

be multiple classifying hyperplanes for a given classification problem.
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For future incoming data, not every hyperplane will have the same 

efficacy. Intuitively, we would like to have a classifying hyperplane that 

would produce the greatest margin between the two classes so that new 

data to be predicted will have a better chance of being correctly classified.

The distance between the hyperplane and the nearest data point from 

either set (blue or red points) is known as the margin (Figure 9-3). The goal 

of SVMs is to choose a classifying hyperplane with the greatest possible 

margin between the hyperplane and any point within the training set in 

either class. As mentioned before, this gives us a better chance of having 

new incoming data correctly classified; in this sense, we can affirm that 

SVMs search for the optimal hyperplane to classify data.

Figure 9-2.  Various possible classifying hyperplanes for a 
classification problem

Figure 9-3.  Margin M defined by the classifying hyperplane
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To find the optimal hyperplane for a training data set we need to find 

the classifying hyperplane that provides the greatest possible margin 

between the two classes. As a result, the training phase of SVMs consists 

of an optimization problem (more precisely, a quadratic programming 

problem) where we maximize the value 2 x M; in other words, two times 

the margin will determine the full width of the “street” defined by the 

hyperplanes passing through the set of support vectors (Figure 9-4). 

Vectors defining this margin are known as support vectors.

To obtain a formula for M, let’s first remember that in a two-dimensional 

space the formula for a line (hyperplane in 2D) is Ax + By + C = 0. This 

expression can be generalized to the point of deducing the general 

expression of any hyperplane according to the formula wx + b = 0, where w 

is a vector known as weight vector and b (matches C in the line equation) 

is a real value known as bias or intercept; this value determines the shift of 

the hyperplane from the origin of its space. Therefore, when b = 0 it means 

the hyperplane passes through the origin (0, 0, … 0); w is a normal vector 

to the hyperplane and defines its orientation.

Figure 9-4.  Support vectors denoted as black points
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Now that we have a formula for the hyperplane, we can obtain the 

value of M by finding the distance from the support vectors (marked 

as black points in Figure 9-4) to the hyperplane. Recall that in a two-

dimensional space the distance from a point (x′, y′) to a line is given by the 

following formula:

M
Ax By C

A B
=

¢+ ¢+

+2 2

In general form, in the n-dimensional space, the formula for M can be 

deduced as follows:

M
wx b

w
=

+

where ||w|| is the norm of the weight vector w. Recall that for a vector  

v = (v1, v2 …vn) its norm is defined as follows:

v v v vn= + +¼+1
2

2
2 2

Any hyperplane can be represented in an infinite number of ways by 

scaling w and b. This type of normalization or scaling is analogous to the 

type of scaling we use with percentages sometimes; instead of referring to 

a percentage as 85 percent we simply work with numbers in the range  

[0, 1] and find a direct mapping from 85 percent to the equivalent 0.85. 

In our case, we have the classifying hyperplane and also two other 

hyperplanes that are parallel to the classifying hyperplane and pass 

through the support vectors of each class. By means of normalization, 

we can express these hyperplanes as follows:

wx b+ =1

wx b+ = -1
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This representation is known as the canonical hyperplane; under this 

representation, assuming a normalization of values and the fact that we 

are trying to find the distance from a point in the classifying hyperplane 

to any of the hyperplanes formed by support vectors, we can adjust M’s 

equation as follows:

M
wx b

w w
=

+
=

1

Thus, the total margin to be maximized would be 2 x M = 2 / ||w||. 

Notice that maximizing this value is equivalent to minimizing the 

following:

w
2

2

At this point we know we need to minimize the previous function 

in order to find a (weight vector, bias) pair that maximizes the margin 

between the classifying hyperplane and both classes. Now we need to 

define under what set of constraints such optimization will occur.

We already have an equation for the hyperplanes passing through 

support vectors. Since support vectors define the border of each class in 

space, these hyperplanes determine our constraints, as we need every 

data point to be on one side or the other of these hyperplanes (Figure 9-5). 

Thus, we end up having the following constraints:

wx b+ ³1

wx b+ £ -1
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The first equation applies to the case when the classification of data 

point x equals yi = 1; otherwise when yi = -1. Remember for each data point 

x we have its corresponding classification in the data-set training.

The previous constraints can be combined into one:

y wx bi i +( ) ³1

Finally, the optimization problem that SVMs solve is formulated as 

follows:

min
,w b

w

2

2

subject to y wx bi i: +( ) ³1

Let’s remember at this moment that the optimization problem just 

presented corresponds to a linear SVM classifier; in other words, we 

are assuming the set of training data to be linearly separable. The SVM 

classifier function would then be as follows:

sign wx b+( )

Figure 9-5.  Blue points satisfy equation wx + b >= 1 and red points 
satisfy equation wx + b <= -1
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Note that if wx + b >= 1 then data point x belongs to class 1; otherwise, 

x belongs to class -1. As we can see, merely having w, b as the weight vector 

and bias of the optimal classifying hyperplane will allow us to classify new 

incoming data.

Even though at the moment we have reached a formulation for an 

optimization problem whose solution would indeed lead us to finding 

the maximum margin of a classifying hyperplane, this formulation is 

typically disregarded for one that facilities the computational effort and the 

optimization itself. This new formulation is based on Lagrange multipliers 

and the Wolfe dual-problem equivalence.

Duality represents a key role in optimization theory, and many 

optimization problems have an associated optimization problem called 

the dual. This alternative formulation of the problem possesses a set of 

solutions that are related to the solutions of the original (known as primal) 

problem. In particular, for a broad class of problems the primal solutions 

can be easily calculated from the dual ones. Moreover, in the specific case 

of the problem we are dealing with in this chapter, the dual formulation 

provides us with easier-to-handle constraints that are also well suited for 

kernel functions (we’ll examine them soon).

A constrained optimization problem such as ours can be solved by 

means of the Lagrangian method. This method allows us to find the 

maximum or minimum of a multi-variable function subject to a set of 

constraints. It reduces the constrained problem to an unconstrained 

problem by adding n + k variables, k being the number of constraints of the 

original problem. These new variables are known as Lagrange multipliers. 

Using this transformation, the resulting problem will include equations 

that are easier to solve than the ones in the original problem.
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The Lagrangian of a function f(x) having constraints g x i m)i ( ) = = ¼0 1(  

is the following:

L x f x g x
i

m

i i,a a( ) = ( ) + ( )
=
å

1

Notice the new formulation has no constraints; they have been 

encapsulated in the only function now present, L(x, α). In this case, the 

αi represents the Lagrangian multipliers. Let’s substitute the objective 

function and constraints of our primal problem into L(w, b, α):

L w b
w

y wx b
i

m

i i i, ,a a( ) = - +( )-( )
=
å

2

12
1

The previous expression uses the generalized Lagrangian form that not 

only encompasses equality constraints but also inequalities g xi ( ) £ 0  or 

equivalently - ( ) ³g xi 0. Once we have introduced the Lagrangian 

multipliers, we just need to find the dual form of the problem. In particular, 

we’ll find the Wolfe dual form of the problem. For this purpose, we 

minimize L with respect to w, b, which is achieved by solving the following 

equations where Ñ ( )xL w b, ,a  denotes the gradient of L with respect to x:

Ñ ( ) =wL w b, ,a 0

Ñ ( ) =bL w b, ,a 0

The derivative of L with respect to w yields the following result:

Ñ ( ) = - =
=
åw
i

m

i i iL w b w y x, ,a a
1

0
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This implies the following:

w y x
i

m

i i i=
=
å

1

a

As for the gradient with respect to b, the result is as follows:

Ñ ( ) = =
=
åb
i

m

i iL w b y, ,a a
1

0

Substituting the new formula obtained for w and considering that 

i

m

i iy
=
å =

1

0a , we can adjust L(w, b, α) as follows:

L w b y y x x
i

m

i
i j

m

i j i j i j, ,
,

a a a a( ) = -
= =
å å

1 1

1

2

Notice that since xi, xj are vectors, xixj denotes their inner product. So, 

finally, we have reached the expression of the dual problem, and in fact the 

optimization problem that most SVM libraries and packages solve because 

of the advantages previously mentioned. The complete optimization 

problem would be as follows:

max , ,

.

,
a

a a a a

a

a

L w b y y x x

s t y

i

m

i
i j

m

i j i j i j

i

m

i i

i

( ) = -

=

= =

=

å å

å

1 1

1

1

2

0

³³ = ¼0 1i m,

In the next section, we’ll see a practical problem where the previous 

problem (dual) will be solved using an optimization library in C#. Such a 

problem will help us understand some of the concepts and ideas that have 

been introduced in this chapter.
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Note T he gradient of a function f is usually denoted by the symbol 
Ñ preceding the function name (Ñf ). It’s a vector formed by the 
derivatives of f with respect to every variable and indicates the 
direction of the maximum increment of f at a given point. For 
instance, assuming f is the function that maps every point in space 
with a given pressure, then the gradient will indicate the direction in 
which pressure will change more quickly from any point (x, y, z).

�Practical Problem: Linear SVM in C#
To develop our Linear SVM, we will create a class named 

LinearSvmClassifier that has the following fields or properties  

(Listing 9-1).

Listing 9-1.  Properties and Fields of Our Linear SVM

public class LinearSvmClassifier

{

        public List<TrainingSample>TrainingSamples{ get; set; }

        public double[] Weights;

        public double Bias;

        public List<Tuple<double, double>>SetA{ get; set; }

        public List<Tuple<double, double>>SetB{ get; set; }

        �public List<Tuple<double, double>> Hyperplane  

{ get; set; }

        private readonlydouble[] _alphas;

public intModelToUse = 1;
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public LinearSvmClassifier(IEnumerable<TrainingSample>training 

Samples)

        {

TrainingSamples = new List<TrainingSample>(trainingSamples);

            �Weights = new double[TrainingSamples.First().

Features.Length];

SetA = new List<Tuple<double, double>>();

SetB = new List<Tuple<double, double>>();

            Hyperplane = new List<Tuple<double, double>>();

            _alphas = new double[TrainingSamples.Count];

        }

}

public class TrainingSample

{

        public int Classification { get; set; }

        public double[] Features { get; set; }

        �public TrainingSample(double [] features, int 

classification)

        {

            Features = new double[features.Length];

Array.Copy(features, Features, features.Length);

            Classification = classification;

        }

    }

Each property or field is described as follows:

•	 TrainingSamples: list of TrainingSample objects; 

each object represents a data point accompanied by 

its classification. The TrainingSample class illustrated 

in Listing 9-1 merely consists of a Features array of 

doubles and an integer Classification.
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•	 Weights: double array representing the weights in an 

SVM model

•	 Bias: double value representing the bias or intercept in 

an SVM model

•	 SetA: list of Tuple<double, double> representing 

points in the training data that satisfy wx + b >= 1. It’s 

only used in the prediction stage.

•	 SetB: list of Tuple<double, double> representing 

points in the training data that satisfy wx + b <= -1. It’s 

only used in the prediction stage.

•	 Hyperplane: list of Tuple<double, double> 

representing points in the training data that satisfy  

wx + b = 0; i.e., points that lie in the hyperplane. It’s 

only used in the prediction stage.

•	 _alphas: array of doubles representing the alphas in 

the dual problem in SVMs

•	 ModelToUse: determines the training method used 

during the training phase of our SVM

The Training() method where we encoded the dual-optimization 

problem is illustrated in Listing 9-2. We are using the Accord.NET library 

as an optimization tool for solving the SVM model. You can download 

Accord.NET from Nuget via the web or by using the Nuget Package 

Manager provided by Visual Studio.
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Listing 9-2.  Training() Method Where We Model the Dual-

Optimization Problem Using Accord.NET

public void Training()

{

var coefficients = new Dictionary<Tuple<int, int>, double>();

ModelToUse = 1;

            for (vari = 0; i<TrainingSamples.Count; i++)

            {

                for (var j = 0; j <TrainingSamples.Count; j++)

coefficients.Add(new Tuple<int, int>(i, j),

                              -1 * TrainingSamples[i].

Classification * TrainingSamples[j].Classification *

TrainingSamples[i].Features.Dot(TrainingSamples[j].Features));

            }

var q = new double[TrainingSamples.Count, TrainingSamples.Count];

q.SetInitValue(coefficients);

           // This variable contains (1, 1, ..., 1)

var d = Enumerable.Repeat(1.0, TrainingSamples.Count).ToArray();

var objective = new QuadraticObjectiveFunction(q, d);

            // sum(ai * yi) = 0

var constraints = new List<LinearConstraint>

                                  {

                                      new LinearConstraint(d)

                                          {

VariablesAtIndices=Enumerable.Range(0, TrainingSamples.Count).

ToArray(),

ShouldBe = ConstraintType.EqualTo,

                                              Value = 0,
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CombinedAs = TrainingSamples.Select(t =>t.Classification).

ToArray().ToDouble()

                                          }

                                  };

// 0 <= ai

            for (vari = 0; i<TrainingSamples.Count; i++)

            {

constraints.Add(new LinearConstraint(1)

                                    {

VariablesAtIndices = new[] { i },

ShouldBe = ConstraintType.GreaterThanOrEqualTo,

                                        Value = 0

                                    });

            }

var solver = new GoldfarbIdnani(objective, constraints);

            if (solver.Maximize())

            {

var solution = solver.Solution;

UpdateWeightVector(solution);

UpdateBias();

            }

            else

Console.WriteLine("Error ...");

 }

To solve the optimization problem, we’ll be making use of the 

constraint-optimization problem solver GoldfarbIdnani; this and 

many others can be found in the Accord.NET library. There exist 

different ways to specify the objective function and constraints in the 

constructor of the GoldfarbIdnani class; in this case we have opted 
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to indicate the objective as a QuadracticObjectiveFunction class 

and the set of constraints as instances of the LinearConstraint class. 

The QuadracticObjectiveFunction, which represents the objective 

function, was declared by specifying the Hessian matrix of the 

objective function and the vector of linear terms. As we can see from 

Listing 9-2, the Training() method starts by storing a set of values 

into a Dictionary<Tuple<int, int>, double>, where the first item 

(Tuple<inti, int j>) indicates the variables i, j to which the coefficient 

belongs in the Hessian matrix.

Note T he Hessian matrix H of a function f of n variables is an n x n 
matrix containing the second derivatives of f with respect to each of 
the n variables. We can say that f is convex if and only if H is positive 
semidefinite; i.e., all its eigenvalues are positive.

The Hessian of the objective function with respect to variables αi has 

the following form:

- éë ùû1* y y x xi j i j mxm

This matrix is negative semidefinite, which indicates that our problem 

is concave, not convex. If H is positive semidefinite our problem is convex, 

meaning any optimizer that converges to a local minimum will converge 

to a global minimum because the two sets of minima coincide for convex 

problems. Moreover, this can be accomplished in polynomial time and 

can exploit the quadratic structure of the problem; therefore, it will be fast 

in practice. On the contrary, if H has at least one negative eigenvalue then 

your problem is nonconvex. When H has at least one negative eigenvalue, 

the problem is known to be NP-hard.

The set of linear constraints is easily defined in the Training() method 

using Accord.NET objects and properties, which are self-explanatory; 
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the only property that could raise some doubts is the CombineAs property 

of the LinearConstraint object. CombineAs allows us to indicate 

the scalar coefficients accompanying the variables specified in the 

VariablesAtIndices property, in this case αiyi.

The UpdateWeightVector() and UpdateBias() methods shown in 

Listing 9-3 are in charge of updating the weight vector and bias according 

to the formulas previously described.

Listing 9-3.  Methods for Updating Weights and Bias of the 

Classifying Hyperplane

private void UpdateWeightVector(double [] alphas)

      {

varlen = TrainingSamples.First().Features.Length;

            for (vari = 0; i<len; i++)

            {

                for (var j = 0; j <TrainingSamples.Count; j++)

                    �Weights[i] += TrainingSamples[j].

Classification*alphas[j]*

TrainingSamples[j].Features[i];

            }

        }

        private void UpdateBias()

        {

var x = TrainingSamples.First().Features;

            Bias = 1;

            for (vari = 0; i<x.Length; i++)

                Bias -= Weights[i] * x[i];

}
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There’s one final method used within the Training() method that 

must be explained: the SetInitValue() method, which belongs to an 

extension class that we created to simplify the code and avoid unnecessary 

loops and ideas that do not correspond to the core functionality of the 

methods that actually use them. This extension class, along with its 

methods, is illustrated in Listing 9-4.

Listing 9-4.  Class with Extension Methods

    public static class ArrayDoubleExtended

    {

        �public static void SetInitValue(this double[,] q, 

Dictionary<Tuple<int, int>, double> coefficients, 

double epsilon = 0.000001)

        {

            for (vari = 0; i<q.GetLength(0); i++)

            {

                for (var j = 0; j <q.GetLength(1); j++)

                {

q[i, j] = coefficients[new Tuple<int, int>(i, j)];

                    if (i == j)

q[i, j] -= epsilon;

                }

            }

        }

        �public static IEnumerable<int>GetIndicesFromValues(this 

double [] toCompare, params double [] values)

        {

var result = new List<int>();

            for (vari = 0; i<toCompare.Length; i++)

                if (values.Contains(toCompare[i]))

result.Add(i);
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            return result;

        }

        �public static IEnumerable<double>RoundValues(this 

double [] list, int decimals)

        {

var result = new double[list.Length];

            for (vari = 0; i<list.Length; i++)

                result[i] = Math.Round(list[i], decimals);

            return result;

        }

    }

The SetInitValue() method fills the values of the Hessian matrix with 

those of the coefficient dictionary formerly explained. Note the epsilon 

value decrementing every value in the main diagonal by a tiny quantity. 

This is necessary since our function is not convex; therefore, we alter these 

values just a little bit, looking to change it into a positive semidefinite 

matrix. We must later consider the numerical error that will derive from 

this twist. The GoldfarbIdnani solver will not give us a solution if the 

matrix does not satisfy this condition.

The GetIndicesFromValues() method saves indices of the values 

contained in both arrays, and RoundValues() rounds an array of values by 

the number of decimals indicated. Finally, the Predict() method is shown 

in Listing 9-5.

Listing 9-5.  Predict() Method

public void Predict(IEnumerable<double[]>elems)

{

varroundWeights = Weights.RoundValues(2).ToArray();

varroundBias = new [] {Bias}.RoundValues(2).ToArray();
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foreach (var e in elems)

            {

var @class = Math.Sign(e.Dot(roundWeights) +  ModelToUse * 

roundBias.First());

                if (@class >= 1)

SetA.Add(new Tuple<double, double>(e[0], e[1]));

                else if (@class <= -1)

SetB.Add(new Tuple<double, double>(e[0], e[1]));

                else

Hyperplane.Add(new Tuple<double, double>(e[0], e[1]));

            }

}

In the Predict() method, we start by rounding the weights and bias 

values, then for each element or new data point we get its class by using 

the hyperplane equation that is well known to us already (wx + b). If 

its class is greater than or equal to 1 we add it to SetA; if it’s less than or 

equal to -1 we add it to SetB; otherwise it must be that wx + b = 0 and so it 

belongs to the classifying hyperplane.

In order to test our hyperplane equation and see how well it separates 

or classifies our data points, we have created a Windows Forms application 

that uses the OxyPlot library to plot the graphic. You can obtain OxyPlot via 

the web on Nuget or by using the Nuget Package Manager included with 

Visual Studio. Listing 9-6 shows the SvmGui class of our Windows Forms 

application.

Listing 9-6.  SvmGui Windows Forms Class Where We Plot the 

Results Obtained

public partial class SvmGui : Form

    {

        private readonlyMainViewModel _plot;
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        �public SvmGui(double [] weights, double bias, int 

model, IEnumerable<Tuple<double, double>>setA, 

IEnumerable<Tuple<double, double>>setB, 

IEnumerable<Tuple<double, double>> hyperplane = null)

        {

InitializeComponent();

            �_plot = new MainViewModel(weights, bias, model, 

setA, setB, hyperplane);

var view = new OxyPlot.WindowsForms.PlotView

                           {

                               Width = Width,

                               Height = Height,

                               Parent = this,

BackColor = Color.WhiteSmoke,

                               Model = _plot.Model

                           };

        }

    }

As we can see, the class is very simple; we just need to create a 

PlotModel, which is done by the MainViewModel class, and a PlotView 

that displays this model. The MainViewModel class is illustrated in  

Listing 9-7.

Listing 9-7.  MainViewModel Class Where the Model to Be Plotted Is 

Created

public class MainViewModel

    {

        public PlotModel Model { get; set; }
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        �public MainViewModel(double[] weights, double 

bias, int model, IEnumerable<Tuple<double, 

double>>setA, IEnumerable<Tuple<double, double>>setB, 

IEnumerable<Tuple<double, double>> hyperplane = null)

        {

            Model = new PlotModel{ Title = "SVM by SMO" };

varscatterPointsA = setA.Select(e => new ScatterPoint(e.Item1, 

e.Item2)).ToList();

varscatterPointsB = setB.Select(e => new ScatterPoint(e.Item1, 

e.Item2)).ToList();

var h = new List<ScatterPoint>();

            if (hyperplane != null)

                �h = hyperplane.Select(e => new ScatterPoint 

(e.Item1, e.Item2)).ToList(); ;

varscatterSeriesA = new ScatterSeries

                                    {

MarkerFill = OxyColor.FromRgb(255, 0, 0),

ItemsSource = scatterPointsA,

                                    };

varscatterSeriesB = new ScatterSeries

                                    {

MarkerFill = OxyColor.FromRgb(0, 0, 255),

ItemsSource = scatterPointsB

                                    };

varscatterSeriesH = new ScatterSeries

                                    {

MarkerFill = OxyColor.FromRgb(0, 255, 255),

ItemsSource = h

                                    };
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Model.Series.Add(scatterSeriesA);

Model.Series.Add(scatterSeriesB);

Model.Series.Add(scatterSeriesH);

Model.Series.Add(GetFunction(weights, bias, model));

        }

        �public FunctionSeriesGetFunction(double [] w, double b, 

int model)

        {

const int n = 10;

var series = new FunctionSeries();

            for (var x = 0.0; x < n; x += 0.01)

{

for (var y = 0.0; y < n; y += 0.01)

{

                    //adding the points based x,y

varfunVal = GetValue(x, y, w, b, model);

                    if (Math.Abs(funVal) <= 0.001)

series.Points.Add(new DataPoint(x, y));

                }

            }

            return series;

        }

        �public double GetValue(double x, double y, double [] w, 

double b, int model)

        {

            w = w.RoundValues(5).ToArray();

            b = new [] {b}.RoundValues(5).ToArray().First();

            return w[0] * x  + w[1] * y + model * b;

        }

    }
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The constructor of the class receives all necessary values (weights, bias, 

etc.) and creates different scatter-point series: one for points satisfying 

wx + b >= 1, another for points satisfying wx + b <= -1, and lastly one for 

points in the hyperplane—those that satisfy wx + b = 0. Additionally, the 

GetFunction() method plots the line corresponding to the hyperplane. 

Note that in this case we are considering the numeric error introduced 

by adding epsilon to values in the main diagonal of the Hessian matrix; 

therefore, we accept as hyperplane points those that yield a class value 

less than or equal to 0.001. The GetValue() method finds the class of the 

incoming data using our RoundValues() extension method.

We can run the code from a console application as shown in  

Listing 9-8.

Listing 9-8.  Console Application Where Our SVM Will Be Created 

and Executed

vartrainingSamples = new List<TrainingSample>

                                    {

                                        �new TrainingSample(new 

double[] {1, 1}, 1),

                                        �new TrainingSample(new 

double[] {1, 0}, 1),

                                        �new TrainingSample(new 

double[] {2, 2}, -1),

                                        �new TrainingSample(new 

double[] {2, 3}, -1),

                                    };

varsvmClassifier = new LinearSvmClassifier(trainingSamples);

svmClassifier.Training();
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svmClassifier.Predict(new List<double[]>

                                      {

                                          new double[] {1, 1},

                                          new double[] {1, 0},

                                          new double[] {2, 2},

                                          new double[] {2, 3},

                                          new double[] {2, 0},

                                          new []   {2.5, 1.5},

                                          new []   {0.5, 1.5},

                                      });

Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

Application.Run(new SvmGui(svmClassifier.Weights, 

svmClassifier.Bias, svmClassifier.ModelToUse, svmClassifier.

SetA, svmClassifier.SetB, svmClassifier.Hyperplane));

Once we execute the preceding code, the result obtained can be seen 

in Figure 9-6.
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So far we have assumed that the set is linearly separable, but what if 

it’s not, or what if there’s no perfect separation between the two classes? 

These concerns will be the main topic of the following sections, where 

we’ll examine the non-linearly separable case of SVMs and the imperfect 

separation case.

�Imperfect Separation
In some cases finding the optimal classifying hyperplane as we have 

considered it thus far is not the most suitable option. For instance, 

Figure 9-7 illustrates the effect an outlier point has on deciding the optimal 

classifying hyperplane. The single red point on the upper-left corner of the 

right graphic is causing the hyperplane to significantly swing, changing its 

direction and resulting in a much smaller margin than the one on the left 

graphic.

Figure 9-6.  Plot showing the classifying hyperplane and points on 
one side and the other
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In order to make the algorithm sensitive to outliers and accept some 

misclassifications for the greater good (finding a hyperplane with a 

considerable margin), we’ll change the formulation of the primal problem 

and introduce a set of slack variables and a constant C that will control 

how the misclassification will be handled.

The new formulation of the primal problem is the following:

min

:

,w b
i

m

i

i i i

i

w
C

subject to y wx b

i m

2

1

0 1

2

1

+

+( ) ³ -
³ = ¼

=
åx

x
x

A direct result of this reformulation is that training data is now 

permitted to have a margin of less than 1, and whenever a training data  

has a functional margin of 1 − ξi (ξ > 0), that cost or penalization is paid 

at the objective function, which is increased by C * ξi. The parameter C 

controls the relative weighting between the goals of making ||w||2 small  

(as we examined earlier, this makes the margin large) and ensuring that 

most training data will have a margin of at least 1.

Figure 9-7.  Left and right graphics show the effect caused by an 
outlier on the optimal classifying hyperplane
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Seeking to reach the dual form again, we introduce the Lagrangian 

form and set the derivatives with respect to w and b to zero again. We will 

skip the full calculation, which is left to the reader; the final result would be 

the following:

max , ,

.

,
a

a a a a

a

L w b y y x x

s t y

i

m

i
i j

m

i j i j i j
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= =

=

å å

å
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0 aai C i m£ = ¼1,

As we can see, the dual form of the reformulated problem is basically 

the same as before; the only difference lies in the fact that the previous 

ai ³ 0  constraint is now the box constraint 0 £ £ai C . The calculation of b 

also changes; we’ll see it shortly when we examine the SMO algorithm.

Note T he reformulated problem is known as the soft-margin  
SVM as opposed to the hard-margin SVM described before. For a 
soft-margin SVM, we allow training data to lie inside the margin, or to 
be misclassified, and we want the overall error measured by the sum 
of slack variables to be minimized.

�Non-linearly Separable Case: Kernel Trick
Up to this point, we have assumed the training data set to be linearly 

separable, but what happens when neither the training data set nor the 

function being learned have a linear structure? This scenario is illustrated 

in Figure 9-8.
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As the reader can verify, there’s no possible way to divide the two 

classes (red and blue points) in the graphic using a hyperplane. What’s 

the solution in this scenario? The SVM solution is to map or transform the 

training data into a higher, richer space; find a classifying hyperplane in 

that higher space and then transform the result back to the original space. 

The mapping is accomplished through a feature mapping function that 

goes from the original space (R2 in the previous example) to a higher space 

(R3), thus increasing the dimensionality of the data (Figure 9-9).

Figure 9-9.  Data mapped from 2D space into 3D space

Figure 9-8.  Non-linear case
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For instance, a polynomial feature mapping j : R R2 3®  would 

transform the data as follows:

x y x xy y, , * ,( )®( )2 22

The decision function would now change its formulation to adjust to 

the new dimension of data as follows:

f x w x b( ) = × ( ) +j

One problem with this approach is that the dimensionality of φ(x) can 

get very large on some occasions; this would complicate the quadratic 

problem to be solved and also the explicit representation of w. Fortunately 

for us, sections ago we obtained the dual form of the problem in terms 

only of αi and as an alternative for expressing w; hence, the new decision 

equation or classifying hyperplane equation can be stated as follows:

f x x x b
i

m

i i( ) = ( )× +
=
å

1

a j

In this context, we say that K ( x x x xi i, )= ( )× ( )j j  is a kernel function; 

this function will replace any inner product we may have in our 

formulation. The key point when using kernel functions is that the cost of 

computing their value can be significantly lower when compared to the 

cost of computing or even representing φ(x); computing a kernel function 

does not imply computing φ(x).

The polynomial kernel for instance, follows the formula shown here:

K x x x x
d

, ¢ ¢( ) = × +( )1
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The reader can verify that computing this kernel will be far more efficient 

than computing explicitly j jx xi( ) × ( ) , especially for large dimensions. 

Another relevant kernel is the Gaussian kernel, which is defined as

K x x e x x¢( ) = - - ¢
, /

2 22s

where s > 0 , and it’s chosen by the user. Intuitively, if φ(x) and φ(z) are 

close together, we might expect K ( ¢ = ¢( ) × ( )x x x x, ) j j  to be large. On the 

other hand, if φ(x ') and φ(x) are far apart (nearly orthogonal to each other) 

then K ( ¢ = ¢( ) × ( )x x x x, ) j j  will be small. Thus, we can think of K ( ¢x x, )  as 

some measurement of how similar φ(x ') and φ(x) are, or of how similar x ' 

and x are.

The application of kernels is not reduced to SVMs. On the contrary, it 

has a much broader application in the area of artificial intelligence. Any 

learning algorithm that computes inner products can have them replaced 

by kernel functions, thus allowing a much more efficient way of working 

with higher-dimensional feature spaces.

Note N ot every function can be regarded as a kernel. It has been 
proven (Mercer’s theorem) that a sufficient and necessary condition 
for a function to be considered a kernel is that its kernel matrix K be 
symmetric positive semidefinite. The kernel matrix associated with 
a training data set of m vectors is a square m x m matrix containing 
every possible combination of values Kij = K(xi, xj).

�Sequential Minimal Optimization  
Algorithm (SMO)
The sequential minimal optimization (SMO) algorithm was proposed by 

John Platt at Microsoft Research in 1998; at that time its purpose was to 

introduce an efficient method for training an SVM. Consequently, SMO 
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avoids working with Quadratic Programming (QP) libraries and solves 

the optimization problem by analytically solving a large number of small 

optimization subproblems that involve any two Lagrange multipliers 

previously selected using a heuristic.

Two mathematical results or theorems are basic for understanding 

SMO’s functioning. First, the Karush-Kuhn-Tucker (KKT) conditions as 

a generalization of Lagrange multipliers provide necessary, sufficient 

conditions for determining whether a solution of an optimization problem 

is optimal. Secondly, Osuna’s theorem proves that a large QP problem 

can be broken down into a series of smaller QP subproblems. As long 

as at least one example that violates the KKT conditions is added to the 

examples for the previous subproblem, each step will reduce the overall 

objective function and maintain a feasible point that satisfies every 

constraint. Hence, a sequence of QP subproblems that always adds at 

least one violator will guarantee convergence. Osuna’s theorem validates 

SMO’s strategy of choosing only two multipliers when optimizing a QP 

subproblem of the major QP problem. In general, SMO heavily relies on 

the two previous results to justify its functioning.

Checking KKT conditions implies solving a system of equations where 

the gradient of the objective function plus all constraints and Lagrange 

multipliers are equal to zero. Having solved this system, which is left to the 

reader as an exercise, you would have the following conditions for the αi to 

be considered as an optimal solution:

a
a

a

i i i

i i i

i i i

y u

y u

C y u

= « ³
< < « =

= « £

0 1

0 1

1

C

In this case, ui is the output or classification provided by the SVM for 

the ith training data. The geometric interpretations of these conditions are 

presented in Table 9-1.
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The SMO algorithm will terminate once all αi satisfy the previous 

conditions to a certain, predefined tolerance, which is usually 10 3- .

Note I n Platt’s original paper he assumed the formula for the 
classifying hyperplane to be wx - b instead of wx + b. Also, instead of 
maximizing the objective function f(x) of the dual problem described 
in this chapter, he minimized -f(x); we know that’s equivalent to our 
maximization problem because min f(x) = max -f(x).

As described earlier, the algorithm optimizes two αi at a time. First of 

all, and following Osuna’s theorem, we must search for an αi that violates 

KKT conditions; let this αi be α2. Then, using a heuristic, another αi—let it 

be α1—is also found. The first multiplier (α2) is typically taken from the set 

of unbound multipliers (those that satisfy 0 < <ai C ).

Table 9-1.  Geometric Interpretation of Lagrange Multiplier Values 

and KKT Conditions

Value Interpretation

ai = 0 i th training data is correctly classified; might lie on the margin.

0 < <ai C i th training data is correctly classified and lies on the margin 

(support vector).

ai C= Three cases may arise in this scenario; either the i th training data is 

correctly classified and lies on the margin, or the i th training data is 

correctly classified and lies between the classifying hyperplane and 

the margin, or the i th data training is incorrectly classified because 

it is probably an outlier.
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Once we have selected α2, the second multiplier α1 is chosen to 

maximize E E1 2- , where E f x yi i i= ( )-  is the error committed by the SVM 

when correctly classifying the ith training data. This is the heuristic we 

mentioned before and is supposed to speed up the procedure. If we can’t 

find such α1 then we randomly choose an unbound training data point. If 

that also fails then we randomly choose any training data, and if that fails 

we reselect α2.

After choosing α1 , α2 the rest of the algorithm is reduced to updating 

these values. To carry out such an update we must guarantee that every αi  

respects the constraints of the problem; i.e., 0 < <ai C  and 
i

m

i iy
=
å =

1

0a . 

Since Osuna’s theorem allows us to focus only on the QP subproblem 

composed of α1 , α2 we must guarantee at each time that both Lagrange 

multipliers satisfy the following constraints:

0 1 2

1 1 2 2

< <
+ =
a a

a a
, C

y y k

The constraints that α1, α2 must satisfy can be graphically represented 

in a two-dimensional space as illustrated in Figure 9-10.
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In order to maintain both α1, α2 in the constraint box and respect the 

linear constraint we must establish low (L) and high (H) bound values. If 

y1 ≠ y2 it can be proven that the following bounds apply to α2:

L

H C C

= -( )
= + -( )
max ,

min ,

0 2 1

2 1

a a

a a

Figure 9-10.  Case a) occurs when y1 ≠ y2; case b) occurs when y1 = y2
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If y1 = y2 then the line changes direction; therefore,

L C

H C

= + -( )
= +( )
max ,

min ,

0 2 1

2 1

a a

a a

Thus, the updated α2—let’s call it α2
new, and we’ll soon see how to 

compute it—after being calculated must be clipped against these bounds, 

and its clipped value would be as follows:

a
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a a
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2
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Once we have obtained a final, clipped (if necessary) value for α2
new we 

can easily obtain α1
new using the equation of the linear constraint as shown 

in the next lines. In the α1
new formula s y y= 1 2  is a value introduced with 

the single purpose of clearing α1
new from the following linear constraint 

equation:

a a a a1 1 2 2
new new clippeds= + -( ),

Up to this point we have gathered almost every piece of the SMO 

algorithm. Still, we are missing one very important component—the 

learning rule or update rule for α2. Recall the objective function we want to 

optimize is as follows:

min , ,

.
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Note that this is the same problem we defined before but includes the 

kernel function K in the formulation and changes the objective from max 

f(x) to min -f(x). This is the exact formulation solved in Platt’s paper.

The expression for the update rule of α2 is derived from the objective 

function by rewriting it in terms of α1,  α2, then in terms of α2 only (using the 

linear constraint equation), fixing all other αi and finding the minimum of 

this rewritten objective by calculating its second derivative with respect to 

α2. Rewriting it in terms of α1,  α2 and fixing any other αi term as a constant 

would yield the following:

1

2

1

211 1
2

22 2
2

12 1 2 1 1 1 2 2 2 1 2K K sK v y v y Pa a a a a a a a+ + + + - - +

where K K x x v y K v yij i j i
j

m

j j ij= ( ) =
=
å, , ,

3
1 1 1a a  is the term that relates α1 with 

all other variables, and equivalently v2y2α2 is the term that relates α2 with all 

other variables. P is a constant representing the terms related to all other 

αi. Using the linear constraint equation in the form

a a1 2

1 2

+ =
=
s w

s y y

allows us to clear out α1 from our rewritten equation and merely view it in 

terms of α2.

1

2

1

211 2

2

22 2
2

12 2 2

1 1 2 2 2 2

K w s K sK w s

v y w s v y

w

-( ) + + -( )

+ -( )+
- -

a a a a

a a

ss Pa a2 2( ) - +

To find an expression of the minimum of the previous formulation, we 

find its second derivative with respect to α2, which is the following:

K K K s K K w y v v s11 22 12 2 11 12 2 1 22 1+ -( ) = -( ) + -( )+ -a
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This takes into consideration that

v y K u b y K y Ki
j

m

j j ij i i i= = + - -
=
å

3
1 1 1 2 2 2a a a* * *

In the previous equation, every variable that has a subscript identifies 

its corresponding optimal value.

By substituting vi and w in the second derivative formula and 

readjusting the terms we will finally obtain the update rule for α2:

a a2 2
2 1 2

11 22 122
new y E E

K K K
= +

-( )
+ -

where E u yi i i= -  and K K K11 22 122+ -  is known as the learning rate of the 

SVM.

One last step before diving into the implementation of the SMO 

algorithm is the calculation of the bias. We already know how to compute 

w, but what about the bias b? The bias will be computed as follows:

b E y K y K b

b E y

new new clipped

n

1 1 1 1 1 11 2 2 2 12

2 2 1 1

= + -( ) + -( ) +

= +

a a a a

a

,

eew new clippedK y K b-( ) + -( ) +a a a1 12 2 2 2 22
,

A mean of these values is calculated, so the final bias can be computed 

as follows:

b b b= +( )1 2 2/

In case none of the αi were clipped, it’s guaranteed that b b b= =1 2 . The 

new value for b is computed at the end of each step of the SMO algorithm. 

Having described every theoretical piece in detail, let’s now look at the 

implementation of the algorithm in C#.
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�Practical Problem: SMO Implementation
The C# algorithm we’ll describe in this section narrowly follows Platt’s 

pseudocode seen in the original paper published in 1998. First, the access 

point to the algorithm is the TrainingBySmo() method shown in Listing 9-9;  

this is where the first αi is selected. Also shown in Listing 9-9 is a tiny 

update that we need to do on our LinearSvmClassifier class, the one 

presented in previous sections and where the SMO algorithm will be 

embedded. This update consists of adding constant values C, Epsilon, and 

Tolerance as class properties or fields; additionally, every SMO-related 

method will be eventually added as well.

Listing 9-9.  Start Point of the SMO Algorithm Where We Search for 

the First Lagrange Multiplier

public class LinearSvmClassifier

{

        private const double C = 0.5;

        private const double Epsilon = 0.001;

        private const double Tolerance = 0.001;

        ...

}

        public void TrainingBySmo()

        {

varnumChanged = 0;

varexamAll = true;

ModelToUse = -1;

            while (numChanged> 0 || examAll)

            {
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numChanged = 0;

                if (examAll)

                {

                    for (vari = 0; i<TrainingSamples.Count; i++)

numChanged += ExamineExample(i) ?1 : 0;

                }

                else

                {

var subset = _alphas.GetIndicesFromValues(0, C);

foreach (vari in subset)

numChanged += ExamineExample(i) ?1 : 0;

                }

                if (examAll)

examAll = false;

                else if (numChanged == 0)

examAll = true;

            }

        }

The TrainingBySmo() method declares two variables that will aid it 

in finding the two Lagrange multipliers: numChanged and examAll. The 

first, an integer variable, contains the number of unbound Lagrange 

multipliers suitable to accompany the first selected Lagrange multiplier 

α2 to be optimized. If no unbound multiplier can be found, then examAll 

turns True, meaning all training data must be examined in the next loop 

execution.

The ExamineExample() method illustrated in Listing 9-10 starts by 

checking whether the given multiplier (α2) violates the KKT conditions by 

more than the predefined tolerance value. Assuming it does, it then looks 

for the second Lagrange multiplier and jointly optimizes them by calling 

the TakeStep() method.
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Listing 9-10.  The ExamineExample() Method Looks for a Second 

Lagrange Multiplier and Jointly Optimizes Them by Calling the 

TakeStep() Method

        private bool ExamineExample(int i1)

        {

varyi = TrainingSamples[i1].Classification;

varai = _alphas[i1];

varerrorI = LFunctionValue(i1) - yi;

varri = yi * errorI;

            if ((ri< -Tolerance &&ai< C) ||

            (ri> Tolerance &&ai> 0))

            {

                for (var i2 = 0; i2 <TrainingSamples.Count; i2++)

                    if (TakeStep(i1, i2))

                        return true;

            }

            return false;

        }

The TakeStep() method (Listing 9-11) receives as arguments the 

indices of the two selected Lagrange multipliers.

Listing 9-11.  The TakeStep() Method Jointly Optimizes the Two 

Lagrange Multipliers

        private bool TakeStep(inti, int j)

        {

            if (i == j)

                return false;
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varyi = TrainingSamples[i].Classification;

varyj = TrainingSamples[j].Classification;

            // Checking bounds on aj

var s = yi*yj;

varerrorI = LFunctionValue(i) - yi;

            // Computing L, H

var l = Math.Max(0, _alphas[j] + _alphas[i] * s - (s + 1) / 2 * C);

var h = Math.Min(C, _alphas[j] + _alphas[i] * s - (s - 1) / 2 * C);

            if (l == h)

                return false;

            double newAj;

            // Obtaining new value for aj

var k12 = Kernel.Polynomial(2, TrainingSamples[i].Features, 

TrainingSamples[j].Features);

var k11 = Kernel.Polynomial(2, TrainingSamples[i].Features, 

TrainingSamples[i].Features);

var k22 = Kernel.Polynomial(2, TrainingSamples[j].Features, 

TrainingSamples[j].Features);

var eta = 2*k12 - k11 - k22;

varerrorJ = LFunctionValue(j) - yj;

            if (eta < 0)

            {

newAj = _alphas[j] - TrainingSamples[j].

Classification*(errorI - errorJ)/eta;

                if (newAj< l)

newAj = l;

                else if (newAj> h)

newAj = h;

}
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else

            {

var c1 = eta/2;

var c2 = yj * (errorI - errorJ) - eta * _alphas[j];

varlObj = c1*Math.Pow(l, 2) + c2*l;

varhObj = c1*Math.Pow(h, 2) + c2*h;

if (lObj>hObj + Epsilon)

newAj = l;

                else if (lObj<hObj - Epsilon)

newAj = h;

                else

newAj = _alphas[j];

            }

            �if (Math.Abs(newAj - _alphas[j]) < Epsilon *  

(newAj + _alphas[j] + Epsilon))

                return false;

varnewAi = _alphas[i] - s * (newAj - _alphas[j]);

            if (newAi< 0)

            {

newAj += s*newAi;

newAi = 0;

            }

            else if (newAi> C)

            {

newAj += s * (newAi - C);

newAi = C;

            }
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            // Updating bias & weight vector

UpdateBias(newAi, _alphas[i], newAj, _alphas[j], yi, yj, 

errorI, errorJ, k11, k12, k22);

UpdateWeightVector(i, j, newAi, _alphas[i], newAj, _alphas[j], 

yi, yj);

            _alphas[i] = newAi;

            _alphas[j] = newAj;

            return true;

        }

If the TakeStep() method achieves an optimization on both 

Lagrange multipliers, then it returns True; otherwise, it returns False. The 

LFunctionValue() and Kernel.Polynomial() methods are presented in 

Listing 9-12. The first calculates the value of the objective function and the 

latter is a static method of the Kernel class representing the polynomial 

kernel. This class is intended to contain all kernel functions; since the 

inner product is supposed to be a kernel function it has also been added to 

this class.

Listing 9-12.  LFunctionValue() Method, Which Calculates the Value 

of the Objective Function and the Kernel Class

private double LFunctionValue(inti)

{

var result = 0.0;

for (int k = 0; k <TrainingSamples[i].Features.Length; k++)

result += Weights[k] * TrainingSamples[i].Features[k];

            result -= Bias;

            return result;

}
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public class Kernel

{

        �public static double Polynomial(double degree,  

double [] v1, double [] v2)

        {

            return Math.Pow(InnerProduct(v1, v2) + 1, degree);

        }

        �private static double InnerProduct(double [] v1,  

double [] v2)

        {

var result = 0.0;

            for (vari = 0; i< v1.Length; i++)

                result += v1[i]*v2[i];

            return result;

        }

}

To conclude, let’s present the methods in charge of updating the bias 

and weight vector of the SVM (Listing 9-13).

Listing 9-13.  LFunctionValue() Method, Which Calculates the Value 

of the Objective Function and the Kernel Class

private void UpdateBias(double newAi, double oldAi, double newAj,

        �double oldAj, double yi, double yj, double errorI, 

double errorJ,

        double k11, double k12, double k22)

        {

            double b1, b2, bNew;

            if (newAi> 0 &&newAi< C)
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bNew = Bias + errorI + yi*(newAi - oldAi)*k11 + yj*(newAj - 

oldAj)*k12;

            else

            {

                if (newAj> 0 &&newAj< C)

bNew = Bias + errorJ + yi * (newAi - oldAi) * k12 + yj * 

(newAj - oldAj) * k22;

                else

                {

                    �b1 = Bias + errorI + yi * (newAi - oldAi) * 

k11 + yj * (newAj - oldAj) * k12;

                    �b2 = Bias + errorJ + yi * (newAi - oldAi) * 

k12 + yj * (newAj - oldAj) * k22;

bNew = (b1 + b2)/2;

                }

            }

            Bias = bNew;

        }

private void UpdateWeightVector(inti, int j, double newAi, 

double oldAi,

        double newAj, double oldAj, double yi, double yj)

        {

var t1 = yi * (newAi - oldAi);

var t2 = yj * (newAj - oldAj);

varobjI = TrainingSamples[i].Features;

varobjJ = TrainingSamples[j].Features;

            for (var k = 0; k <objI.Length; k++)

                Weights[k] += t1 * objI[k] + t2 * objJ[k];

        }
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Now that we have the entire SMO algorithm implemented, let’s see the 

result, or classifying hyperplane, obtained by this algorithm, using the same 

graphical tool we used before (Windows Forms application, Figure 9-11).

A final question that has surely been on the reader’s mind throughout 

this chapter is: How can I use SVMs for more than binary classification? 

How can I classify or label a new incoming data from a set of n classes? 

This problem, known as multi-class SVM, will not be addressed in detail 

in this book as it gets into methods that ultimately use the binary SVM 

classifier; we’ll just give a general overview of them.

There are a lot of methods for multi-class SVM classification. Two 

classic options, which are not SVM specific, are:

•	 One-vs-All classification (OVA): Suppose you have 

classes A, B, C, and D. Instead of doing a four-way 

classification, we train four different binary classifiers: 

Figure 9-11.  Classifying hyperplane obtained by our implementation 
of the SMO algorithm
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A vs. not(A), B vs. not(B), C vs. not(C), and D vs. not(D), 

resulting in four hyperplanes. Then, for any new 

incoming data, pick as class the hyperplane that gives 

the maximum value when calculating wx + b. 

•	 All vs All: Train all possible pairs of classifications. 

Rank the classes by some factor (e.g., number of times 

selected) and pick the best.

Multi-class SVMs remain an ongoing research issue, and most 

methods proposed are typically constructed by combining several 

binary classifiers. Some methods also consider all classes at once. As 

it is computationally more expensive to solve multi-class problems, 

comparisons of these methods using large-scale problems have not been 

seriously conducted. Especially for methods solving multi-class SVMs in 

one step, a much larger optimization problem is required, so up to now 

experiments have been limited to small data sets.

This concludes our chapter on SVMs; it is now up to the reader to 

evolve the C# SVM herein proposed and use it as an experimentation tool 

or customize it to their needs.

�Summary
In this chapter, we described the very interesting topic of support vector 

machines (SVMs) as optimization instruments oriented toward solving a 

particular machine learning problem—the problem of classification. We 

mainly focused on binary classification, even though in the last paragraphs 

we briefly mentioned some multi-class methods. We showed how to 

directly solve the dual-optimization problem of an SVM using the Accord 

.NET library, and we also explained and implemented the sequential 

minimal optimization (SMO) algorithm. We included a graphical 

application developed in Windows Forms that used OxyPlot and allowed 

us to display the hyperplane and data points of the problem.
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CHAPTER 10

Decision Trees
Data mining is the process of discovering and extracting meaningful, 

useful information (patterns) from large data sets. Numerous data-mining 

techniques are inherited from AI, and particularly from machine learning 

and its subfield of supervised learning; among these techniques lies the 

classification technique.

Classification is a frequent task in data mining that solves a wide 

range of real-world problems, such as fraud, spam mail checking, credit 

scoring, bankruptcy prediction, medical diagnosis, pattern recognition, 

multimedia classification, and so on. It is recognized as a powerful way for 

companies to develop effective knowledge based on decision models to 

gain competitive advantages. In the previous chapter, we studied our first 

classifier, support vector machines. In this chapter, we’ll present a popular 

classifier that presents us with a very intuitive way to classify a set of items: 

the decision tree.

In this chapter, we’ll introduce decision trees (DTs) and describe their 

purpose and how they achieve said purpose. We’ll present two of the 

most popular algorithms for generating DTs, which are ID3 (Interactive 

Dichotomizer 3) and C4.5, the latter being an extension of the first that 

includes multiple significant improvements. Both ID3 and C4.5 were 

developed by J. Ross Quinlan.

Additionally, and as we have done thus far, we’ll develop a graphical 

application in Windows Forms using Microsoft Automatic Graph Layout to 

graphically represent the DT obtained after executing our algorithm.
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Note  Microsoft Automatic Graph Layout (MSAGL) is a .NET tool 
for graph layout and viewing. It was developed in Microsoft by 
Lev Nachmanson, Sergey Pupyrev, Tim Dwyer, and Ted Hart. Using 
MSAGL, we can build trees and graphs, we can label edges and 
nodes, and we can even define edge direction. On top of that, it offers 
many other facilities that we invite readers to check out.

�What Is a Decision Tree?
A decision tree (DT) is a graphic representation of a decision-making 

process that possesses high expressivity and can be easily interpreted 

by humans. As occurs with support vector machines, DTs partition the 

decision space into different classes using hyperplanes (Figure 10-1).

Figure 10-1.  Partition created using a DT
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As a tree, a DT consists of a root node, multiple internal nodes, and 

leaf nodes, which ultimately determine the classification of new incoming 

data. Since DTs are data structures obtained from supervised learning 

algorithms, these algorithms receive as input a set of training data and 

output a function (DTs can be seen as multivariate functions) that 

classifies new incoming data.

Unlike other algorithms like SVM or neural networks, DTs consider 

and use the set of attribute names in the training data set because they 

use them later to construct the tree. Every node in a DT is labeled with 

some attribute name, and edges leaving that node are labeled with 

the corresponding attribute values (assuming they are discrete and 

categorical); leaf nodes are labeled with goal attribute values. Hence, the 

set of attributes can be divided into non-goal and goal, where |goal| = 1. 

Table 10-1 illustrates several attributes and their corresponding values.

Table 10-1.  Attributes and Their Values

Attribute Type Values

Outlook non-goal sunny, rainy, cloudy

Temperature non-goal warm, cold, temperate

Humidity non-goal high, normal

Wind non-goal strong, weak

Play Baseball Goal yes, no
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A DT derived from applying a learning method such as ID3 that 

uses the training data set presented in Table 10-2 could be the following 

(Figure 10-2).

Table 10-2.  Training Data Set

Outlook Temperature Humidity Wind Play Baseball

sunny warm high weak no

sunny warm high strong no

cloudy warm high weak yes

rainy temperate high weak yes

rainy cold normal weak yes

rainy cold normal strong no

cloudy cold normal strong yes

sunny temperate high weak no

sunny cold normal weak yes

rainy temperate normal weak yes

sunny temperate normal strong yes

cloudy temperate high strong yes

cloudy warm normal weak yes

rainy temperate high strong no

An example of a training data set is shown in Table 10-2.
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Once we have our DT, the question is, how do we classify new 

incoming data? To classify new data we just need to traverse the tree and 

match each attribute in the data vector with its corresponding value in the 

incoming data vector. For instance, let’s assume x is a new incoming data 

and

X = (cloudy, warm, normal, strong)

Then, seeking a classification for X, we start traversing the tree from the 

root (Outlook). Because Outlook in X equals “cloudy”, we follow that edge 

and end up in the leaf node “Yes,” which means Play Baseball = Yes under 

X’s conditions or values.

Thus far, we know the purpose (classification) of DTs, we know what 

they look like, and we know how to classify new data once we have it 

(traversing the tree from the root, matching incoming data with attribute 

names). In the next section, we’ll examine how to generate a DT, and 

we’ll also identify some issues (such as overfitting) that could arise when 

generating a DT.

Figure 10-2.  Graphic of a DT matching the training data from 
Table 10-2 and created using MSAGL
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Note  If we traverse a DT from the root to a leaf we obtain a set 
of decision rules that describe the decision-making process; e.g., 
outlook = sunny and humidity = normal => play baseball = yes. Each 
decision rule consists of a conjunction of statements.

�Generating a Decision Tree: ID3 Algorithm
Building an optimal decision tree is a key problem in supervised learning. 

In general, multiple decision trees can be constructed from a given set 

of attributes. While some of the trees are more accurate than others, the 

problem of finding the optimal tree is computationally infeasible because 

of the exponential size of the search space.

Most algorithms that have been developed for learning DTs are 

variations of a core algorithm (Hunt’s) that employs a top-down, greedy 

search through the space of possible decision trees. Hunt’s algorithm 

grows a decision tree in a recursive fashion by partitioning the training 

data set into sequentially more granular subsets. Assuming TrainingData 

represents the current training data set (which considers only columns 

matching non-goal attributes) at node N, then Hunt’s pseudocode would 

follow the following steps:

	 1.	 In case TrainingData contains records that belong 

all to the same class, C -> N will be a leaf node 

labeled C.

	 2.	 In case TrainingData is an empty set, -> N will be 

a leaf node labeled with the most frequent class C. 

Remember, TrainingData only contains non-goal 

attribute columns; thus, C is taken from the goal-

attribute column.
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	 3.	 In case TrainingData contains records that belong 

to more than one class, use a test to select an 

attribute for splitting the data into smaller subsets 

and continue recursively applying the same 

procedure on each subset.

The ID3 algorithm uses the same idea as Hunt’s algorithm; as a matter 

of fact, if we were to look at ID3’s pseudocode, it would be almost the same 

as Hunt’s pseudocode. The main difference lies in the attribute-splitting 

test. ID3 uses the concepts of information gain and entropy to select the 

attribute with the highest information gain, and then, as occurs in Hunt’s 

algorithm, creates a new node labeled with that attribute name. It then 

creates edges going out of that new node, one for each value of the selected 

attribute, and continues recursively in each new edge.

Note  Entropy and information gain are concepts drawn from 
Information Theory, a scientific field that has its origins in a paper 
published in 1948 by Claude Shannon, known as the Father 
of the Information Age. It’s the science of operations on data 
such as compression, storage, statistical signal processing, and 
communication.

A significant point to consider when generating a DT is the size of 

the training data set. Recall that learning can be seen as approximating 

a function that best describes the training data set. This is not merely 

something that occurs in the machine learning area but also in real 

life with humans. When we learn to drive, we learn a function that is 

being described to us through a set of data that someone (instructor) is 

providing; data such as you cannot go over people, you cannot continue 

on a red light, you must go by the indicated speed limit, you handle the 

steering wheel this way, you brake using this device, and so forth. Making 
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use of this data, we eventually learn a procedure or function that allows 

us to take an action or output (such as “stop,” “continue”) after receiving 

inputs into our “drive” function (such as “red light” or “people on the 

street”). Reasonably, the more quality data we receive the better we’ll be 

able to learn an approximation of the function to which the training data 

set belongs. In Figure 10-3 we can see a graphic that describes the relation 

between the training data set size and the prediction quality offered by the 

resulting DT. As mentioned before, the larger the size of the training data 

set, the higher the chances are of correctly approximating the function to 

which it belongs.

Figure 10-3.  Graphic describing how the prediction quality increases 
as the training data set size also increases

In the following subsection we’ll examine the ideas behind the use of 

entropy and information gain, two notions taken from Information Theory 

that constitute the splitting criteria used in algorithms like ID3 and its 

descendants.
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�Entropy and Information Gain
Entropy is a measure of chaos and uncertainty; high entropy means high 

disorder or chaos, while low entropy means low uncertainty or chaos 

(Figure 10-4). The entropy function is usually denoted as H(x) where x is a 

vector containing probabilities; i.e., x p p pn= ¼1 2, , , .

Figure 10-4.  Entropy function

Looking at Figure 10-4, we can see what happens when probabilities pi 

are midway; i.e., approximately 0.5. In such a case, we have high entropy 

(close to 1). Since there’s a high uncertainty on every pi, because their 

probabilities are nearly 0.5 (or 50 percent chance), meaning they can 

either occur or not uniformly (with the same probability), then the global 

uncertainty or chaos will be also high. When each pi approximates 0 or 

1 their entropy will be low because element probabilities indicate a low 

or high chance of occurrence, hence reducing uncertainty. The entropy 

function is the following:
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entropy corresponds to the equis probable case.

	 4.	 H X H p p H p p .n n( ) = ¼[ ]( ) = ¼[ ]( )1 10, , , , ,

Going back to the ID3 algorithm, our goal when splitting the tree 

will be to select the attribute that achieves the greatest reduction in 

entropy (disorder, chaos, uncertainty). How do we measure this expected 

reduction? We use a concept drawn from Information Theory known as 

information gain that has the following formula:

G S A H S
S

S
H S

v Values A

A v
A v,( ) = ( ) - * ( )

Î ( )

=
=å

where S is the training data set for the current node in the DT, Values(A) 

represents the set of values corresponding to attribute A, and SA v=  is the 

subset of S whose value for attribute A equals v.
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Information gain can be defined as the expected reduction of entropy 

in S due to sorting on attribute A. It answers the question, How well is the 

resulting set going to be formed or ordered if we pick attribute A? Gain is 

calculated as the entropy of the entire set S minus the summation of the 

probability of A = v in S; i.e. ( S

S
A v= ), times the entropy of subset SA v= .

This is the test that ID3 uses in order to select an attribute for splitting 

the tree, and it will select that attribute which provides the highest gain. 

Now that we have gathered all the necessary pieces for building our ID3 

algorithm, we’ll start diving, from the next section on, into implementation 

issues and develop our ID3 method in C#.

Note  An ideal attribute would divide the training data set into 
subsets that are all positive or all negative (with regards to the goal 
attribute); i.e., that provide the maximum information gain.

�Practical Problem: Implementing the ID3 Algorithm
To begin the implementation of our ID3 algorithm, we’ll start by creating 

two classes (Listing 10-1) to handle attributes and the training data set.

Listing 10-1.  Attribute and TrainingDataSet Classes

public class Attribute

{

        public string Name { get; set; }

        public string[] Values { get; set; }

        public TypeAttrib Type { get; set; }

        public TypeValTypeVal{ get; set; }

        �public Attribute(string name, string [] values, 

TypeAttrib type, TypeValtypeVal)
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        {

            Name = name;

            Values = values;

            Type = type;

TypeVal = typeVal;

        }

}

    public enumTypeAttrib

    {

        Goal, NonGoal

    }

    public enumTypeVal

    {

        Discrete, Continuous

    }

public class TrainingDataSet

    {

        public string [,] Values { get; set; }

        public Attribute GoalAttribute{ get; set; }

        public List<Attribute>NonGoalAttributes{ get; set; }

        �public TrainingDataSet(string [,] values, 

IEnumerable<Attribute>nonGoal, Attribute goal)

        {

            �Values = new string[values.GetLength(0), values.

GetLength(1)];

            �Array.Copy(values, Values, values.GetLength(0) * 

values.GetLength(1));

            NonGoalAttributes = new List<Attribute>(nonGoal);

GoalAttribute = goal;
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            if (NonGoalAttributes.Count + 1 != Values.GetLength(1))

                �throw new Exception("Number of attributes must 

coincide");

        }

    }

The Attribute class contains the following fields and properties:

•	 Name: property defining the name of the attribute

•	 Values: property defining the set of values for the 

attribute

•	 Type: property defining the type of attribute, either goal 

or non-goal

•	 TypeVal: property defining the type of value for the 

attribute, either discrete or continuous. We’ll examine 

continuous attributes when we look at the C4.5 

algorithm.

The TrainingDataSet class includes the following properties and fields:

•	 Values: matrix detailing values of the training data set

•	 GoalAttribute: defines the goal attribute of the 

training data set

•	 NonGoalAttribute: defines the set of non-goal 

attributes

As we can see, the TrainingDataSet class feeds from the Attribute 

class; a first piece of the DecisionTree class is shown in Listing 10-2.
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Listing 10-2.  DecisionTree Class

public class DecisionTree

    {

        public TrainingDataSetDataSet{ get; set; }

        public string Value { get; set; }

        public List<DecisionTree> Children { get; set; }

        public string Edge { get; set; }

        public DecisionTree(TrainingDataSetdataSet)

        {

DataSet = dataSet;

        }

        �public static DecisionTreeLearn(TrainingDataSetdataSet, 

DtTrainingAlgorithm algorithm)

        {

            if (dataSet == null)

                throw new Exception("Data Set cannot be null");

            switch (algorithm)

            {

                default:

                    �return Id3(dataSet.Values, dataSet.

NonGoalAttributes, "root");

            }

        }

        public DecisionTree(string value, string edge)

        {

            Value = value;

            Children = new List<DecisionTree>();

            Edge = edge;

        }
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        public void Visualize()

        {

var form = new Form();

            //create a viewer object

var viewer = new GViewer();

            //create a graph object

var graph = new Graph("Decision Tree");

            //create the graph content

CreateNodes(graph);

            //bind the graph to the viewer

viewer.Graph = graph;

            //associate the viewer with the form

form.SuspendLayout();

viewer.Dock = DockStyle.Fill;

form.Controls.Add(viewer);

form.ResumeLayout();

            //show the form

form.ShowDialog();

        }

        private void CreateNodes(Graph graph)

{

varqueue = new Queue<DecisionTree>();

queue.Enqueue(this);

graph.CreateLayoutSettings().EdgeRoutingSettings.

EdgeRoutingMode = EdgeRoutingMode.StraightLine;

var id = 0;
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            while (queue.Count> 0)

            {

varcurrentNode = queue.Dequeue();

                Node firstEnd;

                �if (graph.Nodes.Any(n =>n.LabelText == 

currentNode.Value))

firstEnd = graph.Nodes.First(n =>n.LabelText == currentNode.Value);

                else

firstEnd = new Node((id++).ToString()) { LabelText = 

currentNode.Value };

graph.AddNode(firstEnd);

foreach (vardecisionTree in currentNode.Children)

                {

varsecondEnd = new Node((id++).ToString()) { LabelText = 

decisionTree.Value };

graph.AddNode(secondEnd);

graph.AddEdge(firstEnd.Id, decisionTree.Edge, secondEnd.Id);

queue.Enqueue(decisionTree);

                }

            }

        }

}

    public enumDtTrainingAlgorithm

    {

        Id3,

    }

This class contains the following properties:

•	 Dataset: This is the method receiving the training data 

set as input and also the type of learning algorithm 

used during the learning phase.
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•	 Value: defines the value of the node representing the 

root of this decision tree

•	 Children: defines the set of children for the current 

decision tree

•	 Edge: defines, as a string, the label of the edge 

connecting this node to its parent

Additionally, the DecisionTree class includes the following methods:

•	 Learn(): This is the method receiving the training data 

set as input and also the type of learning algorithm 

used during the learning phase.

•	 Visualize(): This method uses the MSAGL graphic 

tool to visualize the resulting tree after the learning 

phase is complete.

•	 CreateNodes(): This method executes a BFS algorithm 

to traverse the decision tree created by the ID3 

algorithm, and as it traverses it creates an equivalent 

tree labeled using MSAGL facilities.

The ID3 algorithm and its supporting methods, all part of the 

DecisionTree class, are illustrated in Figure 10-3.

Listing 10-3.  ID3 Algorithm

        �public static DecisionTree Id3(string [,] values, 

List<Attribute> attributes, string edge)

        {

            // All training data has the same goal attribute

vargoalValues = values.GetColumn(values.GetLength(1) - 1);

            if (goalValues.DistinctCount() == 1)

                return new DecisionTree(goalValues.First(), edge);
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            // There are no NonGoal attributes

            if (attributes.Count == 0)

                �return new DecisionTree(goalValues.

GetMostFrequent(), edge);

            �// Set as root the attribute providing the highest 

information gain

varattrIndexPair = HighestGainAttribute(values, attributes);

varattr = attrIndexPair.Item1;

varattrIndex = attrIndexPair.Item2;

var root = new DecisionTree(attr.Name, edge);

foreach (var value in attr.Values)

            {

varsubSetVi = values.GetRowIndex(attrIndex, value, 

ComparisonType.Equality);

                if (subSetVi.Count == 0)

root.Children.Add(new DecisionTree(goalValues.

GetMostFrequent(), value));

                else

                {

varnewAttrbs = new List<Attribute>(attributes);

newAttrbs.RemoveAt(attrIndex);

varnewValues = values.GetMatrix(subSetVi).

RemoveColumn(attrIndex);

root.Children.Add(Id3(newValues, newAttrbs, attr.Name + " : " + 

value));

                }

            }

            return root;

        }
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        �private static Tuple<Attribute, int>HighestGainAttribute 

(string [,] values, IEnumerable<Attribute> attributes)

        {

            Attribute result = null;

varmaxGain = double.MinValue;

var index = -1;

vari = 0;

foreach (varattr in attributes)

            {

                double gain = Gain(values, i);

                if (gain >maxGain)

                {

maxGain = gain;

                    result = attr;

                    index = i;

                }

i++;

            }

            return new Tuple<Attribute, int>(result, index);

        }

        �private static double Gain(string [,] values, 

intattributeIndex)

        {

varimpurityBeforeSplit = Entropy(values.

GetFreqPerDistinctElem(values.GetLength(1) - 1).GetProbabilities());

varimpurityAfterSplit= SubsetEntropy(values, attributeIndex);

            return impurityBeforeSplit - impurityAfterSplit;

        }
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        private static double Entropy(IEnumerable<double>probs)

        {

            return -1 * probs.Sum(d =>LogEntropy(d));

        }

        private static double LogEntropy(double p)

        {

            return p >0 ? p * Math.Log(p, 2) : 0;

        }

        �private static double SubsetEntropy(string[,] values, 

intcolumnIndex)

        {

varfreqDicc = values.GetFreqPerDistinctElem(columnIndex);

var result = 0.0;

var sum = freqDicc.Values.Sum();

foreach (var key in freqDicc.Keys)

            {

varrowIndex = values.GetRowIndex(columnIndex, key, 

ComparisonType.Equality);

varfrequencyPerClass = values.GetFreqPerDistinctElem(values.

GetLength(1) - 1, rowIndex.ToArray());

                �result += (freqDicc[key] / (double) sum) * 

Entropy(frequencyPerClass.GetProbabilities());

            }

            return result;

        }

    }
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In Listing 10-3, we are using several extension methods, some 

belonging to the Accord .NET package and some others belonging to 

an extension class that we created to support some of the operations 

that necessarily need to be handled in the ID3 algorithm and that if 

were included directly in the code of the method would obscure its 

understanding, legibility, and clarity. Furthermore, since every method 

in the class is self-descriptive and matches the pseudocode previously 

presented, we’ll focus on explaining the extension methods shown in 

Listing 10-4; these methods belong to an extension class.

Listing 10-4.  Extension Methods

public static string GetMostFrequent(this string[] values)

        {

vardicc = new Dictionary<string, int>();

foreach (var v in values)

            {

                if (!dicc.ContainsKey(v))

dicc.Add(v, 1);

else

dicc[v] += 1;

            }

varmaxVal = dicc.Max(e =>e.Value);

return dicc.First(p =>p.Value == maxVal).Key;

        }

        �public static Dictionary<string, 

int>GetFreqPerDistinctElem(this string [,] values, 

intcolumnIndex, int [] rowIndex = null )

{

varfreqDicc = new Dictionary<string, int>();
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            �for (vari = 0; i< (rowIndex == null ?values.

GetLength(0) : rowIndex.Length); i++)

            {

var row = rowIndex == null ?i : rowIndex[i];

                if (!freqDicc.ContainsKey(values[row, columnIndex]))

freqDicc.Add(values[row, columnIndex], 1);

                else

freqDicc[values[row, columnIndex]] += 1;

            }

            return freqDicc;

}

        �public static List<int>GetRowIndex(this string[,]  

values, intcolumnIndex, string toCompare, 

ComparisonTypecomparisonType)

        {

var result = new List<int>();

            for (vari = 0; i<values.GetLength(0); i++)

            {

                switch (comparisonType)

                {

                        case ComparisonType.Equality:

                            �if (values[i, columnIndex] == 

toCompare)

result.Add(i);

                            break;

                        case ComparisonType.NumericLessThan:

                            �if (double.Parse(values[i, columnIndex])  

<double.Parse(toCompare))
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result.Add(i);

                            break;

                        case ComparisonType.NumericGreaterThan:

                            �if (double.Parse(values[i, columnIndex])  

>double.Parse(toCompare))

result.Add(i);

                            break;

                }

            }

            return result;

        }

        �public static string[,] GetMatrix(this string[,] 

values, List<int>rowIndex)

        {

var result = new string[rowIndex.Count, values.GetLength(1)];

var j = 0;

foreach (vari in rowIndex)

            {

result.SetRow(j, values.GetRow(i));

j++;

            }

            return result;

        }

        �public static IEnumerable<double>GetProbabilities(this 

Dictionary<string, int>dicc)

        {

var probabilities = new List<double>();

var sum = dicc.Values.Sum();
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foreach (var e in dicc)

probabilities.Add((e.Value / (double) sum));

            return probabilities;

        }

public enumComparisonType

    {

Equality, NumericGreaterThan, NumericLessThan

    }

The descriptions of the previous extension methods are detailed here:

•	 GetMostFrequent(): returns the most frequent 

element from an array of strings received as argument; 

extension method of string []

•	 GetFreqPerDistinctElem(): returns the frequency 

(number of times it appears) of elements in the 

indicated column and in the indicated set of rows  

(if any, it’s an optional argument); extension method of 

string [,]

•	 GetRowIndex(): returns the set of indices matching 

rows whose value at the column index received as 

argument satisfy the comparison criteria defined by 

ComparisonType and consider the comparison string 

detailed as argument; extension method of string [,]

•	 GetMatrix(): returns a new matrix containing only 

those rows whose index in the original matrix matches 

an integer in the list received as argument. It uses the 

SetRow() method belonging to Accord .NET; extension 

method of string [,]
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•	 GetProbabilities(): returns the probability of 

each element x in the input dictionary as value(x) 

/ total(S) where total(S) is the sum of all element 

values in the input dictionary; extension method of 

Dictionary<string, int>

Now that we have fully detailed every component of our ID3 

implementation, let’s see how to test our algorithm in a console 

application by including the code shown in Listing 10-5.

Listing 10-5.  Testing Our DecisionTree Class and the ID3 Algorithm 

in a Console Application

var values = new [,]

                             {

{ "sunny", "warm", "high", "weak", "no" },

{ "sunny", "warm", "high", "strong", "no" },

{ "cloudy", "warm", "high", "weak", "yes" },

{ "rainy", "temperate", "high", "weak", "yes" },

{ "rainy", "cold", "normal", "weak", "yes" },

{ "rainy", "cold", "normal", "strong", "no" },

{ "cloudy", "cold", "normal", "strong", "yes" },

{ "sunny", "temperate", "high", "weak", "no" },

{ "sunny", "cold", "normal", "weak", "yes" },

{ "rainy", "temperate", "normal", "weak", "yes" },

{ "sunny", "temperate", "normal", "strong", "yes" },

{ "cloudy", "temperate", "high", "strong", "yes" },

{ "cloudy", "warm", "normal", "weak", "yes" },

{ "rainy", "temperate", "high", "strong", "no" },

                             };

varattribs = new List<Attribute>

                              {
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                                  �new Attribute("Outlook", 

new[] { "sunny", "cloudy", 

"rainy" }, TypeAttrib.

NonGoal, TypeVal.Discrete),

                                  �new Attribute("Temperature", 

new[] { "warm", "temperate", 

"cold" }, TypeAttrib.NonGoal, 

TypeVal.Discrete),

                                  �new Attribute("Humidity", 

new[] { "high", "normal" }, 

TypeAttrib.NonGoal, TypeVal.

Discrete),

                                  �new Attribute("Wind", new[] 

{ "weak", "strong" }, 

TypeAttrib.NonGoal, TypeVal.

Discrete),

                              };

vargoalAttrib = new Attribute("Play Baseball", new[] { "yes", 

"no" }, TypeAttrib.Goal, TypeVal.Discrete);

vartrainingDataSet = new TrainingDataSet(values, attribs, 

goalAttrib);

vardtree = DecisionTree.Learn(trainingDataSet, 

DtTrainingAlgorithm.Id3);

dtree.Visualize();

The result obtained after executing the code presented in Listing 10-5 

can be seen in Figure 10-5; the reader can verify it exactly coincides with 

the DT shown in Figure 10-2. The same occurs with the training data set of 

Listing 10-5 and the one illustrated in Table 10-2.
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At the moment, we have covered the basics of DTs, explained the 

functioning of the ID3 algorithm, and introduced a practical problem 

where we implemented the ID3 algorithm. In the upcoming sections we’ll 

explain some of the difficulties or disadvantages of the ID3 algorithm and 

how its improved version, the C4.5 algorithm, overcomes these difficulties 

and provides a more efficient DT by applying pruning techniques to 

handle missing values and attributes whose values can be continuous 

instead of discrete.

�C4.5 Algorithm
The C4.5 algorithm (Quinlan, 1993) represents an extension or 

enhancement over ID3’s shortcomings. Its improvement lies in three 

main points: handling continuous attributes (remember ID3 deals only 

with categorical attributes), handling missing values, and taking care of 

overfitting issues by pruning the tree in the end.

Figure 10-5.  DT obtained after executing our console application 
program

Chapter 10  Decision Trees



394

Overfitting is the problem that arises when the resulting DT fits too 

well the training data set. As a result, the DT ends up poorly predicting 

new incoming data because it creates an inappropriate dependency or 

overfitting structure on the learned training data set. To understand a bit 

better the problem of overfitting, let’s consider an experiment where we 

want to predict the outcome of a die, and the training data set consists 

of the date, time when the roll occurs and also the die’s color. What may 

happen here is that the learner constructs a DT that fits the data but that 

considers irrelevant attributes such as color unrelated to the outcome. 

This situation can be typically found in data containing lots of attributes 

or features. When dealing with training data or objects that possess a large 

number of attributes, we could find many meaningless attributes that are 

irrelevant when compared to the truly significant attributes that ultimately 

decide the outcome of the upcoming data.

How can we approach this problem? There exist two major approaches to 

counteracting overfitting problems. First, to stop the growth of the tree in the 

early stages of the generation process and before reaching the point at which 

it perfectly classifies the training data set. Second, to prune the tree after it has 

been generated. The second approach has been more successful than the first, 

mainly because knowing when to stop the growth of the tree can be a tricky 

task. Once we begin the pruning process, a fundamental question is how to 

decide if a subtree is worth pruning; in other words, what criteria should we 

use for pruning, and how should we carry out this process?

Even though there are diverse strategies for carrying out the pruning 

process of a DT, the most popular approach relies on cross-validation, 

a statistical technique that divides the training data set S into subsets 

S1, S2 and then uses the first subset for training and generating a DT and 

the second subset for testing how well the resulting DT is performing 

on classifying data coming from validation set S2. Cross-validation is 

combined with a post-pruning measure that gives us an assessment of how 

well the resulting DT will do after pruning. The most common measures 

are error reduction and rule pruning.
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The pseudocode of the error-reduction criteria would be the following:

•	 Classify training data in the validation set S2using the 

DT (Figure 10-6).

•	 For each node X:

•	 Find the sum of errors of the entire subtree rooted at X.

•	 Calculate the error of the same training data but 

once X has been transformed into a leaf node 

and assigned the most common class of all of its 

descendants.

•	 Compare both values and prune the one with the 

highest reduction in error.

•	 Repeat until error is no longer reduced.

Figure 10-6 illustrates a subtree where a plus sign indicates a training 

data correctly classified and a minus sign represents a training data 

incorrectly classified.

Figure 10-6.  Validation set consisting of 16 training data classified by 
the DT. A positive number indicates a training data correctly classified 
by the DT, and a minus indicates an error in classification
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The error-reduction measure is, at the same time, typically used in 

conjunction with a subtree simplification operator or pruning technique 

known as subtree replacement where each internal node of the DT happens 

to be a candidate node for pruning in a bottom-up approach that prunes 

a tree only after examining its subtrees. In this sense, pruning can be 

translated as deleting a subtree of the DT and replacing it with a leaf whose 

value corresponds to the most frequent class found in all leaves of the 

subtree, as the previous pseudocode describes.

A subtree is finally pruned if the resulting DT behaves worse than the 

previous one when tested against validation set S2. Nodes in the DT are 

pruned iteratively, selecting always those that increase the efficiency of the 

resulting DT over the validation set. This will cause any leaf node created 

based on coincidental regularities while learning on the training data set 

to be pruned when double checking the validation set since the same 

coincidental regularities are not likely to also happen on the validation set.

The other criteria, rule pruning, converts the learned DT into a set of 

rules, one for each possible path from the root to a leaf node. It involves the 

following steps:

•	 Classify training data in the validation set S2 using the 

DT (Figure 10-6).

•	 Convert the learned DT into a set of rules, one for each 

possible path from the root to a leaf node.

•	 Prune or generalize each rule by pruning preconditions 

that result in improving its estimated accuracy.

•	 Sort the pruned rules by their estimated accuracy 

and consider them in this order when classifying new 

incoming data.

Chapter 10  Decision Trees



397

In this sense, rule preconditions represent attribute tests from the root 

to a leaf node, and the value or classification at that leaf becomes the rule 

consequence or postcondition. For instance, if (outlook = sunny ^ humidity =  

normal) is a precondition and playBaseball = yes is the consequent. 

Afterward, each rule is pruned by removing its precondition if its removal 

does not affect the estimated accuracy of the DT before pruning.

Another distinguishing feature of the C4.5 algorithm is that it uses a 

different measure for selecting the attribute to split on; instead of using 

information gain it uses gain ratio, whose formula is as follows:

GainRatio S A
Gain S A

SplitInformation S A
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,

,
( ) = ( )

( )
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where Si are the subsets after partitioning S with respect to attribute A 

containing n possible values. The gain ratio measure overcomes the 

downfalls of information gain, whose main disadvantage is favoring 

attributes with the largest number of values. For instance, consider a Date 

attribute with the many values it could include; because the size of this 

set might be huge it will probably divide the entire set of training data into 

smaller subsets whose entropy will be very low; hence, the information 

gain will be very high. Gain ratio penalizes those attributes with multiple 

values uniformly distributed.

Handling continuous attributes is one of the major advantages that 

C4.5 provides over its predecessor ID3. To handle continuous attributes, 

C4.5 partitions the set of values into a discrete set of intervals. It creates 

a binary decision node that divides the range of possible values into 

two subsets, those satisfying < X and those satisfying >= X where X is a 

threshold to be decided. This procedure assumes the existence of a total 
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order in the set of continuous values. The key point is finding the value 

X (threshold) on which the partition will be made. The most common 

approach is to sort the values of the training data set in increasing order; 

loop through the list of sorted values while comparing goal attributes of 

consecutives elements (i, i + 1); calculate (if and only if their goal attributes 

differ) the threshold as the average of those two consecutive elements 

(i.e., X'=(L[i] + L[i+1])/2); compute the information gain achieved on 

partitioning the attribute on the threshold X' (considering subsets of 

elements less than X', greater than X'; and select the one providing the 

highest information gain. Note that we consider consecutive elements 

only when their classes are different. We would never consider elements 

L[i], L[i + 1] (where L is the list of sorted values on the continuous 

attribute) if they both have the same class C (Figure 10-7).

Figure 10-7.  After incrementally sorting values we examine those 
consecutive values whose goal attribute is different

For handling missed values, there exist different strategies, and the 

process is usually executed prior to executing any DT learning algorithm. 

The simplest strategy is to simply ignore missed values, not considering 

them when calculating entropy. A smarter strategy would be to assign the 

most common value of that attribute in the training data set to the missing 

value. Lastly, a more complex approach would be to assign probabilities for 

each possible value of the missing attribute A and then create branches on 

that node for each probability calculated. For instance, assuming we have a 

binary attribute A whose values are P, Q, ten known values for this attribute, 

six for attribute P, four for value Q, then this approach would create two 

branches corresponding to the 0.6 probability of the attribute’s having value 

P and another one related to the odds of the attribute’s having value Q.
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�Practical Problem: Implementing the C4.5 
Algorithm
In this section, we’ll present an implementation of the C4.5 algorithm 

that will include different features such as handling continuous attributes 

and the gain ratio measure. The pruning techniques and strategies for 

handling missed values will be left to the reader as an exercise and as a way 

to complement the code herein presented. The main coding task to move 

from ID3 to C4.5 lies in the adaptation to handle continuous values; hence, 

we present it in this section.

As expected, ID3 and C4.5 share almost the same code. Base 

conditions are the same, and the main differences lie within the main 

body. Listing 10-6 shows the access point of the C4.5 algorithm; remember 

that this method is to be added to the DecisionTree class we have been 

developing throughout the chapter.

Listing 10-6.  Main Body of C4.5 Algorithm

public static DecisionTreeC45(string [,] values, 

List<Attribute> attributes, string edge)

        {

            // All training data has the same goal attribute

vargoalValues = values.GetColumn(values.GetLength(1) - 1);

            if (goalValues.DistinctCount() == 1)

                return new DecisionTree(goalValues.First(), edge);

            // There are no NonGoal attributes

            if (attributes.Count == 0)

                �return new DecisionTree(goalValues.

GetMostFrequent(), edge);

            �// Set as root the attribute providing the highest 

information gain
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varattrIndexPair = HighestGainAttribute(values, attributes);

varattr = attrIndexPair["attrib"] as Attribute;

varattrIndex = (int) attrIndexPair["index"];

var threshold = (int) attrIndexPair["threshold"];

var less = (List<int>) attrIndexPair["less"];

var greater = (List<int>) attrIndexPair["greater"];

var root = new DecisionTree(attr.Name, edge);

varsplittingVals = attr.TypeVal == TypeVal.Discrete ? attr.Values

                                              �: new [] { "less"  

+ threshold, 

"greater" + 

threshold } ;

foreach (var value in splittingVals)

            {

                List<int>subSetVi;

                if (attr.TypeVal == TypeVal.Discrete)

subSetVi = values.GetRowIndex(attrIndex, value, ComparisonType.

Equality);

                else

subSetVi = value.Contains("less") ? less : greater;

                if (subSetVi.Count == 0)

root.Children.Add(new DecisionTree(goalValues.

GetMostFrequent(), value));

                else

                {

varnewAttrbs = new List<Attribute>(attributes);

newAttrbs.RemoveAt(attrIndex);

varnewValues = values.GetMatrix(subSetVi).

RemoveColumn(attrIndex);
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root.Children.Add(Id3(newValues, newAttrbs, attr.Name + " : " + 

value));

                }

            }

            return root;

        }

In this case, TypeVal is an enum attached to the Attribute class that 

allows us to know whether an attribute is discrete or continuous. Notice 

the code is very similar to that of ID3, but a significant difference can be 

found in the HighestGainAttribute() method, which now provides us 

with more information, mainly information related to the continuous 

attribute handling. Such a method is illustrated in Listing 10-7.

Listing 10-7.  HighestGainAttribute() Method for Continuous Attributes

        �private static Dictionary<string, dynamic>HighestGain 

Attribute(string [,] values, IEnumerable<Attribute>attributes)

        {

            Attribute result = null;

varmaxGain = double.MinValue;

var index = -1;

            double threshold = -1.0;

vari = 0;

            List<int>bestLess = null;

            List<int>bestGreater = null;

foreach (varattr in attributes)

            {

                double gain = 0;

                Dictionary<string, dynamic>gainThreshold = null;
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                if (attr.TypeVal == TypeVal.Discrete)

                    gain = Gain(values, i);

                if (attr.TypeVal == TypeVal.Continuous)

                {

gainThreshold = GainContinuous(values, i);

                    gain = gainThreshold["gain"];

                }

                if (gain >maxGain)

                {

maxGain = gain;

                    result = attr;

                    index = i;

                    if (gainThreshold != null)

                    {

                        threshold = gainThreshold["threshold"];

bestLess = gainThreshold["less"];

bestGreater = gainThreshold["greater"];

                    }

                }

i++;

            }

            return new Dictionary<string, dynamic> {

{ "attrib" , result },

{ "index" , index },

{ "less" , bestLess },

{ "greater" , bestGreater },

{ "threshold" , threshold },

                                                   };

        }
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In this new or continuous version of the HighestGainAttribute() 

method, we make a differentiation in regards to the attribute’s being 

discrete or continuous. Also note that in this case the method returns a 

dictionary containing the selected attribute, its index, and, if the selected 

attribute is continuous, two lists of index positions (less, greater), along 

with the double-value threshold. For calculating the gain of a continuous 

attribute it uses the GainContinuous() method shown in Listing 10-8.

Listing 10-8.  GainContinuous() Method for Calculating the Gain of 

Continuous Attributes

        �private static Dictionary<string, dynamic>GainContinuous 

(string[,] values, inti)

        {

var column = values.GetColumn(i);

varcolumnVals = column.Select(double.Parse).ToList();

varbestGain = double.MinValue;

varbestThreshold = 0.0;

            List<int>bestLess = null;

            List<int>bestGreater = null;

columnVals.Sort();

            for (var j = 0; j <columnVals.Count - 1; j++)

            {

                �if (columnVals[j] != columnVals[j + 1] && 

values[j, values.GetLength(1) - 1] != values[j 

+ 1, values.GetLength(1) - 1])

                {

var threshold = (columnVals[j] + columnVals[j + 1])/2;

var less = values.GetRowIndex(i, threshold.ToString(), 

ComparisonType.NumericLessThan);
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var greater = values.GetRowIndex(i, threshold.ToString(), 

ComparisonType.NumericGreaterThan);

var gain = Gain(values, i, threshold, less, greater);

                    if (gain >bestGain)

                    {

bestGain = gain;

bestThreshold = threshold;

bestLess = less;

bestGreater = greater;

                    }

                }

            }

            return new Dictionary<string, dynamic>

                       {

{ "gain" , bestGain },

{ "threshold" , bestThreshold },

{ "less", bestLess },

{ "greater", bestGreater },

                       };

        }

In the GainContinuous() method we partition the set of possible 

values of a continuous attribute and create a binary distinction on the 

threshold value, which is, as we recall, the average of consecutive pairs (in 

the list of sorted values) yielding the highest information gain. Output in 

this case is a dictionary holding the gain, threshold double values, and the 

less, greater lists.

Remember that in C4.5 we use the GainRatio criteria for selecting 

the attribute to split on; the C# method calculating this measure is shown 

in Listing 10-9. In the same listing we can see the SplitInformation 

procedure on which GainRatio relies, as described in prior sections.
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Listing 10-9.  GainRatio() and SplitInformation()

private static double GainRatio(string[,] values, 

intattributeIndex, double threshold = -1, List<int> less = 

null, List<int> greater = null)

        {

            �return Gain(values, attributeIndex, threshold, 

less, greater) / SplitInformation(values, 

attributeIndex);

        }

        �private static double SplitInformation(string[,] 

values, intattributeIndex)

        {

varfreq = values.GetFreqPerDistinctElem(attributeIndex);

var total = freq.Sum(t =>t.Value);

var result = 0.0;

foreach (var f in freq)

                �result += (double)f.Value / total * Math.

Log((double)f.Value / total, 2);

            return -result;

        }

Since GainRatio() requires the computation of Gain(), we need to 

adapt it a little bit to the continuous case—the case where we have two 

sets of values, one less and the other greater than a calculated threshold. 

Listing 10-10 shows the adaptation of the Gain() method, which is 

enclosed in the if(threshold >= 0) statement.
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Listing 10-10.  Gain() Adaptation to Handle the Continuous Case

        �private static double Gain(string [,] values, 

intattributeIndex, double threshold = -1, List<int> 

less = null, List<int> greater = null)

        {

varimpurityBeforeSplit = Entropy(values.

GetFreqPerDistinctElem(values.GetLength(1) - 1).GetProbabilities());

            double impurityAfterSplit = 0;

            if (threshold >= 0)

            {

varfreq = new Dictionary<string, int>{  {"less", less.Count}, 

{"greater", greater.Count}  };

                for (vari = 0; i<freq.Count; i++)

impurityAfterSplit += SubsetEntropy(values, attributeIndex, 

freq, less, greater);

            }

            else

impurityAfterSplit = SubsetEntropy(values, attributeIndex);

            return impurityBeforeSplit - impurityAfterSplit;

        }

SubsetEntropy() is another method that we need to slightly modify to 

make it fit the continuous case and consider the less, greater set of values. 

This modification is illustrated in Listing 10-11.

Listing 10-11.  Modification to the SubsetEntropy() Method

private static double SubsetEntropy(string[,] values, 

intcolumnIndex, Dictionary<string, int>freqContinous = null,

        List<int> less = null, List<int> greater = null)

        {
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var result = 0.0;

varfreqDicc = freqContinous ?? values.GetFreqPerDistinctElem 

(columnIndex);

var total = freqDicc.Values.Sum();

foreach (var key in freqDicc.Keys)

            {

                List<int>rowIndex;

                switch (key)

                {

                    case "less":

rowIndex = less;

                        break;

                    case "greater":

rowIndex = greater;

                        break;

                    default:

rowIndex = values.GetRowIndex(columnIndex, key, ComparisonType.

Equality);

                        break;

                }

varfrequencyPerClass = values.GetFreqPerDistinctElem(values.

GetLength(1) - 1, rowIndex.ToArray());

                �result += (freqDicc[key] / (double) total) * 

Entropy(frequencyPerClass.GetProbabilities());

            }

            return result;

         }
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Note  The ?? operator is called the null-coalescing operator. It 
returns the left-hand operand if the operand is not null; otherwise, it 
returns the right-hand operand.

In order to test our C4.5 algorithm we can add the code from Listing 

10-12 to a console application.

Listing 10-12.  Testing Our C4.5 Algorithm in a Console Application

var values = new [,]

{ { "sunny", "12", "high", "weak", "no" },

{ "sunny", "12", "high", "strong", "no" },

{ "cloudy", "14", "high", "weak", "yes" },

{ "rainy", "12", "high", "weak", "yes" },

{ "rainy", "20", "normal", "weak", "yes" },

{ "rainy", "20", "normal", "strong", "no" },

{ "cloudy", "20", "normal", "strong", "yes" },

{ "sunny", "12", "high", "weak", "no" },

{ "sunny", "14", "normal", "weak", "yes" },

{ "rainy", "20", "normal", "weak", "yes" },

{ "sunny", "14", "normal", "strong", "yes" },

{ "cloudy", "20", "high", "strong", "yes" },

{ "cloudy", "20", "normal", "weak", "yes" },

{ "rainy", "14", "high", "strong", "no" }, };

varattribs = new List<Attribute>

                              {

                                  �new Attribute("Outlook", new[]  

{ "sunny", "cloudy", "rainy" 

}, TypeAttrib.NonGoal, 

TypeVal.Discrete),
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                                  �new Attribute("Temperature", 

new[] { "12", "14", "20" }, 

TypeAttrib.NonGoal, TypeVal.

Continuous),

                                  �new Attribute("Humidity", 

new[] { "high", "normal" }, 

TypeAttrib.NonGoal, TypeVal.

Discrete),

                                  �new Attribute("Wind", new[] 

{ "weak", "strong" }, 

TypeAttrib.NonGoal, TypeVal.

Discrete),

                              };

vargoalAttrib = new Attribute("Play Baseball", new[] { "yes", 

"no" }, TypeAttrib.Goal, TypeVal.Discrete);

vartrainingDataSet = new TrainingDataSet(values, attribs, goalAttrib);

vardtree = DecisionTree.Learn(trainingDataSet, 

DtTrainingAlgorithm.C45);

dtree.Visualize();

The result obtained after executing the code from Listing 10-12 can be 

seen in Figure 10-8.

Figure 10-8.  Resulting DT after executing the code from Listing 10-12
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We didn’t include any code related to the handling of missing values 

feature, but using the very simple strategy of ignoring them, we can create 

a C# method that receives the training data set as input, and examines 

each cell of the matrix replacing any unknown value with a 0, making it not 

count for entropy calculations. As mentioned before, pruning techniques 

are left to the reader for implementation and complementary exercise.

�Summary
In this chapter, we examined DTs, an implementation of a classification 

model with a treelike data structure where decision rules can be found 

traversing the tree from the root to any leaf. We described the basic, most 

popular algorithm for generating DTs (ID3), and an implementation in 

C# was detailed; such an implementation included a Windows Forms 

application that graphically showed the resulting DT using MSAGL.

We also explained the C4.5 algorithm, an improved version of ID3 

where continuous attributes, missing values in the training data set, and 

overfitting issues are handled. An implementation in C# of this algorithm 

included the most significant coding details, which lay mainly on the 

handling continuous attributes feature. Implementation of pruning 

techniques were left to the reader as an exercise.
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CHAPTER 11

Neural Networks
In this chapter, we will be discussing artificial neural networks, a family 

of algorithms very popular in the area of supervised learning (and also 

applicable to unsupervised learning and reinforcement learning) that try 

to mimic or model the human brain’s functioning to solve problems that, 

as with SVMs and DTs, rely on learning or approximating a function F 

defined by a table of training data in the form of pairs (data, classification). 

This function F is the result of the learning process and is known as the 

approximated or learned function. It is later used to classify or predict the 

class of new incoming data.

As we have seen so far, many of the algorithms, methods, and tools 

used in artificial intelligence— and especially in supervised learning—are 

closely related to other areas of knowledge, such as algebra, mathematical 

analysis, and mathematical optimization. Because learning in life relates 

to a process in which we “improve” or learn how to do certain things on a 

timeline (considering time), and that’s precisely the goal of optimization 

algorithms—to optimize (either minimize or maximize) a function through 

iterative processes—then neural networks will not be the exception, and 

we will keep the same pattern of using optimization techniques to learn 

and construct a function that predicts the class of input data.

In this chapter, we’ll introduce neural networks (NNs) and describe 

their functioning and how they simulate the way our neurons work all 

together. We’ll implement the Perceptron algorithm, one of the oldest 

and simplest NN models. We will also implement the Adaline NN model 



412

since it will be a useful introduction to the topic of multi-layer NNs; the 

optimization technique it uses resembles that of the last algorithm to be 

examined in this chapter, the popular backpropagation algorithm for 

learning in multi-layer NNs.

Note  NNs can be applied to multiple problems, among which it 
would be worth mentioning pattern, shape, face, and handwritten 
recognition, autonomous vehicle driving, and many others. The study 
of brain-style computation has its roots in the work of McCulloch 
and Pitts (1943) and later in Hebb’s famous Organization of Behavior 
(1949).

�What Is a Neural Network?
A neuron is a type of cell of the nervous system (Figure 11-1) that possesses 

a plasmatic membrane that allows it to receive stimulus from external 

elements and transmit signals to other neurons or to different types of 

cells of the human brain. The signals they either receive or send are 

electrochemical; thus, neurons are responsible for collecting, processing, 

and transmitting electrochemical signals. When several neurons are 

connected through their synapses they are said to be defining a neural 

network. In this network, a neuron fires or sends a signal when the 

excitation of all electrochemical signals received from all other neurons 

connected to it is high enough.
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Finding an analogous model in the mathematical AI world, a neuron 

can be seen as a mathematical object or function that receives numeric 

inputs x1, x2, …, xn from all neurons that connect to it and combines these 

values, calculating a weighted sum as a way to give a certain “relevance” 

to each connection by associating weight values w1, w2, …, wn with them. 

Thus, X = w1 * x1 + w2 * x2 + … + wn * xn is the value reaching the body of 

the neuron. The final outputted value can be either a signal or nothing (0). 

To determine the strength of the signal (output) we typically use something 

known as an activation function; this function determines the outputted 

value and will vary depending on the type of neuron used.

Hence, a neural network (NN) is a collection of the previously described 

neurons; relations between these neurons can be described as forming 

a graph where an edge from neuron i to neuron j indicates an input to 

neuron j and an output from neuron i going to neuron j (Figure 11-2).

Figure 11-1.  Biological neuron; dendrites represent inputs of signals 
coming from other neurons and axons represent outputs for our 
neuron. One can think of the structure of a neuron as having input 
nodes called dendrites, output nodes called axons, and edges called 
synapses.
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In the following sections, we will be examining single-unit NNs, 

networks composed of a single neuron. In single-neuron networks, one 

can think of the inputs as coming from some unknown neurons and 

having values that match those of the vector representing the training data. 

The output would then serve as classification for the input training data.

Note A n artificial neuron can be seen as a mathematical function  
F = A(x1 * w1 + … + xn * wn) where xi are the inputs; wi the 
weights that are meant to strengthen or weaken the connection 
to other neurons, and A the activation function that ultimately 
determines the strength of the outputted signal.

Figure 11-2.  NN as a graph; neurons 4 and 5 are receiving inputs 
from neurons 1, 2, and 3, and neurons 1, 2, and 3 are having output 
connections to neurons 4 and 5.
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�Perceptron: Singular NN
The Perceptron is a single-NN unit that follows the same process stated 

before: it receives n inputs x1, …, xn, then calculates the weighted sum  

x1 * w1 + … + xn * wn and finally applies an activation function to get 

an output or classification for the input data. With the Perceptron this 

function is usually as follows:

f x( ) =
³ì

í
î

1

0

x T

otherwise

T is a value known as the threshold; it’s used to compare the weighted 

sum with a threshold and determine whether the signal should be sent or 

not. Thus, the Perceptron can be represented as shown in Figure 11-3.

Figure 11-3.  The Perceptron computes a weighted sum of the inputs 
and weights, submits this value to the activation function F, and 
transmits the signal to other neurons if and only if F turns out to be 
greater than or equal to a given threshold.

We already know how the flow of information works in the Perceptron; 

remember the purpose of the analyzed flow is to provide a classification 

for the input data. Now, how can we train it to correctly predict new 

incoming data?
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Note  The Perceptron was created in the 1950s by Frank 
Rosemblatt in an attempt to model a retina as an artificial NN.

First of all, the Perceptron is a linear classifier (recall from Chapter 9 

that support vector machines were also linear classifiers); it tries to find 

a weight vector and a threshold value in such a way that the space of 

the problem is divided into classes A and B. The weight vector and the 

threshold value will define one of the possible classifying hyperplanes. If 

we were in 2D then the hyperplane would be a line, if we were in 3D then 

the hyperplane would be a plane, and so on. It will always occur that all 

points in the training data will lie on one side or the other of the classifying 

hyperplane if the training data set is linearly separable.

As we did in Chapter 9, let us consider the equation of a line, y = mx + b,  

where m is the slope of the line—or, in more general terms, the gradient of 

the line—and b is the bias determining the shift, left or right, of the line—

i.e., the intercept of the line with the y-axis (Figure 11-4).

Figure 11-4.  Considering the equation of a line mx + b = y, then 
m defines the slope of the line and b its intercept with the y-axis, or 
equivalently its shift left or right
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Therefore, the training or learning process in a Perceptron will consist 

of an adjustment (made over time through several iterations) to the 

weights (slope of the line) and also to the bias in an attempt to find a line 

or hyperplane in the general case that correctly classifies all training data; 

in other words, to have a line that divides the training data set into two 

classes.

The Perceptron algorithm starts by setting random values for the 

weight vector, typically in the range [0, 1], and also for the bias. This will 

result in the construction of a random classifying hyperplane, or, in 2D 

(weight vector with two components), this scenario will result in the 

construction of a line that may or may not correctly classify the training 

data set. Then, in order to refine the classifying hyperplane and force it to 

correctly classify all examples, a loop through the entire training data set is 

made and each error detected in the classification of a single training data 

is corrected by increasing or decreasing the weight associated with the 

component of that training data; remember that for each component xi in 

any training data (x1, …, xn) we have associated some wi, and these are all 

combined in a weighted sum x1 * w1 + … + xn * wn.

Note  The Convergence Theorem of the Perceptron states that for 
any data set that is linearly separable, the Perceptron learning rule is 
guaranteed to find a solution in a finite number of iterations.

As a result, the learning process of a Perceptron is basically an 

optimization technique where we improve the classifying hyperplane by 

slowly changing its slope or gradient and the bias to move it to a position 

where every training data would be correctly classified (Figure 11-5).
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The pseudocode of the Perceptron algorithm is the following:

	 1.	 Initialize weights and bias to a random value in the 

range [0, 1].

	 2.	 If the stopping condition is satisfied, end.

	 3.	 Loop through the entire training data set, picking 

each training data (x, y) one step at a time, x being 

the vector of features and y its classification.

	 4.	 Calculate the output yx of the Perceptron for training 

data x.

	 5.	 In case y yx!=  then:

Correct each weight following the rule:

w w y y xi i x i= + * -( )*a

Figure 11-5.  In the graphic, line number 1 incorrectly classifies two of 
the red points; therefore, we modify weights and bias to move it to the 
right a little bit; then classifying hyperplane 2 also makes a mistake 
classifying one of the red points. Finally, classifying hyperplane 3 
makes no mistakes and properly divides red from blue points.

Chapter 11  Neural Networks



419

Correct also the bias using the formula:

b b y yx= + * -( )a

	 6.	 Go to step 2.

Step 5 of the pseudocode contains what is known as the learning rule of 

the Perceptron; all learning accomplished in the algorithm is encapsulated 

in the formula where weights are modified. In order to understand the 

learning formula let us reconstruct it from zero.

First, notice that when w · x < 0 (where · represents the dot product, in 

this case the weighted sum mentioned so far) and the correct classification 

of x is positive, it can be geometrically interpreted as having the angle 

between ve ctors w and x with a value greater than 90 degrees, and 

consequently we would need to rotate w in x’s direction to bring it to the 

positive space. Equivalently, if w · x > 0 and the correct classification of x is 

negative (or less than zero), then the angle between vectors w and x is less 

than 90 degrees and w must be rotated away from x.

Note  The a • b operation represents the dot product between 
vectors a and b. Whenever a and b are perpendicular then a • b = 0.

Thus, we already know that having a weight update of either w + x 

or w - x can be geometrically interpreted as moving w in the direction 

of x or in the opposite direction; this operation seeks to obtain a correct 

classification for training data x. Now, to merge the two previous cases 

into one, we will add the term y yx-( )  as a multiplier of x. Let’s analyze 

the possible values of this term to understand that it will always give us the 

correct sign for x.
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•	 If y yx=  then y yx- = 0 , which implies there’s no 

change to the weight since the classification of x is 

correct.

•	 If y yx>  then y yx- > 0 , which implies the weight 

needs to be increased because y yx> ; i.e., we need 

to increase the weight so that w · x provides us with 

a higher value and the training data classifies it as 1 

instead of 0.

•	 If y yx<  then y yx- < 0 , which implies the weight 

needs to be decreased because y yx< . Analogous 

explanation to the previous point.

Accordingly, we now have the update rule justified as w y y xx+ -( ) * , 

and we conclude we will multiply the last term by α, a value in the range 

(0, 1) known as the learning rate.

The learning rate controls how quickly the Perceptron will learn, or, 

equivalently, how much we change the weights and bias at each step. 

From a geometrical perspective, it can be seen as how much we rotate 

the w vector toward or away from training data vector x. To guarantee 

convergence and to not step over the solution of the problem, we must 

choose small values for the learning rate; 0.05 is typically chosen.

Using a similar approach, we can deduct the formula for updating the 

bias, but this is left to the reader as an exercise.

�Practical Problem: Implementing the Perceptron NN
To implement the Perceptron in C#, we’ll create an abstract class named 

SingleNeuralNetwork that will allow us to easily develop the Perceptron 

and also any single-unit NN that we would need to implement, as they 

all share similar features in their structure and significant changes occur 

merely in their learning rules. This class is shown in Listing 11-1.
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Listing 11-1.  SingleNeuralNetwork Abstract Class

public abstract class SingleNeuralNetwork

    {

        public List<TrainingSample>TrainingSamples{ get; set; }

        public int Inputs { get; set; }

        public List<double> Weights { get; set; }

        public readonly Random Random = new Random();

        protected readonly double LearningRate;

        protected double Bias= 0.5;

        �protected SingleNeuralNetwork(IEnumerable<TrainingSample> 

trainingSamples, int inputs, double learningRate)

        {

TrainingSamples = new List<TrainingSample>(trainingSamples);

            Inputs = inputs;

            Weights = new List<double>();

            for (vari = 0; i< Inputs; i++)

Weights.Add(Random.NextDouble());

LearningRate = learningRate;

        }

        public virtual void Training()

        {

        }

        public virtual double Predict(double[] features) 

        {

var result = 0.0;

            for (vari = 0; i<features.Length; i++)

                result += features[i] * Weights[i];

            return result > -Bias ?1 : 0;

        }
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        �public List<double>PredictSet(IEnumerable<double[]> objects)

        {

var result = new List<double>();

foreach (varobj in objects)

result.Add(Predict(obj));

            return result;

        }

    }

The class contains the following fields or properties:

•	 TrainingSamples: It’s the same class used in the SVM 

chapter; it contains a vector of features (double values) 

representing the training data and an integer defining 

the correct classification of that training data.

•	 Inputs: integer representing the number of inputs for 

the Perceptron

•	 Weights: list of double values representing the weight 

vector of the single-unit NN

•	 Random: field used to obtain random values

•	 LearningRate: the learning rate of the Perceptron

•	 Threshold: the threshold of the Perceptron; initial 

value set to 0.5

In the class constructor we initialize the weights to random values in 

the range [0, 1]; the constructor is followed by a set of methods, which are 

detailed here:

•	 Training(): virtual method that every class inheriting 

from SingleNeuralNetwork will implement in order to 

provide a training algorithm implementation.  
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We mark it as virtual instead of abstract because we 

are considering the case in which you would not like to 

include a training method for the single-unit NN but 

rather just use the fields and properties it includes.

•	 Predict(): calculates the weighted sum S w xi i= *  and 

checks whether w x bi i* + > 0  or, equivalently, that 

w xi i* > -b

•	 PredictSet(): using the previous method, predicts 

the classification of each data in the list submitted as 

argument

Remember the goal of the Perceptron is to find a classifying 

hyperplane that divides the set of data points into classes A and B. This 

division must guarantee that every element from class A lies on one side 

of the hyperplane and every element from class B lies on the other side. 

This hyperplane will satisfy (as it did in Chapter 9) the equation wx + b = 0. 

Thus, in the Predict() method, we classify any data point x for which  

wx + b > 0 as belonging to class 1; otherwise, we set it to be a member of 

class 0.

Finally, the Perceptron class, which inherits from the 

SingleNeuralNetwork abstract class, is illustrated in Listing 11-2.

Listing 11-2.  Perceptron Class

public class Perceptron :SingleNeuralNetwork

    {

        �public Perceptron(IEnumerable<TrainingSample>training 

Samples, int inputs, double learningRate)

            : base(trainingSamples, inputs, learningRate)

        { }
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        public override void Training()

        {

            while (true)

            {

varmissclasification = false;

foreach (vartrainingSample in TrainingSamples)

                {

var output = Predict(trainingSample.Features);

var features = trainingSample.Features;

                    if (output != trainingSample.Classification)

                    {

missclasification = true;

                        for (var j = 0; j < Inputs; j++)

                            �Weights[j] += LearningRate* 

(trainingSample.Classification - 

output)*features[j];

Bias+= LearningRate * (trainingSample.Classification - output);

                    }

                }

                if (!missclasification)

                    break; 

            }

        }

    }

As we can see, the implementation of the Training() method in 

the Perceptron class is almost a direct translation of the pseudocode 

previously detailed.

To test our algorithm we will create a console application with the code 

seen in Listing 11-3.
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Listing 11-3.  Testing the Perceptron Class in a Console Application

vartrainingSamples = new List<TrainingSample>

                                      {

new TrainingSample(new double[] {1, 1}, 0, new List<double> { 0 } ),

new TrainingSample(new double[] {1, 0}, 0, new List<double> { 0 } ),

new TrainingSample(new double[] {0, 1}, 0, new List<double> { 0 } ),

                                     �new TrainingSample 

(new double[] {0, 0}, 0, 

new List<double> { 0 } ),

                                     �new TrainingSample 

(new double[] {1, 2}, 1, 

new List<double> { 0 } ),

                                     �new TrainingSample 

(new double[] {2, 2}, 1, 

new List<double> { 1 } ),

                                     �new TrainingSample 

(new double[] {2, 3}, 1, 

new List<double> { 1 } ),

                                     �new TrainingSample 

(new double[] {0, 3}, 1, 

new List<double> { 1 } ),

                                     �new TrainingSample 

(new double[] {0, 2}, 1, 

new List<double> { 1 } ),};

var perceptron = new Perceptron(trainingSamples, 2, 0.01);

perceptron.Training();

vartoPredict = new List<double[]>

                              {

                                  new double[] {1, 1},

                                  new double[] {1, 0},
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                                  new double[] {0, 0},

                                  new double[] {0, 1},

                                  new double[] {2, 0},

new[] {2.5, 2},

new[] {0.5, 1.5},

                              };

var predictions = perceptron.PredictSet(toPredict); 

            for (vari = 0; i<predictions.Count; i++)

Console.WriteLine("Data: ( {0} , {1} ) Classified as: {2}", 

toPredict[i][0], toPredict[i][1], predictions[i]);

The result obtained after executing the code in Listing 11-3 can be seen 

in Figure 11-6.

Figure 11-6.  Classification outputted by our Perceptron, considering 
the data set defined in Listing 11-3

When implementing an NN or any supervised learning method, always 

remember that the larger the training data set the better the approximation 

or mapping the algorithm will be able to make from the tabular function 

defined in the training set to the one being built using the weight vector and 

bias. In Listing 11-3, our training data set is very small, so the Perceptron 

will most likely make classification mistakes on new incoming data. It did 

not happen in this example, but it could happen when adding data that 

significantly differs from the type of data in that small training set.
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�Adaline & Gradient Descent Search
Adaline (Adaptive Linear Neuron) is a NN model proposed by Bernard 

Widrow in 1960 whose network structure is the same as that of the 

Perceptron. The difference between Perceptron and Adaline lies in the 

learning rule used. The Adaline algorithm uses a learning rule known by 

several names: Delta Rule, Gradient Descent, or Least Mean Square (LMS).  

This learning rule is typically incorporated in multi-layer networks 

and especially in the backpropagation algorithm. Thus, Adaline serves 

as a good introduction to multi-layer networks and to the popular 

backpropagation algorithm.

The main idea with the Delta Rule is to minimize the squared error 

carried out when classifying a training data x:

E
y y

x
x x=
- ¢( )2

2

In this case, yx is the correct classification for training data x and y ' x is 

the classification outputted by the NN.

Adaline is an unthresholded NN, meaning it does not consider a bias 

or threshold in its learning stage. Therefore, during training, its output 

(for a data point x) is simply computed as the sum of wixi. To achieve a 

minimization of the squared error carried out when classifying a training 

data x, the algorithm relies on the fact that the gradient (vector formed by 

all partial derivatives) of a function indicates the direction of the steepest 

increase of E (Figure 11-7). Thus, by multiplying the gradient by -1 we will 

obtain the direction of the steepest decrement of E from any point, which 

will lead us to the minimum error carried out.
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Thus, Adaline’s training method is a type of gradient descent search 

(GDS) algorithm that determines the best weight vector by minimizing 

the global error E (remember Ex relates to the error carried out just on 

classifying training data x). In Adaline, the weight vector will initially 

contain random variables, and then these weights will be modified by 

taking small steps and moving downhill until we reach a point in the 

error surface that we consider “acceptable”; usually a small value for the 

maximum error on any training data point is considered acceptable.  

A gradient descent search is capable of finding the global minimum of a 

differentiable function.

To comprehend a little bit better the gradient descent method, let’s see  

how it works by revising the following graphic (Figure 11-8). Also, let us consider 

that in a function f R R: ® , or a function of one variable x, the equation for 

updating the minimum value sought by the gradient descent method would be 

x x
f x

x
= - *

¶ ( )
¶

a .

Figure 11-7.  The gradient denotes the direction of maximum 
increment of a function; its negation (blue arrow) indicates the 
direction of maximum decrement
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In Figure 11-8, the GDS starts at point p1 = f(x). According to the 

update formula, it calculates the derivative of f evaluated at point x and 

multiplied by the learning rate α. .ecause the derivative indicates the slope 

of f—and in this particular case the red line, which is the tangent line to 

point p1—has a positive slope, then a*
¶ ( )
¶
f x

x
 will be a positive value 

(recall a > 0) . Hence, the new value for x, let it be x', will be shifted to the 

left, and the new p2 = f(x') will satisfy that p2 < p1. This procedure will 

continue until we reach the minimum, assuming α is small enough and 

will take smaller steps as it approaches the minimum; in other words, x 

will be slowly shifted to the left on new iterations.

Going back to the general case, and in order to find the steepest 

decrease of the error, we express E (the sum of all errors upon classifying 

each training data) in terms of w (weight vector). Notice that setting E in 

terms of w is always possible because ¢ =y w xx i i  for any given training data 

x; therefore, the function to minimize will be the following:

E w
y y

i

n

i i

( ) =
- ¢( )

=
å

1

2

2

Figure 11-8.  Functioning of the gradient descent method
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Hence, we will find the gradient of E(w)—let it be Ñ ( )E w —and we will 

consider it in Adaline’s learning rule, which would be the following:

w w E w= - *Ñ ( )a

Notice the sign on the rule is a minus and not a plus. That’s because we 

must negate the gradient, -Ñ ( )E w , in order to minimize E(w). As it was 

previously defined in the Perceptron, α is the learning rate that controls 

how fast we move toward a solution. The previous formula relates to the 

way we update the weight vector w, but how should we update a single 

weight? The rule for a single weight would be this:

w w
E

wi i
i

= - *
¶
¶

a

We substituted the gradient with its equivalent, the partial derivatives 

with respect to every weight wi. After developing the term ¶
¶
E

wi

 by 

calculating some derivatives and applying the chain rule, we will finally 

have the complete learning rule for GDS:

¶
¶

= - ¢( )* -( )
=
åE

w
y y x

i j

n

j j ij
1

As before, yj represents the correct classification of training data j, yj
′ 

represents the classification outputted by the NN, and xij represents the ith 

input value of training data j—the input of training data j associated with 

weight wi.

Even though GDS is, from a theoretical or mathematical perspective, 

an elegant method for finding a local minimum of a function, in practice 

it tends to be quite slow. Notice that to update a single weight you would 

need to go over the entire training data set, which could contain tens of 
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thousands of training examples, so that would imply a lot of computations. 

Thus, for this practical reason, we typically use an approximated variant 

of GDS as the learning rule of Adaline; this variant is presented in the 

next section.

�Stochastic Approximation
Stochastic gradient descent (SGD) or incremental gradient descent is 

an approximation procedure supplemental to GDS where weights are 

updated incrementally after the calculation of the error of each training 

data. Thus, it saves us from the computational trouble of having to loop 

over the entire training data set to compute the value of every weight. This 

is, in practice, the method used in Adaline and in other NN algorithms 

(backpropagation) that minimize the squared error by considering the 

correct classification of a training data and its output in the NN. The 

learning rule that uses stochastic approximation is known as the Delta 

Rule, the Adaline Rule, or the Widrow-Hoff Rule (after its creators). In 

Figure 11-9 we can see a very intuitive idea of the differences between GDS 

and SGD. In the first we move directly to the minimum of the error surface 

so we follow a straight path, while in the latter we move like a drunk person 

would; sometimes we lose balance and move to incorrect positions, but 

eventually we end up at the same point as GDS.

Figure 11-9.  To the left the direct path that GDS would follow over 
the error surface to get to a minimum; to the right the “unbalanced” 
path followed by SGD

Chapter 11  Neural Networks



432

The update rule using SGD would be as follows:

w w y y xi i i i i= + * - ¢( )*a

Notice the similarity between this learning rule and the one described 

before for the Perceptron—it looks very similar. What’s the main 

difference? The main difference is in the output of the NN while training. 

In Adaline we do not consider any threshold or activation function; 

therefore, ¢ =y w xi i i .

Note W hen you combine several Adalines in a multi-layer network 
you obtain what is known as a Madaline.

�Practical Problem: Implementing Adaline NN
After examining the theory behind Adaline’s algorithm, it’s time to finally 

implement the procedure in C#. For this purpose, we will create the class 

Adaline, shown in Listing 11-4.

Listing 11-4.  Adaline Class

public class Adaline :SingleNeuralNetwork

    {

        �public Adaline(IEnumerable<TrainingSample>training 

Samples, int inputs, double learningRate)

            : base(trainingSamples, inputs, learningRate)

        { }

public override void Training()

        {

            double error;
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            do

            {

                error = 0.0;

foreach (vartrainingSample in TrainingSamples)

                {

var output = LinearFunction(trainingSample.Features);

varerrorT = Math.Pow(trainingSample.Classification - output, 2);

                    if (Math.Abs(errorT) < 0.001)

                        continue;

                    for (var j = 0; j < Inputs; j++)

                        �Weights[j] +=  LearningRate * 

(trainingSample.Classification - output) * 

trainingSample.Features[j];

error = Math.Max(error, Math.Abs(errorT));

}

            }

            while (error > 0.25);

        }

        public double LinearFunction(double [] values)

        {

var summation = (from i in Enumerable.Range(0, Weights.Count)

                        select Weights[i]*values[i]).Sum();

            return summation;

        }

        public override double Predict(double[] features)

        {

            return LinearFunction(features) >0.5 ?1 : 0;

        }

    }
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This class inherits from SingleNeuralNetwork and contains three 

methods. The second method is LinearFunction(), which simply 

computes the weighted sum wixi. Remember, there’s a difference between 

the prediction stage and the training stage in an Adaline. In the training 

or learning phase we compute the output of the NN as a weighted sum, 

but in the prediction phase we must use a categorical function to classify 

new incoming data; therefore, the prediction function is different from 

the learning function. In this case, our prediction function computes the 

weighted sum of the new data and outputs either 1 or 0 depending on 

whether the result of the weighted sum outputted a value greater than 0.5 

or less than it.

The Training() method consists of a do ... while() statement 

where we verify if the maximum error carried out when classifying any 

training data exceeds 0.25. If it does, the loop will continue; otherwise, 

we will consider ourselves as being satisfied, and the method will end. 

Furthermore, we will not alter the weights if the error when classifying a 

training data is below 0.001. In Figure 11-10 we can see the result obtained 

after executing our Adaline on a small set of data.

Figure 11-10.  Result obtained after executing our Adaline on a small 
data set
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If we are curious about the functioning of the algorithm, we could set 

a breakpoint on the line while (error > 0.25); and then see how the 

maximum error diminishes after each iteration. The following values were 

the ones obtained on a series of iterations when we executed Adaline on 

the same training data set used in the Perceptron implementation: 3.2386, 

1.7957, 1.0569, 0.6973, 0.5822, 0.5050, 0.4523, 0.4144, 0.3861, 0.3640, 

0.3463, 0.3315, 0.3189, 0.3078, 0.2980, 0.2891, 0.2810, 0.2735, 0.2676, 

0.2614, 0.2552, and 0.2491.

�Multi-layer Networks
A multi-layer network is a type of NN in which we have multiple NNs 

grouped in layers and connected from one layer to the other. The NNs we 

have described so far (Perceptron, Adaline) were constituted by two layers: 

an input layer of multiple nodes and an output layer of a single node. The 

multi-layer NN shown in Figure 11-11 is composed of three layers: input, 

hidden, and output. It’s also a feed-forward NN; in other words, all signals 

go from nodes in one layer to nodes in the next layer. Thus, a multi-layer 

NN is constructed by putting together many of our simple “neurons” 

arranged into layers and having the output of a neuron as the input of 

another neuron in the next layer.
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Except for the input layer, which receives its inputs from the 

components (xi) of the training data, all other layers receive their inputs 

from the activation function of the previous layer. Every edge in a multi-

layer NN represents a weight, and any edge leaving a node has its weight 

value multiplied by the activation function value of the node from which it 

originates. Thus, any node from layer L, where L > 0 (not the input layer), 

will have its input or activation value computed as follows:
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Figure 11-11.  Multi-layer, feed-forward, fully connected NN 
consisting of three layers: one for input units, one for hidden units 
(gray) and one for output units (green). Sometimes the input layer is 
not considered as a layer.
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where n is the total number of units in layer L - 1, Al,i indicates the activation 

value of unit i at layer L, wl j i-1, ,  is the weight or edge going from unit j of 

layer L – 1 to unit i of layer L, and g is the activation function applied in the 

NN. Typically, g is chosen as the technically logical sigmoid function whose 

values range in the interval [0, 1], and it is computed as follows:

sigmoid x
e x( ) =

+ -

1

1

A very important property of the sigmoid function is that it’s 

differentiable and continuous; remember that this property is significant to 

us because we will be calculating gradients and consequently derivatives.

One key element with multi-layer NNs is that they are capable of 

classifying non-linearly separable data sets. As a result, functions like 

XOR (Figure 11-12) that cannot be classified by linear NNs such as 

the Perceptron can be correctly classified by a simple multi-layer NN 

containing just one hidden layer.

Figure 11-12.  XOR function; there’s no line that would divide the red 
points from the green points
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We could think of multi-layer NNs as powerful mathematical functions 

able to approximate any tabular function we may have on the training data 

set. Each hidden layer represents a function, and the combination of layers 

can be seen as the composition of functions in mathematics. Thus, having 

n hidden layers could be seen as having the mathematical function  

o(h1, h2 ( … hn(i(x)) … )) where o is the output layer, i the input layer, and 

hi the hidden layers.

Traditional NNs have a single hidden layer, and when they have more 

than one layer we are dealing with deep neural networks and deep learning. 

Table 11-1 illustrates the relationship between the number of hidden layers 

and the capacity of the resulting NN.

Table 11-1.  Relationship Between Number of Layers and Power of NNs

Number Hidden Layers Result

None Only capable of representing linear separable functions 

or decisions

1 Can approximate any function that contains a 

continuous mapping from one finite space to another

2 Can represent an arbitrary decision boundary to 

arbitrary accuracy with rational activation functions 

and can approximate any smooth mapping to any 

accuracy

>2 Additional layers can learn complex representations 

(sort of automatic feature engineering).
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It has been proven that a multi-layer NN with a single hidden layer 

is capable of learning any function. Hence, one may ask the question, if 

with a single hidden layer we can learn any function, then why do we need 

deep learning? The idea is that while the universal approximation theorem 

proves that, indeed, having a single hidden layer is enough for learning any 

continuous function, it does not state how easy it would be to complete 

this learning. Thus, for efficiency and accuracy reasons, we may need to 

add complexity to our NN architecture and include additional hidden 

layers in order to get a decent solution in a decent time.

The number of neurons in hidden layers is another important issue 

to consider when deciding on our NN architecture. Even though these 

layers do not directly interact with the external environment, they do have 

a remarkable influence on the final output. Both the number of hidden 

layers and the number of neurons in hidden layers must be carefully 

thought out.

Using too few neurons in the hidden layers will result in something 

called underfitting. Underfitting occurs when there are too few neurons in 

the hidden layers to effectively perceive signals in a complicated data set. 

Using too many neurons in hidden layers can result in several problems, 

the best known of which is overfitting, or when the weights adjust too well 

to the training data set and as a result the NN is unable to correctly predict 

new incoming data.

Note  The universal approximation theorem states that a feed-forward 
network with a single hidden layer containing a finite number of 
neurons can approximate any continuous function; this allows NNs to 
be considered as universal approximators.
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�Backpropagation Algorithm
As occurs in Adaline NNs, multi-layer NNs using backpropagation 

typically rely on the gradient descent method, and more specifically on the 

stochastic gradient approximation method, for adjusting the weights of 

the NN. They also seek to achieve the same goal as Adaline’s algorithm—

minimizing the error in the quadratic difference between the true 

classification of the data and the network output.

The idea with the backpropagation algorithm is that it serves as a 

mechanism for transporting the error taking place at the output layer 

to the final hidden layer (adjusting weights on the way), and from there 

to the previous hidden layer, and so on, backward; in other words, if o 

is the output layer and h1, h2, …, hn denote the hidden layers, then the 

backpropagation algorithm carries on the error from the output layer 

(equivalent to having the weights adjusted or the error minimized), from 

o to hn, then from hn to hn-1 , and so on until the error adjustment process 

reaches h1. This functioning justifies the name backpropagation, because 

the output is computed from the input layer passing through layers 

h1, h2, …, hn and ending in the output layer, and then, once an output has 

been obtained, the weights are adjusted backward from output to the first 

hidden layer.

As mentioned before, the backpropagation algorithm relies on the 

gradient descent method, as does the Adaline method. The first difference 

we can call out between these two procedures is that with Adaline we 

only had one output node, but in multi-layer NNs and therefore in 

backpropagation we could be dealing with multiple output nodes arranged 

in an output layer; thus, the total error must be calculated as follows:
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where n is the cardinality of the training data set, k the number of units in 

the output layer, yij the correct classification of training data i at node and 

position j from the output layer, and y'ij the classification outputted for 

training data i at node j in the output layer of our NN.

The learning rule for every node in a backpropagation procedure 

resembles that of the Perceptron and Adaline. The rule, according to a 

stochastic approximation, is as follows:

w w xij ij j ij= + * *a d

In this case, wij indicates a weight going from node i into node j, α is the 

learning rate, xij is the activation value going from node i into node j (in the 

input layer these values coincide with the input values), and δj is the error 

at node j. Learning rules previously described did not have two subindices 

(wij) as they do now in the weight update rule of the backpropagation 

algorithm. Let’s recall that backpropagation is intended to work on multi-

layer NNs; therefore, we will have many nodes connected to other nodes 

so each edge ij has an associated wij.

So, we initially have every variable in the weight update formula 

except for δj; this term represents the error on classification and is the one 

we need to derivate with respect to the weights to find the gradient, and 

as a result the steepest descent with respect to w in the error surface. As 

stochastic approximation does, we iterate through every training data one 

at a time, which justifies that

dj
d

i
ij ij

E

w x
= -

¶
¶ *å
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where Ed is the error associated with classifying training data d and wij is 

the weights associated with unit j. We know the formula for the global error 

E(w), but that’s not the formula we derivate to minimize w. Remember that 

stochastic approximation works on one training data at a time; therefore, 

we derivate the following equation:

E

y y

d
j

k

j j

=
- ¢( )

=
å

1

2

2

In this case, k is the total number of nodes in the output layer, yj is 

the correct classification for node j, and y'j is the value outputted by our 

NN. Applying the chain rule and considering the case where the node on 

which we calculate the error term is either an output or a hidden unit, we 

can reach the next formulas:

•	 For nodes in the output layer,

dj
d

i
ij ij

j j j j

E

w x
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¶
¶ *

= - ¢( )* ¢ * - ¢( )å
1

•	 This implies,

w w y y y y xij ij j j j j ij= + * - ¢( )* ¢ * - ¢( )*a 1

•	 For nodes in the hidden layers,

d dj
d

i
ij ij

j j
k Stream

k kj

E

w x
y y w= -

¶
¶ *

= ¢ * - ¢( )* *
å å

Î

1

Chapter 11  Neural Networks



443

•	 Stream, in this case, is the set of nodes whose inputs 

correspond to the output of node j. The previous 

formula implies that

w w y y w xij ij j j
k Stream

k kj ij= + * ¢ * - ¢( )* * *
Î
åa d1

Note that the weight-update formulas obtained assume we have sigmoid 

units; in other words, that we are using the sigmoid function as an 

activation function in every node of the NN. The general form of the 

weight-update rule for output and hidden layers respectively would be as 

follows:

w w y y G y xij ij j j j ij= + * - ¢( )* ¢( )*a

w w G y w xij ij j
k Stream

k kj ij= + * ¢( )* * *
Î
åa d

where G(yj
′) represents the derivative of the activation function evaluated 

at the value outputted by the activation, as we know this value can be 

expressed in terms of w. Recall that the sigmoid function’s derivative is 

F(x) * (1 - F(x)); this is very easy to compute and work with and is one of 

the main reasons the sigmoid function is the classical activation function 

for multi-layer neural networks.

Figure 11-13 illustrates another popular activation function, the 

hyperbolic tangent, a symmetrical function whose output is in the range 

[-1;1] and that is denoted and calculated as follows:

tanh
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Nowadays, a popular activation function that is replacing the sigmoid 

function and other similar smooth functions is the rectified linear unit, 

or ReLU (Figure 11-14). Unlike sigmoid and the smooth functions, ReLU 

doesn’t have the shortcoming of the vanishing gradient issues seen in 

deep learning, such as when training a NN of more than three layers. Its 

equation is extremely simple:

ReLU x x( ) = ( )max ,0

In other words, ReLUs let all positive values pass through unchanged, 

but just set any negative values to 0. Although newer activation functions 

are gaining traction, most deep neural networks these days use ReLU or 

one of its closely related variants.

Figure 11-13.  Hyperbolic tangent function, which outputs values in 
the range (-1;1)
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To comprehend a little bit better the flow backward in the 

backpropagation algorithm and the nodes or edges in which our variables 

will reside, let’s examine Figure 11-15.

Figure 11-14.  ReLU function

Figure 11-15.  Flow backward in the backpropagation algorithm. 
Weight wij is updated by considering the error term residing in node j.

Now that we have a theoretical background on the functioning of 

the backpropagation algorithm, in the next section we will implement 

a MultiLayerNetwork class representing multi-layer NNs, and we will 

develop our backpropagation algorithm as a method of that class.
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�Practical Problem: Implementing 
Backpropagation & Solving the XOR Problem
To properly encode the multi-layer NN paradigm, we will create the 

class shown in Listing 11-5. We’ll also apply an object-oriented approach 

to include a Layer class for representing all nodes arranged as a list of 

sigmoid units.

Listing 11-5.  MultiLayerNetwork and Layer Classes

public class MultiLayerNetwork

    {

        public List<Layer> Layers { get; set; }

        public List<TrainingSample>TrainingSamples{ get; set; }

        public intHiddenUnits{ get; set; }

        public intOutputUnits{ get; set; }

        public double LearningRate{ get; set; }

        private double _maxError;

        �public MultiLayerNetwork(IEnumerable<TrainingSample>tra

iningSamples, int inputs, inthiddenUnits, int outputs, 

double learningRate)

        {

            Layers = new List<Layer>();

TrainingSamples = new List<TrainingSample>(trainingSamples);

LearningRate = learningRate;

HiddenUnits = hiddenUnits;

OutputUnits = outputs;

CreateLayers(inputs);

        }
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private void CreateLayers(int inputs)

        {

Layers.Add(new Layer(HiddenUnits, TrainingSamples, 

LearningRate, inputs, TypeofLayer.Hidden));

Layers.Add(new Layer(OutputUnits, TrainingSamples, 

LearningRate, HiddenUnits, TypeofLayer.OutPut));

        }

        public List<double>PredictSet(IEnumerable<double[]> objects)

        {

var result = new List<double>();

foreach (varobj in objects)

result.Add(Predict(obj));

            return result;

        }

        public Layer OutPutLayer

        {

            get { returnLayers.Last(); }

        }

        public Layer HiddenLayer

        {

            get { returnLayers.First(); }

        }

    }

public class Layer

    {

        public List<SigmoidUnit> Units { get; set; }

        public TypeofLayer Type { get; set; }
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        �public Layer(int number, List<TrainingSample>tr

ainingSamples, double learningRate, int inputs, 

TypeofLayertypeofLayer)

        {

            Units = new List<SigmoidUnit>();

            Type = typeofLayer;

            for (vari = 0; i< number; i++)

Units.Add(new SigmoidUnit(trainingSamples, inputs, learningRate));

        }

    }

    public enumTypeofLayer

    {

        Hidden, OutPut

    }

The Layer class contains two properties, a List of SigmoidUnit (we 

will soon examine this class) and a TypeofLayer Type that is an enum with 

two possible values: Hidden and OutPut. In the class constructor we simply 

add as many nodes to the layer as the number argument specifies. In the 

MultiLayerNetwork class we include properties to obtain the HiddenLayer 

or, if there’s more than one, the first hidden layer and the OutputLayer.

The constructor of the MultiLayerNetwork class receives as 

arguments the training data set, the number of inputs, hidden nodes, 

and outputs; and the learning rate. It creates the set of layers by calling 

the CreateLayers() method. Finally, the PredictSet() method 

predicts or classifies a set of data received as an argument. The 

class also includes some properties or fields, most of which are self-

descriptive. The _maxError field will be used to indicate the maximum 

error when classifying any training data in an iteration or epoch of the 

backpropagation algorithm.
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Note A n iteration in a NN’s learning algorithm is typically known as 
an epoch.

The SigmoidUnit class inherits from SingleNeuralNetwork, and 

its code is very simple (Listing 11-6). It merely overrides the Predict() 

method to compute the value of the sigmoid function with the features of 

the input data and the weight vector.

Listing 11-6.  SigmoidUnit Class, Which Inherits from the 

SingleNeuralNetwork Abstract Class

public class SigmoidUnit :SingleNeuralNetwork

    {

        public double ActivationValue{ get; set; }

        public double ErrorTerm{ get; set; }

        �public SigmoidUnit(IEnumerable<TrainingSample>training 

Samples, int inputs, double learningRate)

            : base(trainingSamples, inputs, learningRate)

        { }

        public override double Predict(double [] features)

        {

var result = 0.0;

            for (vari = 0; i<features.Length; i++)

                result += features[i] * Weights[i];

            �return ActivationValue = 1/(1 + Math.Pow(Math.E, 

-result));

        }

    }
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The Training() method representing the backpropagation algorithm 

is illustrated in Listing 11-7. In this method, we iterate over the training data 

set until the maximum error when predicting any training data becomes 

less than 0.001. We predict the output of the NN, and, because we are using 

SigmoidUnit nodes, the resulting value will be stored, as Listing 11-8  

indicates, in the public property ActivationValue. Once this value has 

been calculated, we loop over the output units, computing their error 

terms, and later over nodes in the hidden layers, also computing their error 

terms. Recall from the last section that their computation is different. In 

the UpdateWeight() method we update the weights, and at the end of the 

loop we update the maximum error when classifying any training data.

Listing 11-7.  Training() Method Representing Backpropagation 

Algorithm

        public void Training()

        {

            _maxError = double.MaxValue;

            while (Math.Abs(_maxError) > .001)

            {

foreach (vartrainingSample in TrainingSamples)

                {

Predict(trainingSample.Features);

                    // Error term for output layer ...

                    for (vari = 0; i<OutPutLayer.Units.Count; i++)

                    {

OutPutLayer.Units[i].ErrorTerm = FunctionDerivative 

(OutPutLayer.Units[i].ActivationValue, TypeFunction.Sigmoid) *
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                                         �(trainingSample.

Classifications[i] - 

OutPutLayer.Units[i].

ActivationValue);

 }

                    // Error term for hidden layer ...

                    for (vari = 0; i<HiddenLayer.Units.Count; i++)

                    {

varoutputUnitWeights = OutPutLayer.Units.Select(u =>u.

Weights[i]).ToList();

var product = (from j in Enumerable.Range(0, outputUnitWeights.Count)

                                       �select outputUnitWei

ghts[j]*OutPutLayer.

Units[j].ErrorTerm).

Sum();

HiddenLayer.Units[i].ErrorTerm = FunctionDerivative 

(HiddenLayer.Units[i].ActivationValue, TypeFunction.Sigmoid) * 

product;

                   }

UpdateWeight(trainingSample.Features, OutPutLayer);

UpdateWeight(trainingSample.Features, HiddenLayer);

_maxError = OutPutLayer.Units.Max(u =>Math.Abs(u.ErrorTerm));

            }

        }

In order to make our method as flexible as possible and interact easily 

with different activation functions, we coded the FunctionDerivative() 

method (Listing 11-8), which receives an activation value and a type of 

function (encoded as an enum) and outputs the derivative of the activation 

function evaluated at the activation value.
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Listing 11-8.  FunctionDerivative() Method and Enum Declaration 

with Activation Functions Previously Mentioned

private double FunctionDerivative(double v, TypeFunctionfunction)

        {

            switch (function)

            {

                case TypeFunction.Sigmoid:

                    return v*(1 - v);

                case TypeFunction.Tanh:

                    return 1 - Math.Pow(v, 2);

                case TypeFunction.ReLu:

                    return Math.Max(0, v);

                default:

                    return 0;

            }

        }

public enumTypeFunction

    {

 Sigmoid, Tanh, ReLu

    }

By combining the previous method with the following (Listing 11-9) 

sibling classes of the SigmoidUnit class (shown in Listing 11-6), we can 

effortlessly change our model from one type of unit (Sigmoid, Tanh, 

ReLU) to the other and experiment with different types of activation 

functions.
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Listing 11-9.  Hyperbolic Tangent and ReLU Units

public class TanhUnit :SingleNeuralNetwork

    {

        public double ActivationValue{ get; set; }

        public double ErrorTerm{ get; set; }

        �public TanhUnit(IEnumerable<TrainingSample>training 

Samples, int inputs, double learningRate)

            : base(trainingSamples, inputs, learningRate)

        { }

        public override double Predict(double [] features)

        {

var result = 0.0;

            for (vari = 0; i<features.Length; i++)

                result += features[i] * Weights[i];

ActivationValue = Math.Tanh(result);

            return ActivationValue;

        }

    }

public class ReLu :SingleNeuralNetwork

    {

        public double ActivationValue{ get; set; }

        public double ErrorTerm{ get; set; }

        �public ReLu(IEnumerable<TrainingSample>trainingSamples, 

int inputs, double learningRate)

            : base(trainingSamples, inputs, learningRate)

        { }
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        public override double Predict(double [] features)

        {

var result = 0.0;

            for (vari = 0; i<features.Length; i++)

                result += features[i] * Weights[i];

            return Math.Max(0, result);

        }

    }

Note that all “unit” classes can be grouped better depending 

on the hierarchy model used. For example, all classes include an 

ActivationValue and ErrorTerm properties that could be encapsulated in 

an upper class, and as a result we would obtain a better class design. This 

object-oriented design task will be left to the reader.

The UpdateWeight() method (Listing 11-10) is a direct translation of 

the weight-update rules presented in the last section. This method uses the 

ErrorTerm public property that we incorporated in the SigmoidUnit class 

to store the error of every node of the NN.

Listing 11-10.  UpdateWeight() Method

        private void UpdateWeight(double[] features, Layer layer)

        {

varactivationValues =

layer.Type == TypeofLayer.Hidden ? features : HiddenLayer.

Units.Select(u =>u.ActivationValue).ToArray();

foreach (var unit in layer.Units)

            {

                for (vari = 0; i<unit.Weights.Count; i++)
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unit.Weights[i] += LearningRate * unit.ErrorTerm * 

activationValues[i];

            }

        }

Finally, in order to predict and classify new incoming data in the multi-

layer NN, we code the Predict() method (Listing 11-11), which calculates 

the activation values from the nodes of each layer, starting from the input 

nodes in a feed-forward manner until it reaches the output layer. Then,  

to output a classification, it considers the set of values at the output layer  

and either outputs a classification that is mapped to a set of values (0, 1 in  

this case, depending on whether or not the outputted value is greater 

than 0.5) or simply outputs the index of the node in the output layer with 

the highest value; that’s the purpose of the ReturnIndexByHalf() and 

ReturnIndexByMax() methods, respectively, also illustrated in Listing 11-11. 

Notice that the first method is developed such that it thinks about a NN 

with an output layer of a single node.

Listing 11-11.  Classification-related Methods

        public double Predict(double[] features)

        {

            for (vari = 0; i<Layers.Count; i++)

            {

foreach (var unit in Layers[i].Units)

                {

varactivationValues =

i ==  0 ? features : HiddenLayer.Units.Select(u =>u.

ActivationValue).ToArray();
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unit.Predict(activationValues);

                }

            }

            return ReturnIndexByHalf();

        }

        private intReturnIndexByHalf()

        {

var unit = OutPutLayer.Units.First();

            return unit.ActivationValue< 0.5 ? 0 : 1;

        }

        private intReturnIndexByMax()

        {

var max = OutPutLayer.Units.Max(u =>u.ActivationValue);

            �return OutPutLayer.Units.FindIndex(0, unit =>unit.

ActivationValue == max);

        }

In order to test our multi-layer NN, we will see how it correctly 

classifies data from the XOR problem by having a NN structure composed 

of a hidden layer of three nodes and an output layer of a single node. 

We will also add a little modification to our TrainingSample class to 

contemplate the case where a training data may have a classification 

vector instead of a single value. A classification vector could be binary; 

for instance, (1, 0, 0) could indicate that the training data with which it 

associates is to be classified as red and not green or blue.

Both the new TrainingSample class and the setting for testing a multi-

layer NN on the XOR problem are illustrated in Listing 11-12.
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Listing 11-12.  Slight Modification to TrainingSample Class and 

Setting Up for Testing Our MultiLayerNetwork Class for the XOR 

Problem

public class TrainingSample

    {

        public int Classification { get; set; }

        public List<double> Classifications { get; set; }

        public double[] Features { get; set; }

        �public TrainingSample(double [] features, int 

classification, IEnumerable<double>clasifications = null )

        {

            Features = new double[features.Length];

Array.Copy(features, Features, features.Length);

            Classification = classification;

            if (clasifications != null)

                Classifications = new List<double>(clasifications);

        }

    }

vartrainingSamplesXor = new List<TrainingSample>

                                      {

                                          �new TrainingSample 

(new double[] {0, 0}, 

-1, new List<double> 

{ 0 } ),

                                          �new TrainingSample 

(new double[] {1, 1}, 

-1, new List<double> 

{ 0 } ),
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                                          �new TrainingSample 

(new double[] {0, 1}, 

-1, new List<double> 

{ 1 } ),

                                          �new TrainingSample 

(new double[] {1, 0}, 

-1, new List<double> 

{ 1 } ),

                                      };

var multilayer = new MultiLayerNetwork(trainingSamplesXor, 2, 

3, 1, 0.01);

vartoPredict = new List<double[]>

                              {

                                  new double[] {1, 1},

                                  new double[] {1, 0},

                                  new double[] {0, 0},

                                  new double[] {0, 1},

                                  new double[] {2, 0},

new[] {2.5, 2},

new[] {0.5, 1.5},

                              };

var predictions = multilayer.PredictSet(toPredict);

            for (vari = 0; i<predictions.Count; i++)

Console.WriteLine("Data: ( {0} , {1} ) Classified as: {2}", 

toPredict[i][0], toPredict[i][1], predictions[i]);

The result obtained after executing the code from Listing 11-12 in a C# 

console application is shown in Figure 11-16.
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Up to this point we have examined different models of NNs; we 

examined the Perceptron model, which is unable to distinguish the 

scenario where we have more than two classes that cannot be separated 

by a hyperplane. We know Adalines are based on the gradient descent 

search method, which allows them to differentiate non-linearly separable 

data sets, and their learning rule serves as the learning paradigm for the 

backpropagation algorithm. Finally, we learned about multi-layer NNs, 

which use a multi-layer structure—which simulates the composition 

of mathematical functions——and are considered as universal 

approximators. In the next chapter, we will examine a very interesting 

application of NNs, one in which an AI will be able to understand our 

handwritten digits; such an application is called handwritten digit 

recognition.

�Summary
In this chapter, we studied artificial neural networks, a powerful AI device 

capable of solving multiple problems by learning patterns acquired 

from labeled training data sets and by means of approximating a tabular 

function represented by the training data set. We described how learning 

is, at its core, highly related to optimization problems since it can be seen 

as a continuous improvement of doing some task. Equivalently, it can 

be viewed as a way of minimizing the error carried out while being in a 

Figure 11-16.  Result obtained after executing the code from Listing 11-12
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learning stage that ends after several epochs or iterations or after having 

achieved a suitable learning error that would allow us to eventually 

predict, with a small error factor, the classification of new incoming data. 

We began by describing the Perceptron, then moved to Adalines, whose 

learning rule resembles that of multi-layer NNs, and proposed an  

object-oriented approach for implementing all of these NNs
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CHAPTER 12

Handwritten Digit 
Recognition
In Chapter 11 we studied artificial neural networks (NNs), a supervised 

learning paradigm that mimics the way neurons in our brain work. The 

learning process in NNs consists of approximating a function described 

in a tabular manner via a training data set containing features of objects 

(inputs to the function to be approximated) and their corresponding 

classification (outputs of the function).

As described before, NNs are capable of learning a function described 

in a training data set by adjusting the set of weights linking their neurons. At 

the same time, neurons can be arranged in different layers, and the purpose 

of each layer is to improve the mathematical power of the NN. Recall that 

an NN is basically a mathematical function and that the addition of layers is 

similar to the operation of the composition of functions in mathematics; in 

other words, every layer can be seen as a function, and the NN as  

F(L1(L2( … (LN(x)))) where F is the NN and Li the layers within the NN.

NNs can be applied to multiple problems of science. Among these 

problems, it is worth mentioning face recognition, which is very popular 

nowadays and is being incorporated in mobile phones and other 

electronic devices, pattern recognition, shape recognition, autonomous 

vehicle driving, and the problem that will be the focus point of this chapter, 

optical character recognition (OCR), and, more specifically, a subproblem 

of OCR known as handwritten digit recognition (HDR).
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Why choose HDR over all other possible problems to present as an 

illustrative example of NNs? First, HDR is not as far as you might imagine 

from the practical problems we examined in Chapter 11. Furthermore, a 

training data set for HDR typically consists of low-resolution images that can 

be easily reproduced by anyone, and the feature extraction process is very 

easy to accomplish. As we shall see soon, the entire image will be considered 

as input to the NN, and the image-processing stage will not be complicated 

for this problem, so it will not deviate us from our core topic, NNs.

In this chapter, we will implement an application in Windows Forms 

that will allow us to “hand paint” a digit and will give us the correct 

classification for that drawn digit. For example, if the drawn digit is 1, then 

the output should be 1; if it’s 2 then output should be 2, and so on. In the 

back end, this application will use a slightly modified version of the multi-

layer NN introduced in Chapter 11.

Note  NNs can be applied not only as supervised learning methods 
but also as unsupervised learning and reinforcement learning 
methods, which are other paradigms of machine learning.

�What Is Handwritten Digit Recognition?
The recent digital revolution brought a dramatic change to our perspective 

of concepts such as communication and connectivity. Today, biometrics, 

the science of identifying or verifying the identity of a person based 

on physiological or behavioral characteristics, is playing a key role in 

authentication problems. Physiological characteristics could include 

fingerprints, iris, hand geometry, or facial image. Behavioral characteristics 

can be actions carried out by a person in a particular manner and 

may include recognition of signature, machine-printed characters, 

handwriting, and voice.
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Some of the applications of OCR include postal address system, 

signature verification system, recognition of characters from form-filled 

applications, and so forth. OCR is basically of two types: offline character 

recognition and online character recognition. In the first case, an image 

coming from a scanner is typically accepted as input, and the recognition 

procedure tends to be more difficult than in the latter case because of the 

unavailability of contextual information and lack of prior knowledge such 

as text position, size of text, order of strokes, start point, stop point, and 

so on. In online character recognition, the system starts accepting input 

from the moment a pen from a hardware device, such as a graphic tablet, 

light pen, and so on, begins working; lots of information becomes available 

during the input process, such as current position, moment’s direction, 

start points, stop points, and stroke orders. Handwritten character 

recognition usually comes under this category even though applications 

for the other one also exist.

Handwriting is the human way of communicating with each other 

using written media. With advancements in technology and developments 

in science, there have been a lot of changes in technology in terms of 

communication with computers through handwriting. Nowadays, a 

computer program is typically needed that is capable of receiving and 

recognizing an input in the form of handwriting data; this is what is known 

as handwritten recognition.

Handwritten digit recognition is a subset of handwritten recognition 

whose main purpose is to recognize handwritten digits; thus, the universe 

of characters in HDR is exclusively {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and no other 

character will be correctly recognized.

Note O ne of the most popular data sets for HDR is MNIST; divided 
in two subsets, one of them serves for training your NN and the other 
for testing its accuracy. It can be downloaded from http://yann.
lecun.com.
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�Training Data Set
In order to train our multi-layer NN to recognize handwritten digits, we 

created the training data set shown in Figure 12-1.

Figure 12-1.  Small training data set consisting of 30 images of 30 x 
30 resolution

This self-created training data set consists of merely 30 images 

containing handwritten digits in the range [1, 3], ten images for each digit. 

In this practical problem, we will not be incorporating the recognition of 

all digits; rather, we will focus on recognizing digits 1, 2, and 3. As we shall 

see very soon, extending the NN herein detailed to recognize all digits will 

not result in any complication to the reader in their future efforts.

We choose to have all images in 30 x 30 resolution because it simplifies 

the input layer of our NN, and the color selection (black background, white 

font) simplifies our feature-extraction phase.

�Multi-layer NN for HDR
The NN we will be modeling to solve the HDR problem will not differ too 

much from the model of the multi-layer NN proposed in Chapter 11. Recall 

that because of the universal approximation theorem we know that having 

a single hidden layer in a multi-layer NN is always enough for learning or 
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approximating any continuous function. Also, recall that deep learning 

(NNs involving various hidden layers) does not exist in vain and that its 

purpose is to provide more accurate and efficient results in those problems 

where having a single hidden layer would not provide accurate or feasible 

enough results. Having multiple hidden layers can help us obtain a more 

accurate, efficient solution in a shorter time. For the problem at hand, we 

will settle for having a multi-layer NN with a single hidden layer.

The input layer will be a direct mapping from the image pixels into the 

nodes of this layer; therefore, if we have a 30 x 30 image, our input layer will 

contain 900 nodes, one for each pixel, and their values will be 0 if the pixel 

color is black and 1 in any other case (Figure 12-2). This is not the most 

accurate strategy we can use for extracting features to be fed to our NN, 

but it will work for this simple example. Other feature-extraction strategies 

consider getting the pixel intensity values and having those values scaled 

to the range [0, 1].

Figure 12-2.  Feature extraction by mapping every black pixel to 0 
and any other pixel to 1
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The output layer will contain three nodes, one for each of the digits 

(1, 2, 3) being considered for recognition. The definitive structure of the 

proposed multi-layer NN is illustrated in Figure 12-3.

Figure 12-3.  Structure of the proposed multi-layer NN

At this point, the reader may wonder how we decide from the output layer 

the classification of the data being analyzed in the NN. The fact that we have 

three nodes in this layer is no coincidence; each of these nodes is supposed 

to match a digit out of the three that we will be recognizing. The first node 

matches or outputs (if it is activated) digit 1, the second node matches digit 2, 

and the third node outputs digit 3. Now, how do we choose a node to be the 

output of the network or to be activated for a given training data? Simple—the 

node with the highest activation value will be the node chosen as output.

The correct classification of a training data will be represented as 

a vector of three components; two of these will have value 0 and one 

will have value 1. The component having 1 as its value indicates the 

correct classification of the training data. For example, the vector (1, 0, 0) 

denotes 1 as the correct classification of a training data, the vector (0, 1, 0) 

indicates 2 as the correct classification, and (0, 0, 1) marks 3 as the proper 

classification for the training data being analyzed.

Chapter 12  Handwritten Digit Recognition



467

To conclude, it’s essential to mention that in the proposed NN we 

will not consider an initialization of weights as random values in the 

range [0, 1]; rather, we will set them up as random values in the range 

[-0.5, 0.5]. The reasons behind this change are numerical and are also 

related to performance. Because we will have an input layer with many 

nodes, the weighted sum of these input values will result in sigmoid 

activation values very close to 1, which will undermine the performance 

of our NN and prevent us from converging toward a minimization of the 

error and consequently prevent us from achieving a decent solution. As 

a note of advice, remember that even the initialization of weights is an 

issue to consider when designing your NN as it can affect the NNs overall 

performance.

�Implementation
As mentioned before, we will be developing a Windows Forms application 

that will allow us to draw a digit on a picture box, and then by clicking on 

a Classification button we will obtain the classification of the drawn digit. 

Simply to gain elegance and expressiveness in the code, we will work 

with the following class (Listing 12-1), which is a direct descendant of the 

MultiLayerNetwork class introduced in Chapter 11.

Listing 12-1.  HandwrittenDigitRecognitionNn Class Representing a 

NN for HDR

public class HandwrittenDigitRecognitionNn : MultiLayerNetwork

    {

        �public HandwrittenDigitRecognitionNn(IEnumerable<Training

Sample> trainingDataSet, int inputs, int hiddenUnits,  

int outputs, double learningRate)
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            �:base(trainingDataSet, inputs, hiddenUnits, 

outputs, learningRate)

        {

        }

    }

An instance of this class will be added to the HandwrittenRecognitionGui 

class, inheriting from Windows.Forms.Form and containing most of the code 

detailed in this chapter. The part of this class where fields and properties are 

declared can be seen in Listing 12-2.

Listing 12-2.  HandwrittenRecognitionGui Class Representing the 

Visual Application

public partial class HandwrittenRecognitionGui : Form

    {

        private bool _mouseIsDown;

        private Bitmap _bitmap;

        private const int NnInputs = 900;

        private const int NnHidden = 3;

        private const int NnOutputs = 3;

        �private HandwrittenDigitRecognitionNn _

handwrittenDigitRecogNn;

        private bool _weightsLoaded;

public HandwrittenRecognitionGui()

        {

            InitializeComponent();

            _bitmap = new Bitmap(paintBox.Width, paintBox.Height);

        }

}
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These fields or properties can be described as follows:

•	 _mouseIsDown: used in mouse-related events to 

determine whether a mouse button (left click) has been 

pressed

•	 _bitmap: bitmap image used to store what the user 

draws on the picture box and then submit it to the NN 

for classification

•	 NnInputs: number of nodes in the input layer of the NN

•	 NnHidden: number of nodes in the hidden layer of  

the NN

•	 NnOutputs: number of nodes in the output layer of 

the NN

•	 _handwrittenDigitRecogNn: instance of the NN class

•	 _weightsLoaded: determines whether the set of weights 

has been loaded to the application. Once we train 

the NN the set of weights found will be saved in a file 

for future use; therefore, this variable will control the 

reading of the file containing those weights.

The HandRecognitionGui class will be complemented by adding 

different methods for handling mouse-related events in the picture-box 

control, which we added to the application in Design mode. We will see 

how the application looks very soon. These methods linked to mouse 

events are shown in Listing 12-3.
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Listing 12-3.  Mouse-Event Methods in the Picture Box Where We 

Will Be Drawing Digits to Be Classified

private void PaintBoxMouseDown(object sender, MouseEventArgs e)

        {

            if (e.Button == MouseButtons.Left)

                _mouseIsDown = true;

        }

        �private void PaintBoxMouseMove(object sender, 

MouseEventArgs e)

        {

            if (_mouseIsDown)

            {

                �var point = paintBox.PointToClient(Cursor.

Position);

                �DrawPoint((point.X), (point.Y), Color.

FromArgb(255, 255, 255, 255));

            }

        }

        �private void PaintBoxMouseUp(object sender, 

MouseEventArgs e)

        {

            _mouseIsDown = false;

        }

        public void DrawPoint(int x, int y, Color color)

        {

            var pen = new Pen(color);

            var gPaintBox = paintBox.CreateGraphics();

            var gImg = Graphics.FromImage(_bitmap);

            gPaintBox.DrawRectangle(pen, x, y, 1, 1);

            gImg.DrawRectangle(pen, x, y, 1, 1);

        }
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From Listing 12-3 we can see that we have captured three mouse 

events: MouseDown (when user presses a mouse button on the control), 

MouseMove (when user moves the mouse over the control), and MouseUp 

(when user stops pressing a button on the control). These three events 

combined with the _mouseIsDown variable give us the necessary tools to 

construct a simple, straightforward mechanism for determining when the 

user is drawing on the control and saving that drawing both on the picture 

box and on the auxiliary bitmap image that we eventually submit to the 

NN for classification. Once the user has drawn a digit on the picture box 

control and clicked on the Classification button (we will soon take a look at 

the final GUI) an image-processing stage begins where we extract features 

from the image using the next method (Listing 12-4).

Listing 12-4.  Extracting features

private double [,] GetImage(Bitmap bitmap)

        {

            var result = new double[bitmap.Width, bitmap.Height];

            for (var i = 0; i < bitmap.Width; i++)

            {

                for (var j = 0; j < bitmap.Height; j++)

                {

                    var pixel = bitmap.GetPixel(i, j);

                    �result[i, j] = pixel.R + pixel.G + pixel.B 

== 0 ? 0 : 1;

                }

            }

            return result;

        }
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In the GetImage() method, we build a matrix of binary values; a value 

of 0 on a given (i, j) coordinate of the resulting matrix will indicate a  

pixel of black color in the image associated with the picture box, while a 

value of 1 indicates any other color.

In our visual application we will include a Train button whose method 

for the click event can be seen in Listing 12-5. In this method, we load 

the set of 30 x 30 images forming the training data set; we process each 

image and create an equivalent TrainingSample object. Then, we start the 

training process and save the resulting set of weights in a weights.txt file.

Listing 12-5.  Load the Training Data Set, Train the NN, and Save 

the Resulting Weights

private void TrainBtnClick(object sender, EventArgs e)

        {

            var trainingDataSet = new List<TrainingSample>();

            �var trainingDataSetFiles = Directory.

GetFiles(Directory.GetCurrentDirectory() +  

"\\Digits");

            foreach(var file in trainingDataSetFiles)

            {

                �var name = file.Remove(file.LastIndexOf(".")).

Substring(file.LastIndexOf("\\") + 1);

                var @class = int.Parse(name.Substring(0, 1));

                var classVec = new[] {0.0, 0.0, 0.0};

                classVec[@class - 1] = 1;

                var imgMatrix = GetImage(new Bitmap(file));

                �var imgVector = imgMatrix.Cast<double>().

Select(c => c).ToArray();

                �trainingDataSet.Add(new 

TrainingSample(imgVector, @class, classVec));

            }
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            �_handwrittenDigitRecogNn = new HandwrittenDigit 

RecognitionNn(trainingDataSet, NnInputs, NnHidden, 

NnOutputs, 0.002);

            _handwrittenDigitRecogNn.Training();

            �var fileWeights = new StreamWriter("weights.txt", 

false);

            �foreach (var layer in _handwrittenDigitRecogNn.Layers)

            {

                foreach (var unit in layer.Units)

                {

                    foreach (var w in unit.Weights)

                        fileWeights.WriteLine(w);

                    fileWeights.WriteLine("*");

                }

                fileWeights.WriteLine("-");

            }

            fileWeights.Close();

            MessageBox.Show("Training Complete!", "Message");

        }

To classify the digit drawn on the picture box, we add the Classify 

button. The method triggered when the click event occurs is illustrated in 

Listing 12-6. In this method, we check for the existence of the weights.txt 

file, load the set of weights if the file exists, or output a warning message 

in any other case. If the weights have not been loaded then we run the 

ReadWeights() method and eventually execute the Predict() method of 

the NN and save the resulting classification in the classBox textbox.
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Listing 12-6.  Method Executed After the Classify Button Has Been 

Clicked

private void ClassifyBtnClick(object sender, EventArgs e)

        {

             �if (Directory.GetFiles(Directory.

GetCurrentDirectory()).Any(file => file == 

Directory.GetCurrentDirectory() + "weights.txt")) {

                �MessageBox.Show("Warning", "No weights file, 

you need to train your NN first");

              return;

             }

             if (!_weightsLoaded)

             {

                 ReadWeights();

                 _weightsLoaded = true;

             }

            var digitMatrix = GetImage(_bitmap);

            �var prediction = _handwrittenDigitRecogNn.

Predict(digitMatrix.Cast<double>(). 

Select(c => c).ToArray());

            classBox.Text = (prediction + 1).ToString();

        }

The ReadWeights() method, acting as an auxiliary mini-parser, is in 

charge of reading the file of weights and assigning them to every node 

in the NN (Listing 12-7). Weights are stored one per line in the file, and 

weights belonging to different units will be separated by a line containing a 

“*” symbol, which marks the end of the weights assignment to a given unit 

and the start of another one. The same thing occurs with the “-” symbol 

but at the layer level.
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Listing 12-7.  ReadWeights() Method

private void ReadWeights()

        {

            �_handwrittenDigitRecogNn = new HandwrittenDigitRe

cognitionNn(new List<TrainingSample>(), NnInputs, 

NnHidden, NnOutputs, 0.002);

            var weightsFile = new StreamReader("weights.txt");

            �var currentLayer = _handwrittenDigitRecogNn.

HiddenLayer;

            var weights = new List<double>();

            var j = 0;

            while (!weightsFile.EndOfStream)

            {

                var currentLine = weightsFile.ReadLine();

                // End of weights for current unit.

                if (currentLine == "*")

                {

                    �currentLayer.Units[j].Weights = new 

List<double>(weights);

                    j++;

                    weights.Clear();

                    continue;

                }

                // End of layer.

                if (currentLine == "-")

                {

                    �currentLayer = _handwrittenDigitRecogNn.

OutPutLayer;

                    j = 0;

Chapter 12  Handwritten Digit Recognition



476

                    weights.Clear();

                    continue;

                }

                weights.Add(double.Parse(currentLine));

            }

            weightsFile.Close();

        }

Finally, let’s execute and take a look at our Handwritten Digit 

Recognition visual application (Figure 12-4).

Figure 12-4.  HDR visual application

Now that we have completely developed the application, let’s see how 

it would perform after different drawings of digits 1, 2, and 3 are presented 

to the NN.

�Testing
Going back to Figure 12-4, we can see the drawing space in our application 

is the picture box control with a black background; it is in this picture box 

that we will draw different digits to eventually obtain a classification by 

clicking the Classify button. Let’s examine some tests (Figure 12-5).
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Figure 12-5.  Classification of handwritten digits

In the same way as we can obtain a correct classification for many 

handwritten digits in this application, it could happen that for others we 

get an incorrect classification. The reason behind this inaccuracy, as the 

reader may expect at this point, is the very small training data set used 

while training the NN. To obtain higher accuracy we would need many 

more samples with different styles of handwriting.
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�Summary
In this chapter we introduced the problem of handwritten digit recognition 

and developed a Windows Forms application that allows users to draw 

digits in it and eventually obtain a classification for the drawn digit. We 

considered only the set of digits {1, 2, 3} but the application can be easily 

extended to include all possible digits simply by adding new nodes to 

the output layer. We tested the results and, as mentioned before, due 

to the small number of training samples the application will probably 

misclassify some of the incoming data. Thus, adding new training data was 

a recommendation. The visual application presented in this chapter is an 

authentic representative of the power and possibilities of neural networks.

Chapter 12  Handwritten Digit Recognition



479© Arnaldo Pérez Castaño 2018 
A. Pérez Castaño, Practical Artificial Intelligence,  
https://doi.org/10.1007/978-1-4842-3357-3_13

CHAPTER 13

Clustering &  
Multi-objective 
Clustering
Thus far, we have discussed several methods related to supervised 

learning. In these methods, we approximated a function from a training 

data set containing labeled data. In this chapter, we will begin addressing 

unsupervised learning, a paradigm of machine learning where we deduce 

a function and the structure of data from an unlabeled data set.

Unsupervised learning (UL) methods no longer have a “training” 

data set. Consequently, the training phase in UL disappears because data 

does not have an associated classification; the correct classification is 

considered unknown. Therefore, UL is far more subjective than supervised 

learning is, since there is no simple goal for the analysis such as prediction 

of a response. The general goal of UL methods, as imprecise as it may 

sound, is to find patterns that describe the structure of the data being 

analyzed. Because obtaining unlabeled data from a lab instrument or 

any measurement device is usually easier than obtaining labeled data, 

UL methods are being applied more and more to multiple problems that 

require learning the structure of data.
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In this chapter, we will explore one of the most important learning 

tasks associated with UL, which is clustering, as well as a variant of it where 

we consider several objective functions to be minimized or maximized at 

the same time, which is called multi-objective clustering. A method of the 

broad family of clustering algorithms will be described and implemented 

throughout the chapter; namely, we will implement the k-means method. 

Moreover, some measures for determining object and cluster similarity 

will be also implemented.

Note  Both supervised and unsupervised learning algorithms 
represent techniques of knowledge extraction frequently used in 
data-mining applications.

�What Is Clustering?
Clustering is a broad family of algorithms whose purpose is to partition a 

set of objects into groups or clusters, trying to ensure that objects in the 

same group have the highest similarity possible and objects in different 

groups have the highest dissimilarity possible. Similarity in this case 

is related to a property of the objects; it could be height, weight, color, 

bravery, or any other quality that our data set includes, typically in a 

numeric form. Figure 13-1 illustrates clustering based on object color.
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Clustering finds applications in various areas of science and business, 

such as astronomy, psychology, medicine, economics, fraud avoidance, 

architecture, demographic analysis, image segmentation, and more.

A clustering algorithm is usually composed of three elements:

•	 Similarity Measure: function used to determine the 

similarity between two objects. In the example from 

Figure 13-1, a similarity function could be Color(x, y) 

outputting an integer that determines the equivalence 

between objects x and y in regard to their colors. 

Typically, the larger the value outputted the greater the 

dissimilarity is between x and y; the smaller the value 

outputted the more similar x and y will be.

•	 Criterion or Objective Function: function used to 

evaluate the quality of a clustering

•	 Optimization or Clustering Algorithm: an algorithm 

that minimizes or maximizes the criterion function

Figure 13-1.  Clustering a set of objects based on their color
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Some of the most popular similarity measures are the following:

•	 Euclidean Distance of n-dimensional vectors a, b:

Euclidean a b
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a b

This is the ordinary distance between two points in 

space.

•	 Manhattan Distance of n-dimensional vectors a, b:

Manhattan a b
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This is an approximation of the Euclidean Distance, 

and it’s cheaper to compute.

•	 Minkowski Distance of cells that belong to an n x m 

matrix T; p is a positive integer and is a generalization 

of the previously detailed distances:
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Among the criterion or objective functions used for determining or 

evaluating the quality of a clustering we can find the following:

•	 Intra-class Distance, also known as Compactness: as its 

name suggests with its “intra” (on the inside, within) 

prefix, it measures how close data points in a cluster 

(group) are to the cluster centroid. The cluster centroid 

is the average vector of all data points in a cluster. 

The Sum of Squared Errors is typically used as the 

mathematical function to measure this distance.
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•	 Inter-class Distance, also known as Isolation or 

Separation: as its name suggests from the “inter” 

(between) prefix, it measures how far clusters are from 

each other.

The family of clustering algorithms can be divided into hierarchical, 

partitional, and Bayesian algorithms. Figure 13-2 illustrates the relation 

between the different families of clustering algorithms.

Figure 13-2.  Clustering algorithms family

In this book, we will discuss hierarchical and partitional algorithms; 

Bayesian clustering algorithms try to generate a posteriori distribution 

over the set of all possible partitions of the data points. This family of 

algorithms is highly related to areas such as probability and statistics, so it 

will be left to the reader as supplementary research.

Note  Clustering is a well-known NP-hard problem, meaning 
no polynomial time solution for the problem can be developed or 
designed on a deterministic machine.
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�Hierarchical Clustering
Hierarchical algorithms discover new clusters from previously discovered 

clusters; hence, new clusters become descendants of parent clusters after 

being nested within them, and the hierarchical relation is established that 

way. Hierarchical algorithms can be classified as agglomerative or divisive.

An agglomerative (a.k.a bottom-up) hierarchical algorithm starts with 

each object as a separate cluster of size 1 and then begins merging the 

most similar clusters into consecutively larger clusters up to the point 

where it contains a single cluster with all objects in it.

A divisive (a.k.a top down) hierarchical algorithm starts with the whole 

set in one cluster and in every step chooses a group to divide from the 

current set of clusters. It stops when each object is a separate cluster.

Hierarchical algorithms can output a dendrogram, a binary tree–like 

diagram used to illustrate the arrangement of clusters. In a dendrogram, 

every level represents a different clustering. Figure 13-3 shows an 

example of an agglomerative clustering being executed over a data set 

formed by points a, b, c, d, and e, along with the resulting clusters and the 

dendrogram obtained.

Figure 13-3.  Agglomerative clustering example
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Because points a, b and c, d respectively are the nearest ones, they 

are clustered together. Afterward, clusters {a, b}, {c, d}, being the nearest 

ones, are grouped together and {e} is left as another cluster. Finally, all 

data points are merged into a cluster that contains all data points; in this 

case, we executed a bottom-up procedure. How do we determine clusters’ 

similarity or distance? The previously detailed measures or distances 

give us the similarity between two data points, but what about cluster 

similarity? The measures described in the next lines output the similarity 

between clusters:

•	 Average Linkage Clustering: determines the similarity 

between clusters C1 and C2 by finding the similarity 

or distance between all pairs (x, y) where x belongs to 

C1 and y to C2. These values are added and eventually 

divided by the total number of objects in both C1 and 

C2. Thus, ultimately, what we calculate is an average or 

mean of the distance between C1 and C2.

•	 Centroid Linkage Clustering: determines the similarity 

between clusters C1 and C2 by finding the similarity or 

distance between any pair (x, y) where x is the centroid 

of C1 and y the centroid of C2.

•	 Complete Linkage Clustering: determines the similarity 

between clusters C1 and C2 by outputting the 

maximum similarity or distance between any pair (x, y) 

where x is an object from C1 and y is an object from C2.

•	 Single-Linkage Clustering: determines the similarity 

between clusters C1 and C2 by outputting the 

minimum similarity or distance between any pair (x, y) 

where x is an object from C1 and y is an object from C2.
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The pseudocode of an agglomerative hierarchical clustering 

demonstrates how easy it is in principle to implement this type of algorithm:

AgglomerativeClustering (dataPoints)

{

Initialize each data point in dataPoints as a single cluster

while (numberClusters> 1)

 �find nearest clusters C1, C2 according to a cluster similarity 

measure

merge(C1, C2)

end

}

The agglomerative algorithm represents a more efficient approach 

than that of the divisive algorithm, but the latter often provides a more 

accurate solution. Notice that the divisive algorithm begins operating with 

the whole data set; thus, it’s able to find the best division or partition into 

two clusters at the original data set, and from that point on it’s able to find 

the best possible division within each cluster. The agglomerative method, 

on the other hand, at the moment of merging does not consider the global 

structure of data, so it’s restricted to analyzing merely pairwise structure.

Note I n the 1850s during a cholera epidemic, London physician 
John Snow applied clustering techniques to plot the locations of 
cholera deaths on the map. The clustering indicated that death cases 
were located in the vicinity of polluted wells.

�Partitional Clustering
Partitional algorithms partition a set of n objects into k clusters or classes. 

In this case, k (number of clusters or classes) can be fixed a priori or be 

determined by the algorithm when optimizing the objective function. 

Chapter 13  Clustering & Multi-objective Clustering 



487

The most popular representative of the family of partitional clustering 

algorithms is k-means (MacQueen, 1967).

K-means is one of the simplest unsupervised learning methods for 

finding a clustering of a set of objects. It follows a simple procedure to 

partition a given data set into k clusters, where k is a number fixed a priori. 

In its initialization phase it defines k centroids, one for each cluster. There 

are different approaches for defining centroids. We could choose k random 

objects from the data set as centroids (naïve approach) or choose them in 

a more sophisticated way by selecting them to be as far as possible from 

each other. The choice made can affect performance later, as the initial 

centroids will influence the final outcome.

The main body of the k-means algorithm is formed by an outer loop 

that verifies whether a stopping condition has been reached; this outer 

loop contains an inner loop that passes through all data points. Within this 

inner loop—and while examining a data point P—we decide the cluster to 

which P should be added by comparing the distance of P to the centroid 

of every cluster, and ultimately we add it to the cluster with the nearest 

associated centroid.

Once all data points have been examined for the first time—in other 

words, the inner loop ends for the first time—a primary phase of the 

algorithm has been completed and an early clustering has been obtained. 

At this point, we need to refine our clustering; therefore, we recalculate 

the k centroids obtained in the previous step (recall that centroids are 

the average vector of their respective clusters), which will give us new 

centroids. The inner loop is executed again if the stopping condition has 

not been met, adding every data point to the cluster with the nearest new 

associated centroid. This is the main process of k-means; notice that the 

k centroids change their location step-by-step until no more changes are 

made. In other words, a stopping condition for the algorithm is that the set 
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of centroids does not change from one iteration to the next. A pseudocode 

of k-means can be seen in the following lines:

K-Means(dataPoints, k)

{

cList = InitializeKCentroids()

        clusters = CreateClusters()

while (!stoppingCondition)

{

foreach (pj in dataPoints)

              {

dj = Calculate distance from pj to every centroid cList_j

Assign pj to clusters_jwhose dj is minimum

               }

UpdateCentroids()

}

}

The objective function being optimized (minimized in this case) is 

the Sum of Squared Errors (SSE), also known as Intra-Class distance or 

Compactness:

SSE d x centroid
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k
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Where k is the number of clusters, Ci is the ith cluster, centroidi 

represents the centroid associated with the ith cluster, and d(a, b) is a 

distance or similarity measure (usually Euclidean distance) between x and 

centroidi. Thus, another possible stopping condition for k-means is having 

reached a very small value for SSE.

In Figure 13-4 we can see the first step of the k-means algorithm—

choosing k centroids. In this graphic, blue points denote data points and 

black points denote centroids.
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Figure 13-4.  First step of k-means, choosing k = 3 random objects or 
data points as centroids

Figure 13-5 shows the k = 3 clusters that result from having selected 

the set of centroids from the first step.

Figure 13-5.  Clustering obtained after choosing the set of centroids 
in the first step and considering a distance measure to determine 
similarity between data points
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The final step of the loop is to recalculate the centers of the clusters or 

centroids; this process is illustrated in Figure 13-6.

Figure 13-6.  Centroids being recalculated as the average vector of the 
cluster they represent

The steps represented in the preceding figures are repeated until a 

stopping condition is met. To summarize, k-means is a simple, efficient 

algorithm that can end up at a local minimum if we use a very small 

value of SSE as the stopping condition. Its main disadvantage is its high 

sensitivity to outliers (isolated data points), which can be alleviated by 

removing data points that are much farther away from the set of centroids 

when compared to other data points.

�Practical Problem: K-Means Algorithm
In this section, we will be implementing what is probably the most 

popular clustering algorithm ever: k-means. To provide an object-oriented 

approach to our implementation, we will create Cluster and Element 

classes that will incorporate all actions and properties related to clusters 

and objects (data points); the Cluster class can be seen in Listing 13-1.
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Listing 13-1.  Cluster Class

public class Cluster

    {

        public List<Element> Objects { get; set; }

        public Element Centroid { get; set; }

        public intClusterNo { get; set; }

        public Cluster()

        {

            Objects = new List<Element>();

            Centroid = new Element();

        }

        public Cluster(IEnumerable<double> centroid, intclusterNo)

        {

            Objects = new List<Element>();

            Centroid = new Element(centroid);

ClusterNo = clusterNo;

        }

        public void Add(Element e)

        {

Objects.Add(e);

e.Cluster = ClusterNo;

        }

        public void Remove(Element e)

        {

Objects.Remove(e);

        }
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        public void CalculateCentroid()

        {

var result = new List<double>();

vartoAvg = new List<Element>(Objects);

var total = Total;

            if (Objects.Count == 0)

            {

toAvg.Add(Centroid);

                total = 1;

            }

var dimension = toAvg.First().Features.Count;

            for (vari = 0; i< dimension; i++)

result.Add(toAvg.Select(o =>o.Features[i]).Sum() / total);

Centroid.Features = new List<double>(result);

        }

        public double AverageLinkageClustering(Cluster c)

        {

var result = 0.0;

            foreach (var c1 in c.Objects)

                �result += Objects.Sum(c2 =>Distance.

Euclidean(c1.Features, c2.Features));

            return result / (Total + c.Total);

        }

        public int Total

        {

            get { return Objects.Count; }

        }

    }
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The Cluster class contains the following properties:

•	 Objects: set of objects included in the cluster

•	 Centroid: centroid of the cluster

•	 ClusterNo: ID of the cluster to differentiate it from the 

rest

•	 Total: number of elements in the group or cluster

The class also contains the following methods:

•	 Add(): adds an element to the cluster

•	 Remove(): removes an element from the cluster

•	 CalculateCentroid(): calculates the centroid of a 

cluster

•	 AverageLinkageClustering(): calculates the 

AverageLinkageClustering similarity measure 

between clusters, as previously detailed

The Element class representing an object to be clustered is shown on 

Listing 13-2.

Listing 13-2.  Element Class

    public class Element

    {

        public List<double> Features { get; set; }

        public int Cluster { get; set; }

        public Element(int cluster = -1)

        {

            Features = new List<double>();

            Cluster = cluster;

        }
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        public Element(IEnumerable<double> features)

        {

            Features = new List<double>(features);

            Cluster = -1;

        }

    }

The class contains a Cluster property that indicates the clusterID 

of the cluster to which the object belongs; code from both constructors 

is self-explanatory. The KMeans class, representing the algorithm of the 

same name, is illustrated in Listing 13-3.

Listing 13-3.  KMeans and DataSet Classes

public class KMeans

    {

        public int K { get; set; }

        public DataSetDataSet { get; set; }

        public List<Cluster> Clusters { get; set; }

        private static Random _random;

        private constintMaxIterations = 100;

        public KMeans(int k, DataSetdataSet)

        {

            K = k;

DataSet = dataSet;

            Clusters = new List<Cluster>();

            _random = new Random();

        }

        public void Start()

        {

InitializeCentroids();

vari = 0;
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            while (i<MaxIterations)

            {

                foreach (varobj in DataSet.Objects)

                {

varnewCluster = MinDistCentroid(obj);

varoldCluster = obj.Cluster;

                    Clusters[newCluster].Add(obj);

                    if (oldCluster>= 0)

                        Clusters[oldCluster].Remove(obj);

                }

UpdateCentroids();

i++;

            }

        }

        private void InitializeCentroids()

        {

RandomCentroids();

        }

        private void RandomCentroids()

        {

var indices = Enumerable.Range(0, DataSet.Objects.Count).

ToList();

Clusters.Clear();

            for (vari = 0; i< K; i++)

            {

varobjIndex = _random.Next(0, indices.Count);

Clusters.Add(new Cluster(DataSet.Objects[objIndex].Features, i));

indices.RemoveAt(objIndex);

            }

        }
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        private intMinDistCentroid(Element e)

        {

var distances = new List<double>();

            for (vari = 0; i<Clusters.Count; i++)

distances.Add(Distance.Euclidean(Clusters[i].Centroid.Features, 

e.Features));

varminDist = distances.Min();

            return distances.FindIndex(0, d => d == minDist);

        }

        private void UpdateCentroids()

        {

            foreach (var cluster in Clusters)

cluster.CalculateCentroid();

        }

    }

public class DataSet

    {

        public List<Element> Objects { get; set; }

        public DataSet()

        {

            Objects = new List<Element>();

        }

        public void Load(List<Element> objects)

        {

            Objects = new List<Element>(objects);

        }

    }
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The properties or fields are self-explanatory; in this case, we have 

decided to use a maximum number of iterations as the stopping condition. 

The methods of the class are described in the following points:

•	 InitializeCentroids(): method created considering 

the possibility of having different centroid initialization 

procedures.

•	 RandomCentroids(): centroid initialization procedure 

where we assign k randomly selected objects as 

centroids of k clusters

•	 MinDistCentroid(): returns the clusterID of the 

cluster to which the input object is closer; i.e., at 

minimum distance

•	 UpdateCentroids(): updates the k centroids by calling 

the CalculateCentroid() method of the Cluster class

Now that we have all components in place, let’s test our clustering 

algorithm by creating a test application where we create a data set; 

Listing 13-4 illustrates this code.

Listing 13-4.  Testing the K-Means Algorithm

var elements = new List<UnsupervisedLearning.Clustering.

Element>

                                   {

                                       �new UnsupervisedLearning.

Clustering.Element(new 

double[] {1, 2}),

                                       �new UnsupervisedLearning.

Clustering.Element(new 

double[] {1, 3}),
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                                       �new UnsupervisedLearning.

Clustering.Element(new 

double[] {3, 3}),

                                       �new UnsupervisedLearning.

Clustering.Element(new 

double[] {3, 4}),

                                       �new UnsupervisedLearning.

Clustering.Element(new 

double[] {6, 6}),

                                       �new UnsupervisedLearning.

Clustering.Element(new 

double[] {6, 7})

                                   };

vardataSet = new DataSet();

dataSet.Load(elements);

varkMeans = new KMeans(3, dataSet);

kMeans.Start();

                foreach (var cluster in kMeans.Clusters)

                {

Console.WriteLine("Cluster No {0}", cluster.ClusterNo);

                    foreach (varobj in cluster.Objects)

Console.WriteLine("({0}, {1}) in {2}", obj.Features[0], obj.

Features[1], obj.Cluster);

Console.WriteLine("--------------");

                }

The result obtained after executing the code from Listing 13-4 is shown 

in Figure 13-7. Note that in this case we have three easily distinguished 

groups, as the figure illustrates.
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So far, we have examined single-clustering algorithms, or algorithms 

where we optimize a single objective function. In the case of k-means, 

it was the Sum of Squared Errors, also known as intra-class distance 

(minimizes the distance of objects within a group). Another function 

that we might try to optimize is the inter-class (maximize distance of 

objects from different groups) function. In the next section we will begin 

studying multi-objective clustering in which we do not consider only a 

single function to optimize but rather several functions, and we attempt to 

optimize them all at once.

�Multi-objective Clustering
Nowadays, many real-life problems force us to consider not only the best 

possible value for a given function but also the value of several functions 

all related to the problem at hand. For instance, zoning, a technique that 

belongs to the area of urban studies, appeared for the first time in the 

nineteenth century to separate residential areas from industrial ones. The 

main idea with this technique, the most popular in urbanization, is to 

produce a partition of homogeneous regions according to several variables 

or criteria. These variables could be demographic—for instance, number 

of people who are older than twenty, number of people younger than ten, 

and so on. Finding such a partition is clearly a clustering problem involving 

Figure 13-7.  Execution of the k-means algorithm with k = 3
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the optimization of different functions. Therefore, we might try to find a 

clustering with the lowest intra-class distance (a.k.a compactness) and 

at the same time optimize the inter-class distance or any other function, 

which could very well be demographic in nature. A perfect clustering is 

that with the minimum intra-class distance and the maximum inter-class 

distance; hence, one could say that clustering is by nature a multi-objective 

optimization problem. We will begin this section by examining several 

relevant concepts or definitions related to multi-objective clustering.

Many optimization problems often involve optimizing multiple 

objective functions at the same time; such problems are known as a multi-

objective optimization problems (MOPs). They can be stated as follows:

minimize F x f x f x f x

x A
n( ) = ( ) ( ) ¼ ( )( )

Î
1 2, , ,

In this case, A represents the feasible space of the problem—the set of 

all feasible solutions, the ones fulfilling every constraint of the problem.

A vector u u u un= ¼( )1 2, ,  is said to be dominated by another vector, 

v v v vn= ¼( )1 2, , , denoted u < v, if and only if for all of index i we can verify 

that u vi i£  . In any other case u is said to be a non-dominated vector. 

Notice that “domination” depends on whether we want to minimize 

or maximize the objective functions; recall that it’s always possible to 

transform a minimization problem into a maximization problem and the 

other way around.

Having multiple objectives denotes a significant issue—the 

improvement of one objective function could lead to the deterioration 

of another. Thus, a solution that optimizes every objective rarely exists; 

instead of looking for that solution a trade-off is searched for. Pareto 

optimal solutions represent this trade-off.
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A feasible solution x is said to be Pareto optimal if there is no solution 

y such that F(x)<F(y). In other words, there is no solution vector y whose 

evaluation vector (f1(y), f2(y), … fn(y)) would dominate the evaluation vector 

of x, (f1(x), f2(x), … fn(x)). The set of all Pareto optimal solutions is known as 

the Pareto Set, and its image is the Pareto Frontier. The goal of most MOPs 

algorithms is to build a Pareto Frontier for a given problem; such methods 

are typically heuristics or metaheuristics (we shall examine them during 

the next chapter).

Note P areto optimality is a concept named after Vilfredo Pareto 
(1848–1923), the Italian engineer and economist. Its concept has 
been applied in academic fields such as economics, engineering, and 
the life sciences.

�Pareto Frontier Builder
Searching through the scientific literature, we can find different methods 

for discovering the Pareto Frontier. In this book, we will describe one 

of the author’s own creation, named Pareto Frontier Builder. It can be 

applied to bi-objective optimization—the case where you are optimizing 

two functions. The binary case is ideal for clustering problems since 

there are two functions (intra- and inter-class) that can provide us with 

the optimum.

For the binary case, the relation between the two functions and the 

Pareto Frontier can be represented as illustrated in Figure 13-8.

Chapter 13  Clustering & Multi-objective Clustering 



502

The strategy of the Frontier Builder method is divided into different 

stages. The main idea is to build the Pareto Frontier by areas, as shown in 

Figure 13-9.

•	 Area A: Points in this area will be obtained by 

minimizing the second objective function (f2); points 

resulting from this optimization will be the closest to 

the y-axis.

•	 Area B: Points in this area will be obtained by 

minimizing the second objective function (f1); points 

resulting from this optimization will be the closest to 

the x-axis.

•	 Area C: It’s intended to act as a linking mechanism, 

uniting areas A and B and putting together the Pareto 

Frontier. A procedure known as Pareto Frontier Linkage 

will find the bridge between areas A and B.

Figure 13-8.  Blue points form the Pareto Frontier and red points are 
dominated by blue ones; thus, they are not considered as part of the 
Pareto Frontier. This would be a minimization problem
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Seeing the strategy in these steps makes it look very simple. We 

separate the f2 optimization from the f1 optimization, build areas A and B, 

and then link them by finding non-dominated solutions in area C.

Pareto Frontier Linkage is the mechanism applied to construct area C.  

It requires a step parameter that defines the desired distance between 

non-dominated solutions in the Pareto Frontier. When a distance between 

solutions x and y exceeds this step then the linkage mechanism starts a 

searching machinery to find non-dominated solutions between x and y 

and build a bridge. This machinery consists of making small variations to 

the leftmost solution, the one on the left side of the bridge (x, according to 

Figure 13-10).

Figure 13-9.  Area A is formed by points obtained after minimizing 
objective function f2; area B is obtained after minimizing objective 
function f1, and area C is formed using a linkage mechanism 
connecting areas A and B
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The variation occurs as follows:

	 1.	 Select the leftmost solution.

•	 Modify the current solution. For the clustering 

problem, move an element from its current 

cluster to some other cluster, guaranteeing that f2 

increases by currentDistance + k, where k <= step, 

and evaluate and store this new solution.

	 2.	 Repeat step 2 and move all elements in the leftmost 

solution to improve clusters’ chances of finding 

non-dominated solutions with f2 values ranging in

[currentDistance,currentDistance + step]; this 

strategy slowly builds the bridge and improves the 

Pareto Frontier.

Figure 13-10.  Step to join points x, y
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This method was embedded in a Tabu Search metaheuristic (we will 

discuss them in the next chapter) and applied to a real-world zoning 

problem. The results obtained after selecting different step values can be 

seen in Figure 13-11.

After 300 iterations, step = 2.0.

 

After 500 iterations, step = 2.0
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Step = 1.2 after 500 iterations.

 

Finally, step = 0.5, 500 iterations.

Figure 13-11.  Frontier Builder mechanism using different steps and 
executing a different number of iterations
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From the set of images forming the previous figure, we can see that 

the Pareto Frontier is well defined; the smaller the step the better defined 

it is and the more holes it will fill out of the Pareto Frontier. An interesting 

enhancement to this strategy would be to apply the FrontierBuilder 

mechanism not only to execute steps along the f2-axis but also along the 

f1-axis, providing a more accurate approximation to the Pareto Frontier.

�Summary
In this chapter, we discussed one of the classic problems of computer 

science: of clustering. We described it by providing different measures for 

determining object similarity and cluster similarity. We also introduced 

the family of clustering methods and presented and developed one of the 

most popular and reliable algorithms for clustering, which is k-means. 

Throughout the final sections we examined multi-objective clustering as 

a particular case of multi-objective optimization problems and detailed a 

method of the author’s own creation for constructing the Pareto Frontier; 

this method was the Pareto Frontier Builder.
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CHAPTER 14

Heuristics & 
Metaheuristics
So far we have mentioned the word heuristic on numerous occasions. 

We used it in the “Mars Rover” chapter to incorporate a method that 

seemed logical and simple, used our pragmatic knowledge of reality, and 

helped us achieve reasonable movements for the robot. This method was 

based primarily on our experience and not on any scientifically proven 

procedure.

In computer science we are typically faced with the challenge of 

designing algorithms that give us both good time complexity and good 

solutions (optimal if possible) to a given problem. A heuristic is a method 

that can easily abandon either of the previous premises, or maybe both. 

For instance, a heuristic can find many solutions for a problem, and 

some of these solutions may be incorrect or unfeasible, and some might 

be optimal. Likewise, it could execute in a short time, providing feasible 

solutions for a problem, and it could happen that none of those solutions 

would be optimal. This type of algorithm is usually applied to problems 

that are intrinsically difficult; for instance, NP-Hard problems like the 

Traveling Salesman, clustering, vehicle routing, and many others.  

Because of the nature of these problems, their high complexity, we must 

rely on methods that will output a solution to the problem, or maybe part 

of a solution, and aid us in ultimately obtaining a definite solution that 

would be as close as possible to an optimal solution.
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A very special type of heuristic is the metaheuristic, a problem-

independent iterative process where various heuristics are combined 

through different strategies or guidelines that try to lead the search toward 

finding good solutions. Metaheuristics have become very popular; some 

of them base their functioning on biological or chemical processes and 

have garnered great interest because of their ability to find good solutions 

to complicated problems by applying simple algorithms that execute in a 

decent amount of time.

In this chapter, we’ll discuss heuristics, specifically the Hill Climbing 

heuristic, and we will present two well-known metaheuristics; namely, 

we will study genetic algorithms and Tabu Search. Practical problems in 

which we will implement the first two methods will be included.

Note  Multiple algorithms in AI are heuristics by nature or use a 
heuristic during their execution. An application determining whether a 
given email is spam uses many heuristics rules to eventually make a 
decision.

�What Is a Heuristic?
A heuristic is a method drawn from experience, common sense, or an 

educated guess that aims at providing or contributing to providing a 

practical solution to a problem that is usually very difficult to solve  

(NP-Hard), and consequently an optimal or good, feasible solution is too 

complicated to obtain. Heuristic methods can be used to speed up the 

process of finding a good, feasible solution by providing us with a shortcut. 

This speed-up process is usually carried out via search algorithms where 

we traverse a tree representing the space of possible solutions. The 

application of certain problem-specific heuristics can significantly reduce 
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the tree search. Such is the case of the Sliding Tiles Puzzle (shown in 

Figure 14-1), a popular game whose state game space (all possible game 

configurations) can be represented by a tree whose nodes indicate different 

states or configurations of the game. Each parent has up to four children 

representing the four possible movements of a tile into the empty area.

Figure 14-1.  Sliding Tiles Puzzle. The left board shows an unfinished 
state of the game and the right board the goal state.

Heuristic methods possess some information about the proximity 

of every state to the goal state, which allows them to explore the most 

promising paths first. Summarizing, some of the most general features of 

heuristic methods are as follows:

•	 They do not guarantee that a solution will be found, 

even though it might exist.

•	 If it finds a solution, it does not guarantee that it will be 

optimal (minimal or maximal).

•	 Sometimes (not defined a priori) it will find a good 

solution in a reasonable time.
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We usually work with a heuristic through a heuristic function. This 

function assigns a numeric value to every state of the problem and defines 

how promising that state is as far as attempting to reach a goal state from a 

given point (node); it’s usually denoted as H(e). The heuristic function can 

have two interpretations. It could indicate how close state e is to the goal 

state, meaning states with the lowest heuristic value are preferred, or it 

could indicate how far state e is from a goal state, meaning we prefer states 

with the highest heuristic values. In such cases, we are either minimizing 

or maximizing the heuristic function.

Note  For the tile puzzle the sum of Manhattan distances calculated 
between the position of a tile in the current board and the position of 
the same tile in the goal board is a heuristic function.

�Hill Climbing
In the Hill Climbing method or heuristic, we begin with an initial random 

solution and set it up as the current solution. We find the set of neighbors 

of the current solution and execute a step that defines the current solution 

as the neighbor providing the maximum decrease (increase) to the 

function being minimized (maximized). Hill Climbing is an optimization 

technique that can fall into a local minimum; consequently, it can easily 

fail to spot the global optimum. Despite its locality issues, it’s widely used 

in AI for problems that have tight time constraints and where one could 

certainly take advantage of short execution time algorithms.

There exist two types of Hill Climbing approaches:

•	 Irreversible: where we avoid returning to a subset of the 

set of states if that path happens to be not beneficial

•	 Tentative: where we can go back to an old path if we 

determine that the chosen path is not appropriate
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In this book, we will focus on the first type of method (irreversible), the 

one that closely resembles the description of Hill Climbing presented at 

the beginning of this section.

In irreversible Hill Climbing we determine the next step or solution to 

be processed using two alternatives:

•	 Simple climbing: We choose to process or expand the 

first solution in the current neighborhood that is more 

favorable than the current solution. Thus, procedure 

stops there, and not all neighbors of the current 

solution are scanned.

•	 Maximum slope climbing: We choose to process or 

expand the solution from the current neighborhood 

that is the most favorable of all. Thus, procedure stops 

when all neighbors of the current solution are scanned.

In both scenarios, if every solution in the current neighborhood turns 

out to be worse than or equal to the current solution then the procedure 

ends.

Note H ill Climbing is an optimization technique of iterative 
improvement, a variant of the Best First search algorithm, in the 
family of Greedy algorithms.

Figure 14-2 illustrates how the Hill Climbing algorithm would find the 

local optimum, denoted by a blue dot.
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The pseudocode of this algorithm would be as follows:

HillClimbing(function F)

{

currentSolution = RandomSolution();

while (No Improvement)

vicinity = Neighbors(currentSolution);

nextEval = -INF;

nextSolution = null;

      for all x in vicinity

     {

 if (Evaluate(x) >nextEval)

            {

nextSolution= x;

nextEval = Evaluate (x);

            }

      }

      if nextEval<= Evaluate (currentSolution)

return currentSolution;

currentNode = nextSolution;

}

Figure 14-2.  In this case, we minimize the objective function and go 
“downhill” through a path of orange points until we reach the blue 
point, a local minimum. We are minimizing, thus the blue point is a 
local minimum.
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Hill Climbing is a method that belongs to the family of Local Search (LS)  

algorithms. In fact, the terms Hill Climbing and Local Search are 

sometimes used indistinguishably, meaning they are considered the same 

algorithm, and they represent a class of metaheuristics known as single 

solution–based metaheuristics, which includes popular methods such as 

simulated annealing, Tabu Search, and others that are based on LS.

Note  Local search is a heuristic method for solving computationally 
hard optimization problems; it moves from solution to solution in the 
space of candidate solutions (the search space) by applying local 
changes until a solution deemed optimal has been found, a maximum 
number of iterations has been reached, or a time limit has elapsed.

�Practical Problem: Implementing Hill 
Climbing
In this section, we will be implementing a Hill Climbing algorithm that 

optimizes (minimizes) a continuous objective function. The neighborhood 

in this procedure is calculated by considering the set of points from the 

n-sphere of radius R surrounding the current solution (Figure 14-3).
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Coordinates of an n-sphere (generalization of a sphere) can be 

obtained according to the following formulas:
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where r is the radius of the n-sphere and f f f1 2 1, ,¼ -n  is the set of angular 

coordinates, which has the first n - 2 in the range [0; π] and the last one in 

the range [0; 2π].

To ease our labor with mathematical functions, we will be adding 

a reference to the MathParserNuget package. By using this package we 

will be able to define functions as strings and have them evaluated at 

any point we want. Thus, we will have a Function public property in the 

HillClimbing class as shown in Listing 14-1.

Figure 14-3.  The neighborhood of the current solution (blue point) 
is formed by all the red points of the n-sphere surrounding it. In this 
case, n = 1; i.e., the 1-sphere is a circle.
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Listing 14-1.  HillClimbing Class

public class HillClimbing

    {

        public Function Function{ get; set; }

        public double Step { get; set; }

        public double Radius { get; set; }

        private static readonly Random Random = new Random();

        �public HillClimbing(Function function, double step, 

double radius)

        {

            Function = function;

            Step = step;

            Radius = radius;

        }

}

The class contains the following properties or fields:

•	 Function: function to be optimized

•	 Step: double value indicating the step or angle to use 

when computing the neighborhood of a solution

•	 Radius: double value indicating the radius of the 

n-sphere surrounding (neighborhood) the current 

solution

•	 Random: variable used for computing random values

In Listing 14-2 we can see three methods that are in charge of 

performing some of the components of the Hill Climbing algorithm.
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Listing 14-2.  InitialSolution(), Neighborhood(), and 

NSpherePoints() Methods of the HillClimbing Class

        private List<double>InitialSolution(int dimension)

        {

var result = new List<double>();

            for (vari = 0; i< dimension; i++)

result.Add(Random.NextDouble()*100);

            return result;

        }

        �private IEnumerable<List<double>> Neighborhood(List 

<double>currentSolution, int dimension)

        {

var result = new List<List<double>>();

varnewSolutions = NSpherePoints(currentSolution, dimension);

result.AddRange(newSolutions);

            return result;

        }

        �private IEnumerable<List<double>>NSpherePoints(List 

<double>currentSolution, int dimension)

        {

var result = new List<List<double>>();

var angles = Enumerable.Repeat(Step, dimension).ToList();

            while (angles.First() < 180)

            {

                for (vari = 0; i< dimension; i++)

                {

varnewSolution = new List<double>(currentSolution);

var prod = 1.0; 

Chapter 14  Heuristics & Metaheuristics



519

                    for (var j = 0; j <i; j++)

                        prod *= Math.Sin(angles[j]);

newSolution[i] = i == dimension - 1 &&i> 0

                                             ? 

Radius*(prod)*Math.Sin(angles[i])

                                             : 

Radius*(prod)*Math.Cos(angles[i]);

result.Add(newSolution);

                }

                angles = angles.Select(ang => ang + Step).ToList();

            }

            return result;

        }

    }

In the InitialSolution() method we create a random solution 

of n-dimension with random values in the range [0, 100]. In the 

Neighborhood() method we make use of the NSpherePoints() method 

to calculate the new points that form the neighborhood of the current 

solution. The last method is a direct translation of the system of coordinate 

equations previously presented. Listing 14-3 illustrates the Execute() 

method, which puts all the other components together.

Listing 14-3.  Execute() Method of the HillClimbing Class

public List<double>Execute()

        {

varcurrentSolution = InitialSolution(Function.

getArgumentsNumber());

varbestEval = double.MaxValue;

Chapter 14  Heuristics & Metaheuristics



520

            List<double>bestSolution = null;

            while (true)

            {

var neighbors = Neighborhood(currentSolution, Function.

getArgumentsNumber());

varbestCurrentEval = double.MaxValue;

                List<double>bestCurrentSolution = null;

                foreach (var neighbor in neighbors)

                {

vareval = Function.calculate(neighbor.ToArray());

                    if (eval<bestCurrentEval)

                    {

bestCurrentEval = eval;

bestCurrentSolution = neighbor;

                    }

                }

                if (bestCurrentEval == bestEval)

                    break;

                if (bestCurrentEval<bestEval)

                {

bestEval = bestCurrentEval;

bestSolution = bestCurrentSolution;

                }

            }

            return bestSolution;

        }

Chapter 14  Heuristics & Metaheuristics



521

We tested the algorithm on a console application by considering the 

function f x x( ) = 2 , a parabolic function whose graphic can be seen in 

Figure 14-4.

Figure 14-4.  Parabolic function

Clearly, the minimum value of this function is obtained when x = 0. So, 

let’s test our algorithm to see how it goes downhill from a high value that 

could be 100 to a value very close to 0 (Listing 14-4).

Listing 14-4.  Testing the Hill Climbing Algorithm

var f = new Function("f", "(x1)^2", "x1");

varhillClimbing = new HillClimbing(f, 5, 4);

var result = hillClimbing.Execute();

Console.WriteLine("Result: {0}", result[0]);

After executing this code and setting up a break point to discover the 

initial solution from which the algorithm begins its processing, we obtain 

the result seen in Figure 14-5.

Figure 14-5.  Result obtained after executing Hill Climbing algorithm
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The algorithm started with a value of 95.14 and was able to work 

its way downhill until it reached a value that is very close to the global 

optimum (0), which in this case coincides with a local optimum.

In the following sections, we will study S-metaheuristics (single 

solution based) and P-metaheuristics (population based). The first type is 

composed of a family where every member inherits from Local Search (LS)  

or Hill Climbing and tries to overcome their difficulties by creating 

mechanisms to escape from local optimums and continue the search in 

other promising areas of the state space. The latter type is a vast group of 

metaheuristics composed of those procedures that include a population in 

their execution; their most popular representative without any doubt is the 

family of genetic algorithms.

Note S ome of the most popular S-metaheuristics include Tabu 
Search (TS), simulated annealing (SA), iterated local search (ILS), and 
variable neighborhood search (VNS).

�P-Metaheuristics: Genetic Algorithms
Population-based metaheuristics, a.k.a P-metaheuristics algorithms, 

consist of an iterative process of improvement over a set of solutions 

grouped in a population. In this type of metaheuristics, we usually 

begin by generating an initial population that is later replaced by 

another population using some selection criteria. Algorithms such 

as evolutionary algorithms (EAs), scatter search (SS), Estimation of 

Distribution algorithms (EDAs), particle swarm optimization (PSO),  

bee colony (BC), and artificial immune systems (AISs) belong to this 

class of metaheuristics. In this section, we will focus on a type of 

evolutive algorithm known as a genetic algorithm (GA).
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Genetic algorithms represent a family of metaheuristics inspired by 

the process of natural selection; they were developed by John Holland 

in the 1970s and are commonly used to generate high-quality solutions 

to optimization and search problems by relying on bio-inspired 

operators, such as mutation, crossover, and selection. Concepts such as 

chromosomes, genes, and fitness are commonly found in GA literature, 

and they try to find analogy with their equivalent in areas like biology, 

chemistry, and so on.

Note  GAs are widely used in the fields of computer science and 
operations research. In the latter field, GAs deal with the application 
of advanced analytical methods to help make better decisions.

In GAs we usually need to encode solutions in a “genetic” manner so 

as to later allow us to efficiently apply mutation and crossover operators. 

We also need a fitness function that receives as argument an encoded 

solution and provides us with an assessment or evaluation of the encoded 

solution. A popular encoding for a solution consists of a binary string; this 

encoding makes it very easy to apply almost any operator.

Metaheuristics try to optimize on two fronts: by means of the 

application of intensification and diversification mechanisms. 

Intensification refers to the ability of the algorithm to pursue even further 

already discovered and promising areas of the state space. It means to 

exploit those areas of the state space where we have already discovered 

good solutions.

On the other hand, diversification refers to the ability to explore 

unexplored areas of the state space while trying to discover new, high-

quality solutions.
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The mutation operator tries to alter a solution by creating a new one 

that exists in a different area of the state space; thus, it diversifies the search. 

The crossover operator usually works on two solutions whose fitness values 

are considered among the best found so far. It then mixes their values on a 

crossover point; this is an intensification operator, as we try to mix two good 

solutions in an attempt to find an even better one. Figure 14-6 shows how 

these operators would function on a binary chromosome (solution).

Figure 14-6.  The mutation operator modifies a single bit in the 
chromosome (solution), and the crossover operator assigns a breaking 
point on the two parent chromosomes, creating a new solution by 
taking half the genes from the first chromosome and half the genes 
from the second part of the second chromosome.
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From Figure 14-6 we can easily deduce that the mutation operator is 

unary whereas the crossover operator is binary.

Even though the selection, mutation, and crossover methods 

can change from one specific implementation to another (problem 

dependent), a generic pseudocode for a genetic algorithm is presented in 

the following lines:

GA ()

{

InitializePopulation();

EvaluatePopulation();

            while(!stopCondition)

          {

                 Select the best-fit individuals for reproduction;

                 �Obtain offsprings through mutation, crossover  

operators on the previously selected individuals;

                 Evaluate offsprings;

                 �Obtain new population by selecting best-fit 

individuals from offsprings and the current 

population;

           }

}

From this pseudocode we can see how GAs can be seen as 

optimization methods based on the biological analogy of “survival of the 

fittest.” Through biological analogies of genetic reproduction, crossover, 

and mutation the quality of the average population and the individuals 

is improved over several generations. In principle, the average quality 

of the population should increase with each generation. However, this 

strongly depends on some of the parameters (for example, the mutation 

probability) and the nature of the fitness (quality, probability) function.
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In the upcoming section we will implement a GA for a very popular 

problem in computer science, the Traveling Salesman Problem, also 

known as TSP. We will tailor our GA (solution encoding, fitness function, 

and so on) to make it fit into the model of the TSP and provide solutions 

accordingly.

�Practical Problem: Implementing a Genetic 
Algorithm for the Traveling Salesman 
Problem
We have already discussed GAs, and we know they are inspired by a 

biological process that resembles the evolution of a population over time, 

and that better-fitting individuals represent a better solution for us. GAs 

alone are merely blueprints waiting to be adapted to a specific problem. 

In this section we will be adapting a GA to find solutions and optimize a 

Traveling Salesman Problem (TSP).

The Traveling Salesman Problem (TSP) is the problem where we have 

a salesman who is given the task of going through n cities while seeking to 

minimize the time spent traveling from one city to another and eventually 

visiting each and every one of them. Figure 14-7 illustrates a map of the 

United States where several cities (black points) must be visited by a 

salesman; purple lines indicate a possible minimum cost path.
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Figure 14-7.  US map showing a possible path to be followed by a 
salesman through several cities. In this case, the path ends where it 
started.

TSP is an NP-Hard problem, meaning we must rely on approximation 

or heuristic methods to obtain solutions in a practical time. The exact 

solution would imply developing a combinatorial algorithm that would take 

O(n!) to execute—i.e., a factorial time on execution—implying for n = 20  

we would have 2,432,902,008,176,640,000 possible solutions to check.

Because in TSP we try to find the permutation of cities yielding the 

optimum value for the fitness function, it would seem pretty logical to use 

this representation as encoding for our GA, and that’s the strategy we will 

follow. Thus, we will have chromosomes as lists of values ranging from  

[0, n - 1]; each value in the list will represent a city, and the order defined 

on the list is the tour to be followed by the salesman. Figure 14-8 shows an 

example of a chromosome for our GA oriented toward finding solutions to 

the TSP.
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In order to be consistent with the object-oriented approach of our design 

we will include a Tsp class that will contemplate all operations directly 

related to the problem and to problem-specific issues (Listing 14-5).

Listing 14-5.  Tsp Class Contemplating Problem-Specific Issues

    public class Tsp

    {

        public static double[,] Map { get; set; }

        public Tsp(double [,] map)

        {

            Map = map;

        }

        public static void Evaluate(Solution solution)

        {

var result = 0.0;

            for (vari = 0; i<solution.Ordering.Count - 1; i++)

                �result += Map[solution.Ordering[i], solution.

Ordering[i + 1]];

solution.Fitness = result;

        }

    }

Figure 14-8.  Chromosome or solution encoding for TSP
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In this class we store the double [,] matrix Map representing the map of 

distances; in other words, the matrix storing the distance between any two 

cities i, j. We coded an Evaluate() method where we calculate the fitness 

value of an input solution. Likewise, we also included a Solution class 

where all solution-related operations are developed (Listing 14-6).

Listing 14-6.  Solution Class

    public class Solution

    {

        public List<int> Ordering { get; set; }

        public double Fitness { get; set; }

        public Solution(IEnumerable<int> ordering)

        {

            Ordering = new List<int>(ordering);

Tsp.Evaluate(this);

        }

        public Solution Mutate(Random random)

        {

vari = random.Next(0, Ordering.Count);

var j = random.Next(0, Ordering.Count);

            if (i == j)

                return this;

varnewOrdering = new List<int>(Ordering);

var temp = newOrdering[i];

newOrdering[i] = newOrdering[j];

newOrdering[j] = temp;

            return new Solution(newOrdering);

        }
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        public Solution CrossOver(Random random, Solution solution)

        {

var ordinal = Ordinal();

varordinalSol = solution.Ordinal();

varparentA = new List<int>(ordinal);

varparentB = new List<int>(ordinalSol);

var cut = parentA.Count/2;

varfirstHalf = parentA.GetRange(0, cut);

varsecondHalf = parentB.GetRange(cut, parentB.Count - cut);

firstHalf.AddRange(secondHalf);

            return DecodeOrdinal(firstHalf);

        }

        public List<int>Ordinal()

        {

var result = new List<int>();

var canonic = new List<int>(Canonic);

            foreach (varcurrentVal in Ordering)

            {

varindexCanonical = canonic.IndexOf(currentVal);

result.Add(indexCanonical);

canonic.RemoveAt(indexCanonical);

            }

            return result;

        }

        public Solution DecodeOrdinal(List<int> ordinal)

        {

var result = new List<int>();

var canonic = new List<int>(Canonic);
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            for (vari = 0; i<ordinal.Count; i++)

            {

varindexCanonical = ordinal[i];

result.Add(canonic[indexCanonical]);

canonic.RemoveAt(indexCanonical);

            }

            return new Solution(result);

        }

        public List<int> Canonic

        {

            get { returnEnumerable.Range(0, Ordering.Count).

ToList(); }

        }

    }

A solution is composed of two main fields or properties, a list 

of integers named Ordering, and a double value property Fitness 

representing the fitness of the solution. It also includes a Canonic property, 

which outputs a list of integers arranged in increasing order {1, …, n}, n 

being the total number of cities. For instance, when n = 5 then its canonic 

form will be {1, 2, 3, 4, 5}. We use the canonic form to calculate the ordinal 

form of a solution. Why do we need the ordinal form of a solution?

To understand why we transform a solution to its ordinal form 

consider in Figure 14-9 what might happen if we apply the crossover 

operator on two solutions.
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As we can see from the previous figure, the application of the crossover 

operator on the parents gives birth to an unfeasible offspring that contains 

a tour that passes twice by the same city—city number 2. To avoid this 

issue, we use the ordinal representation of a solution, which can be 

calculated as described on Figure 14-10.

Figure 14-9.  After applying the crossover operator to the parents, 
the resulting offspring is unfeasible as it represents a tour that passes 
twice by city number 2

Figure 14-10.  To calculate the ordinal form we loop through the 
canonic form, look for the position of the analyzed value in the 
current tour, and save that position in the list forming the ordinal 
representation
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The interesting fact is that while the crossover operator produces 

unfeasible solutions when applied to regular TSP representations, when 

we transform these representations to ordinal form, the crossover operator 

produces a feasible solution (in ordinal form). We would just need to 

decode that ordinal solution into regular TSP form (permutation of 

integers in the range 1 … n) to continue the GA procedure.

The Solution class contains the following methods:

•	 Mutate(): In this method we mutate a solution by 

selecting two random index positions in the solution 

ordering and exchanging their corresponding values.

•	 CrossOver(): In this method we apply the crossover 

operator on the ordinal form of the input solutions and 

eventually decode the obtained ordinal solution into 

a regular TSP solution. The cut is executed at half the 

length of the ordering.

•	 Ordinal(): In this method we transform a regular TSP 

solution into ordinal form.

•	 DecodeOrdinal(): In this method we transform an 

ordinal solution into a regular TSP solution.

Finally, in the GeneticAlgorithmTsp class (Listing 14-7) we 

incorporated the different phases of the GA. The class includes the 

following fields or properties:

•	 Iterations: number of iterations that the algorithm 

will be executing

•	 Tsp: instance of the Tsp class previously presented

•	 Population: set of individuals, each an instance of the 

Solution class previously described

•	 Size: size of the population

•	 Random: random variable
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The selection strategy that is coded in the Selection() method shown 

in Listing 14-8 consists of sorting the population in increasing order of 

their fitness function and selecting the first Size/2 individuals.

Listing 14-7.  GeneticAlgorithmTsp Class

public class GeneticAlgorithmTsp

    {

        public int Iterations { get; set; }

        public Tsp Tsp{ get; set; }

        public List<Solution> Population { get; set; }

        public int Size;

        private static readonly Random Random = new Random();

        public GeneticAlgorithmTsp(int iterations, Tsp tsp, int size)

        {

            Iterations = iterations;

            Tsp = tsp;

            Population = new List<Solution>();

            Size = size;

        }

}

Listing 14-8 shows the main method of execution of the GA. In the 

same listing, we can also see the InitialPopulation() method where we 

create Size random solutions. In the NewPopulation() method we add 

the newly born offspring to the population and sort them according to the 

fitness value of individuals, leaving for the next generation the first Size 

solutions after having ordered the Population list. In the OffSprings() 

method, we mutate a chromosome (solution) with a probability less 

than or equal to 0.4 and recombine or apply a crossover operator with a 

probability of 0.6.
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Listing 14-8.  GeneticAlgorithmTsp Class

        public Solution Execute()

        {

InitialPopulation();

vari = 0;

            while (i< Iterations)

            {

var selected = Selection();

varoffSprings = OffSprings(selected as List<Solution>);

NewPopulation(offSprings);

i++;

            }

            return Population.First();

        }

        private void NewPopulation(IEnumerable<Solution>offSprings)

        {

Population.AddRange(offSprings);

Population.Sort((solutionA, solutionB) =>solutionA.Fitness>= 

solutionB.Fitness ?1 : -1);

            Population = Population.GetRange(0, Size);

        }

        �private IEnumerable<Solution>OffSprings(List<Solution> 

selected)

        {

var result = new List<Solution>();

            for (vari = 0; i<selected.Count - 1; i++)

            {
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result.Add(Random.NextDouble() <= 0.4

                               ? selected[i].Mutate(Random)

                               : selected[i].CrossOver(Random, 

selected[Random.Next(0, selected.Count)]));

            }

            return result;

        }

        private IEnumerable<Solution>Selection()

        {

Population.Sort((solutionA, solutionB) =>solutionA.Fitness>= 

solutionB.Fitness ?1 : -1);

            return Population.GetRange(0, Size / 2);

        }

        private void InitialPopulation()

        {

vari = 0;

            while (i< Size)

            {

Population.Add(RandomSolution(Tsp.Map.GetLength(0)));

i++;

            }

        }

        private Solution RandomSolution(int n)

        {

var result = new List<int>();

var range = Enumerable.Range(0, n).ToList();

            while (range.Count> 0)

            {
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var index = Random.Next(0, range.Count);

result.Add(range[index]);

range.RemoveAt(index);

            }

            return new Solution(result);

        }

    }

Now that we have all elements of our GA in place we can test it in a 

console application as we have done with other algorithms.

Listing 14-9.  Testing Our GA for Solving the TSP

var map = new double[,] {

                {1, 2, 3, 1, 5},

                {5, 1, 1, 1, 8},

                {1, 7, 2, 1, 9},

                {1, 1, 6, 1, 8},

                {1, 1, 4, 1, 2},

            };

varga = new GeneticAlgorithmTsp(100, new Tsp(map), 100);

var best = ga.Execute();

Console.WriteLine("Solution:");

            foreach (var d in best.Ordering)

Console.Write("{0},", d);

Console.WriteLine('\n' + "Fitness: {0}", best.Fitness);

In this case, we have chosen to have 100 iterations or evolution cycles, 

and the map consists of five cities with distances as detailed in the matrix 

from Listing 14-9. The result obtained can be seen in Figure 14-11.
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The solution outputted by the algorithm is (4, 1, 2, 0, 3); in other words, 

first visit city No. 4, then move to cities No. 1, No. 2, No. 0, and finally No. 3.  

This path has a cost of 4, and since the cost of traveling from one city to 

the other must be at least 1 we can assert with a high degree of certainty 

that the path outputted is optimal. Also notice that the solution outputted 

by the algorithm is the first in the population list, which seems pretty 

logical as we preserve it sorted in increasing order of the fitness value of 

individuals.

In the next section we will be examining S-metaheuristics; we already 

discussed the heuristic from which all S-metaheuristics descend—Hill 

Climbing, also known as Local Search—and very soon we will address the 

topic of how a representative of an S-metaheuristic can escape from the 

local optimum by means of intensification and diversification mechanisms 

and keep a memory of the search up to a given point.

�S-Metaheuristics: Tabu Search
Single solution–based metaheuristics, a.k.a S-metaheuristics algorithms, 

consist of an iterative process where a single solution is improved at each 

step. They could be viewed as paths created through neighborhoods or 

search trajectories through the state space of a given problem. The paths 

or trajectories are built from iterative methods that move from a current 

solution to another solution in the state space. S-metaheuristics can 

be very efficient and provide good solutions to multiple optimization 

problems.

Figure 14-11.  Solution outputted by our GA to the previous TSP
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Tabu Search (TS) is a metaheuristic first described by Fred Glover 

in the 1980s that uses adaptive memory and responsive exploration. 

It inherits from Hill Climbing (HC), probably the oldest and simplest 

heuristic method ever created. It could be argued that Tabu Search is 

just an HC with some considerable improvements or upgrades. Its core 

functionality is the same as HC; it starts at a given initial solution (usually 

randomly generated), runs until a stopping rule is reached, and in each 

iteration the current solution is replaced by another that improves the 

objective function and is found in the neighborhood of the current 

solution. The stopping rule for HC is met when no neighbor of the current 

solution improves the objective function, indicating a local optimum 

has been found. As we know from previous sections, this is the main 

disadvantage of HC; it can fall into a local optimum, a disadvantage Tabu 

Search does not share as it includes mechanisms of diversification that 

prevent it from getting stuck in a local optimum.

As the name suggests, TS operates by performing a search in areas of 

the state space that are not marked as “tabu” or forbidden. Such a mark 

indicates that for some time (iterations) they will not be considered in the 

search in an attempt to avoid the consequential waste of time and effort of 

trying to find solutions in the same area in short periods of time.

Adaptive memory is probably the most important characteristic of 

Tabu Search. It’s the ability to remember the evolution of the search and is 

accomplished through the use of data structures. The Tabu List represents 

one of these data structures. It’s traditionally employed to save pairs of data 

previously swapped, avoiding the possibility of cycling around the same 

solutions for some time (the length of this list must be finite since memory 

is finite). The term intensification refers to a mechanism that many 

metaheuristics implement to favor the exploitation of the best solutions 

found so far; in this case, the more promising regions are explored 

thoroughly. Diversification, on the other hand, refers to the exploration of 

the search space, trying to visit unexplored solutions.
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On top of the HC-related components (initial solution, neighborhood, 

and so forth), TS also includes the following specific components:

•	 Tabu List: also known as short-term memory, its 

purpose is to prevent the search from revisiting 

previously visited solutions, to prevent cycling. As 

mentioned before, storing the list of all visited solutions 

is not practical for efficiency issues, thus the Tabu List 

usually comprehends a maximum size defined a priori, 

and we store at most the number of solutions defined 

by that size. Also, we typically don’t store an entire 

solution in the Tabu List, but rather moves or solution 

attributes, which significantly reduces data storage. A 

move remains tabu for a number of iterations, known 

as Tabu tenure.

•	 Aspiration criterion: A commonly used aspiration 

criteria consists of selecting a tabu move if it generates 

a solution that is better than the best found solution; 

another aspiration criterion may be a tabu move that 

yields a better solution from among a set of solutions 

that include a given attribute.

In order to avoid getting stuck at a local optimum, TS includes 

intensification and diversification mechanisms; such mechanisms are 

represented by medium- and long-term memories:

•	 Intensification (medium-term memory): The medium-

term memory stores the elite (e.g., best) solutions 

found during the search. The idea is to give priority 

to attributes from the set of elite solutions, usually in 

a weighted probability manner. The search is biased 

by these attributes. It’s usually represented by a 

recency memory in which one records the number of 
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consecutive iterations that various solution features 

have been present in the current solution without 

interruption.

•	 Diversification (long-term memory): The long-term 

memory stores information on the visited solutions 

along the search. It explores the unvisited areas of the 

solution space. For instance, it will discourage the 

attributes of elite solutions in the generated solutions 

to diversify the search to other areas of the state space. 

It’s usually represented by a frequency memory that 

memorizes for each component the number of times 

the component is present in all visited solutions.

The pseudocode of the algorithm can be seen in the following lines:

TS ()

{

currentSolution = InitialSolution();

                  /* TabuList, Medium-Term and Long-Term memories */

InitDataStructures();

                   while (!stopping_criteria_met)

                 {

                          �neighborhood = GetNeighborhood 

(currentSolution);

/∗ Non tabu or aspiration criterion holds ∗/
currentSolution= GetBestNeighbor(neighborhood);

      �/* Updatetabu list, aspiration conditions, medium,  

long term memories */

Update();

If (intensificationCriterion)

Intensification();
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If (diversificationCriterion)

Diversification();

                  }

         return bestSolutionFound;

}

Let’s examine a real-life example in order to understand a little bit 

better the functioning of the TS algorithm. Consider once again the zoning 

problem from Chapter 13 and a multi-objective optimization problem 

where we would be minimizing the compactness (intra-class distance) 

and homogeneity functions. The latter function involves demographic 

variables; hence, it can tell us how similar two regions are in regards to age, 

sex, unemployment, or any other demographic variable.

In the zoning problem, a basic geostatical area (BGA) is the manner in 

which we refer to a basic or primitive region to be clustered. Any BGA consists 

of a pair (position, variablesValues) where position marks the location of the 

area in space (usually two coordinates) and variablesValues represents a list of 

values for each demographic variable in the problem. These are the elements 

or objects that TS will be clustering in the zoning problem.

In mathematics, homogeneity between elements x, y occurs when 

|x - y| = 0. If one considers the variables list as a vector in space, one 

could measure how similar regions x, y are by taking into account the 

EuclideanDistance(x,y) values and how small they are inside a cluster. 

The closer EuclideanDistance(x,y) is to 0 the closer regions x, y will be to 

each other. This is the approach we will apply to measure homogeneity, as 

if variable vectors are vectors in space and their homogeneity is achieved by 

how close they are. Therefore, the second function to be optimized is similar 

to the intra-class function, but in this case it considers the homogeneity 

dissimilarity matrix. Both the compactness and homogeneity functions 

will be calculated from dissimilarity matrixes that determine the level of 

similarity between any two regions and are associated with any variable.
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Since we are dealing with a multi-objective problem we will be using 

the Pareto Frontier Builder introduced in Chapter 13 to get a decent 

approximation of the frontier during a diversification phase.

Solutions are encoded as pairs (elements, centers), where elements 

is an n k-  array, n being nthe number of BGAs, k the number of 

clusters, and xi indicating that object (region in our case) i is located 

at cluster xi. The centers array of length k contains every center. The 

neighborhood of a given solution x denoted by N(x) is obtained by 

swapping all pairs of elements (i, j) where i is any center and j any element, 

so having s e e e c c cn k k= ¼( ) ¼( )( )-1 2 1 2, , , , , , ,  as a solution implies 

c e e e c c N sn k k1 2 1 2, , , , , , ,¼( ) ¼( )( )Î ( )- . Each element c e en k1 2, , ,¼( )-  in 

the neighbor solution will be clustered into its closest center or cluster.

The pseudocode of our TS oriented toward the zoning problem (MOP 

plus clustering problem) is the following:

TsZoning()

{

       currentSolution = InitialSolution();

                  while(!stoppingConditionMet)

                  {

neighborhood = GetNeighborhoodSetTabu(currentSolution);

/*Select current solution as the solution with minimum 

intra-class value and not tabu in the previously generated 

neighborhood set  */

currentSolution = BestFittingNeighbor(neighborhood);

If (intensificationTime){

/*generate neighborhood for current solution, minimizing the 

second objective  */

MinimizeSecondObjective();

                     }
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If (diversificationTime) {

FrontierBuilder();

                    }

UpdateParetoFrontier();

                  }

}

The initial solution will be generated by taking the first k data-set 

elements as centers and then clustering the remaining elements around 

their closest center. Notice how, in general, each new clustering or 

solution is formed in the neighborhood either by selecting k centers and 

then clustering the remaining n - k elements to their closest centers or by 

making step variations to already-formed solutions.

The TS proposed in this book uses a Tabu List data structure in the 

shape of a hash set list, which stores solution centers as a hash set. If a 

solution contains centers c = (1,2,3), and another solution contains centers 

c’=(3,4,2), then the Tabu List will contain T = ((1,2,3),(3,4,2)). The list of 

hash sets allows for easy handling, insertion, and search. Also, one could 

efficiently check whether a solution with centers (1,2,3) is tabu, and since 

a set data structure will consider all of these as equals—(1,2,3), (2,3,1), 

(1,3,2), (2,1,3)—it prevents duplication. Our Tabu List will prohibit the use 

of tuple of centers for some time.

In order to test the algorithm, a real-world problem has been used. It’s 

illustrated as follows: the BGAs of the metropolitan area of Toluca Valley 

are going to be clustered into five homogeneous groups that only include 

elements whose variables have values in the ranges indicated here:

•	 Male Population under 6 years (X001).

•	 Male population between 6 and 11 years (X003).

•	 Male population between 15 and 17 (X007).
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Homogeneity will be obtained on all three variables. Tabu 

Search has run several iterations with intensificationTime = 3, 

diversificationTime = 5. In this example, we have obtained the following 

results (for simplicity’s sake we have decided not to include the entire 

Pareto Frontier found but rather just a subset of it):

(50.5901261076844,32885.0892241763)

(50.5758416315104,33770.2868646186)

(52.0662659720778,32047.9735370572)

(52.6236863193259,31963.3459865693)

(50.9352052335638,32227.1149958513)

(51.7073149394271,32224.293243894)

(50.6297645146784,32796.6211680751)

(50.7327985199368,32648.7098303008)

(63.4052030689118,31953.3511763935)

(31.7646782813892,74764.1984211605)

(32.6995744158722,73074.7519844055)

(31.7734798863389,74355.8623848788)

(31.776816796024,73910.6355371396)

(31.9216141687552,73353.8052604555)

(32.6187235737901,73079.8864057969)

(35.171800392375,71677.0312411241)

(35.1767441367242,71676.5767247979)

(35.1343494585806,71697.8434007592)

(35.147462667771,71697.7558703676)

(35.2879720849387,71676.5396553831)

(35.3225361349416,71541.4393240582)

(35.323587070021,71541.1602760788)

...
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(35.5212138666,71384.7335594089)

(35.5222648016794,71384.4545114295)

(35.5310228433471,71384.2874695704) 

(35.5614827835752,71363.55569029)

...

(40.0890479612853,66076.8575353262)

(40.1225133591276,66076.6462691529)

(40.1281553068144,66056.6499667925)

(40.0820569677191,66076.9379156809)

(40.0951701769095,66076.8503852894)

(40.1358379144876,66056.5493872965)

(40.1373651695288,65921.6511332184)

(40.1384161046082,65921.3720852389)

(40.1471741462759,65921.2050433798)

(40.1806395441182,65920.9937772065)

(40.186281491805,65900.9974748462)

(40.1401831527096,65921.2854237345)

(40.1532963619001,65921.197893343)

(40.21572345198,65900.924086982)

(40.3387179536343,65900.9141882557) 

These results match the graphic shown in Figure 14-12.
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Summarizing, we have applied TS to an interesting clustering-related 

problem, and by combining it with the Frontier Builder we have obtained a 

pretty decent approximation of the Pareto Frontier.

The use of metaheuristics to solve the zoning problem, as well as 

the TSP, quadratic problem, and many others, is mandatory because of 

their NP-Complete nature. In fact, most of the time we don’t find optimal 

solutions, but rather approximations of these optimal solutions, and 

sometimes if we are lucky these approximations might equal some optimal 

solution. Metaheuristics such as genetic algorithms can be combined with 

other AI methods with the intention of starting some AI procedure with an 

already optimized solution, thus obtaining better results in the end.

Figure 14-12.  Pareto Frontier outputted by our TS on the zoning 
problem
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�Summary
Throughout this chapter we studied heuristics and metaheuristics; we 

implemented the popular Hill Climbing algorithm, which is the parent 

of all single solution–based metaheuristics (S-metaheuristics), and we 

also analyzed genetic algorithms as a representative of population-based 

metaheuristics (P-metaheuristics). We provided implementations for 

both these methods, and at the end we described a representative of 

S-metaheuristics; namely, we described Tabu Search and proposed a TS 

method embedded in a multi-objective framework and oriented toward 

solving the zoning problem introduced in Chapter 13.
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CHAPTER 15

Game Programming
Nowadays, the video-game industry is a billion-dollar sector of the U.S. 

economy. There are thousands of companies developing and publishing 

games in all fifty states, and each game developed involves dozens of 

job disciplines, and its component parts employ thousands of people 

worldwide. It is truly a global and competitive market. The industry 

typically requires professionals with advanced skills in many different 

areas. Video-game companies must be leaders in innovation, creativity, 

ingenuity, and knowledge of the industry, and must be continuously 

adapting and changing markets. Throughout their short history, video 

games have seen a tremendous improvement in graphics and realism; 

accordingly, modern PCs owe many of their advancements and 

innovations to the game industry: sound cards, graphics cards and 3D 

graphic accelerators, faster CPUs, and dedicated coprocessors like PhysX 

are a few of the most notable contributions.

The industry is continuing to grow, and as it does more and more 

jobs are available. According to Forbes magazine, the economic impact 

of the gaming industry to the US GDP was over $11 billion in 2016, and 

that number is certain to grow for the foreseeable future. Companies 

of worldwide reach, like Activision-Blizzard (Call of Duty), Take-Two 

Interactive (NBA2K series), Ubisoft (Assassin’s Creed), and Crytek (Far Cry), 

are shaping and altering our perspective of reality in the digital world with 

realistic, mind-blowing games that impact our social and economic life.

https://en.wikipedia.org/wiki/Job#Job
https://en.wikipedia.org/wiki/Personal_computer#Personal computer
https://en.wikipedia.org/wiki/Sound_card#Sound card
https://en.wikipedia.org/wiki/Graphics_card#Graphics card
https://en.wikipedia.org/wiki/3D_graphic_accelerator#3D graphic accelerator
https://en.wikipedia.org/wiki/3D_graphic_accelerator#3D graphic accelerator
https://en.wikipedia.org/wiki/CPU#CPU
https://en.wikipedia.org/wiki/PhysX#PhysX
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The game industry employs people experienced in other traditional 

lines of business, but most people hired have experience tailored to the 

game industry. Some of the disciplines specific to this industry include 

game programmer (includes AI), game designer, level designer, game 

producer, game artist, and game tester. Most of these professionals are 

employed by video-game developers or video-game publishers. A key 

element in the video-game development flow is the AI game developer.

The main goal of this chapter is to describe some of the most important 

game-related AI methods, specifically those that involve searching in a 

domain space, a basic task that must be tackled in almost every game. We 

will examine search algorithms such as BFS, DFS, DLS, IDS, bidirectional 

search, and A*, and we will see how to make use of them when developing 

an AI for a game. Practical problems where we implement all of the 

previously detailed algorithms will be included; in case of bidirectional 

search and A* we will describe them as being oriented toward solving the 

Sliding Tiles Puzzle.

Note  Companies like Sony, Nintendo, and Microsoft have contributed 
to keeping gaming fever alive around the globe by improving their 
consoles almost every year (PlayStation, Nintendo, Xbox).
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�What Is a Video Game?
As occurs with any other software, a game goes through a process known 

as software development in which it’s conceived, specified, designed, 

coded, documented, tested, and bug-fixed. Thus, a video game is a 

software or computer program (Figure 15-1) that enables one or various 

people to interact and play a digital, electronic game in the most realistic 

environment possible, which is perceived through a display (screen, lens, 

etc.), interacted with through a controller (joystick, game pad, etc.), and 

executed by a platform (computer, video console, mobile phone, etc.)—the 

machine in charge of sending images and sound to the displayer and 

enabling the controller for interaction.

Figure 15-1.  The Halo Series (owned by Microsoft) is one of the most 
popular “shooters” (first person) and science fiction games ever
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The platform executes the game engine, a compound of graphics and 

animation, physics, controller interaction, AI, sound, networking, and 

so forth that follows the logic defined by the video game as coded by its 

developers.

The design phase of a video game usually includes the participation of 

a multidisciplinary team of computer scientists, historians, psychologists, 

musicians, artists, and digital marketers as well as other professionals. 

They all work together, looking to provide gamers with the most realistic 

game they can have, assuming the game requires this type of realism.

The AI game developer team would be in charge of creating the AI for 

the game. What’s the AI for a game? The AI of a game defines how smart 

our opponents are in the game; for instance, in a sports game such as 

soccer, basketball, or similar, the AI implemented for the computer’s side 

would consist of a set of strategies, plays, behaviors, actions, and so on 

that ultimately define a level of complexity for the computer player(s) and 

makes it challenging and entertaining for us to play and enjoy.

One of the main topics in AI game development is that of creating 

algorithms for searching in games. Search in games will be the focus point 

of the next section, where we will finally start diving into game-related AI 

algorithms.

Note T he Electronic Entertainment Expo (a.k.a.f E3) convention is 
one of the biggest gaming fairs in the world. It’s the rendezvous point 
where leaders of the gaming industry expose their latest creations.
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Figure 15-2.  Sliding Tiles Puzzle; a board game that relies on AI 
search methods

�Searching in Games
There are many games that must rely on search procedures to be able to 

reach a winning state. Board games are probably the best representatives  

of such a scenario; in a board game like the Sliding Tiles Puzzle (Figure 15-2)  

we must search in a tree of all possible states for the one that would 

actually be a winning or goal state. Trees are very common structures 

used to represent the state space (set of all possible states). How the tree 

is defined or generated is problem specific; for the Sliding Tiles Puzzle 

case, each of the four positions to which the blank tile can be swapped 

represents a child of the current node. Therefore, we would have a tree of 

all possible states, with subtrees like the one depicted in Figure 15-3.
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Figure 15-3.  Searching in the Sliding Tiles Puzzle until a goal state 
is found. In this example we use a heuristics (misplaced tiles) to 
determine the shortest route (orange boxes) to the goal state.
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The tree generated by the search provides us with a sequence of 

moves—from the root or start state, all the way down and up to a goal 

state—thus it provides us with a solution to the game. In Figure 15-3, the 

solution would be represented by moves {right, down, right}; therefore, 

a path of length 3 from the root takes us to a goal state. The purpose of 

combining a search method with a heuristic, as we will see, is to shorten 

the length of the search path to a goal node.

A search strategy can be classified according to the following criteria:

•	 Systematicity: This is a strategy where we structure the 

state space as a tree; we consider a strategy systematic 

if and only if

•	 the search continues as long as no solution has 

been found and there are still candidates to 

examine; and

•	 each candidate is examined once.

•	 Information Usage: It refers to whether the search uses 

domain-specific knowledge; i.e., knowledge of the 

problem during the search. It can be classified as

•	 informed search (Best-First Search, A*); or

•	 uninformed or blind search (BFS, DFS, IDS).

In this book, we will focus on systematic strategies, and we will also 

discuss both informed and uninformed search methods. The following 

features will be taken into account in future sections when assessing the 

performance of a search algorithm:

•	 b (branch factor): maximum number of children of a node

•	 d (depth): maximum length of all paths from the root to 

a leaf node

•	 m: minimum length of any path from the root to a goal state
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Additionally, we’ll assert that a search is complete if it’s always able to 

find a solution and optimal if it’s always able to find the lowest path cost to 

a goal state.

Note T he oldest type of sliding puzzle is the fifteen puzzle, invented 
by Noyes Chapman in 1880.

�Uninformed Search
In uninformed search methods all non-goal nodes in the frontier look 

identical to the algorithm; as a result, this type of search is also known as 

a blind search. The procedure cannot determine whether a path followed 

from a node X is going to be any better than another path from node Y.

Uninformed search algorithms are essentially graph algorithms; 

they operate on trees, and trees are a particular kind of graph. Thus, the 

algorithms herein described are also part of the Graph Theory toolbox.

Breadth-first search (BFS) is one of the most popular graph-based 

search algorithms. In this method, nodes are discovered by levels; 

the algorithm discovers all nodes at distance k from the root before 

discovering any nodes at distance k + 1 (Figure 15-4).

BFS is complete when b is finite, both its time and space complexity 

are O(bd), and it’s optimal if the edge cost equals 1; i.e., if the cost of taking 

a step in the search equals 1.
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Depth-first search (DFS) is another very popular graph-based search 

algorithm and is the prototype for many other such search procedures. 

In DFS, nodes are discovered by their distance downward; the algorithm 

begins at a root node and follows a path through the leftmost child node 

until it reaches a leaf, then it “backtracks” to the previously visited node N 

and continues discovering the next non-visited child of N. Thus, it always 

goes in depth building a path that looks for the leftmost, non-visited, 

deepest node and repeats this procedure recursively over the entire tree or 

graph (Figure 15-5). Notice that in a graph where we can encounter cycles, 

DFS must guarantee that visited nodes are marked as “visited.”

Figure 15-4.  Traversing the tree using a BFS procedure; we begin at 
node A and then discover all nodes from the next level, i.e. nodes B, C, D.  
We continue like this, discovering nodes at the following level, i.e. nodes E, 
F, G, H. Finally, we discover nodes I and J at the final level.
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Assuming we implement some sort of control mechanism determining 

what nodes have been visited along the way, and also assuming we are 

dealing with a finite space, we can affirm that DFS will be complete; 

otherwise, it’s incomplete because it can fall into infinite loops. Its 

time complexity is O(bm), which can be much worse than O(bd) if m is 

considerably larger than d. Its space complexity is O(b * m), and it’s not an 

optimal search algorithm.

To compare BFS and DFS, the first method is usually applied in 

scenarios where we may have possible infinite paths, where solutions can 

be reached in short paths, or where we can easily discard unsuccessful 

paths. On the other hand, DFS would be preferred in scenarios where the 

state space is restricted, where there are many possible solutions with long 

paths, or where wrong paths are usually terminated quickly and the search 

can be adjusted accordingly.

Figure 15-5.  Traversing the tree using a DFS procedure; we begin at 
node A and then follow the path leading to the leftmost, non-visited 
node; therefore, we build the path formed by nodes A, B, E, I, then 
backtrack all the way up to the root (only node in the built path that 
has children pending discovery) and move to the leftmost, non-visited 
child, which would be C. It recursively executes the same procedure on 
C and eventually on node D, yielding the path seen on the graphic.
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BFS and DFS are the main building blocks from which many other 

search algorithms have been derived. Many of these derivations try to 

diminish some of the shortcomings of their predecessors; such is the case 

of depth-limited search and iterative deepening search.

Depth-limited search (DLS) is essentially a DFS where we set a depth 

limit L (Figure 15-6); i.e., nodes at depth L have no successors, so it’s 

as if we were cutting the tree at depth L, consequently getting rid of the 

infinite-path problem. If it occurs that L = d then we will obtain an optimal 

solution; if L < d then we will have an incomplete solution, and when L > d 

we will have a non-optimal solution.

Iterative deepening search (IDS) is a strategy to discover the best depth 

limit L; the main idea is to use DLS as sub-method and gradually increase 

the depth limit from 1, up to a maximum predefined depth. This algorithm 

is complete and optimal; it always discovers the shallowest goal node.

Another uninformed search procedure that relies on either BFS or 

DFS is bidirectional search (BS). In BS we execute two simultaneous 

searches: one from the initial state to the goal state and another from the 

goal state backward to the initial state. We hope that these searches will 

meet at some point. Therefore, in this procedure we must check at each 

step if the set of nodes expanded forward intersects with the set of nodes 

Figure 15-6.  DLS is a DFS with an imposed depth limit L
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expanded backward. The key motivation behind BS is time complexity, 

since b bd d/ /2 2+  is less than bd in complexity terms. Thus, this method 

can provide us with a more efficient, faster way to find a goal state. 

Furthermore, if both searches (forward, backward) are BFS algorithms, 

and b is finite, then BS is guaranteed to be both optimal and complete.

�Practical Problem: Implementing BFS, DFS, 
DLS, and IDS
To develop our uninformed search strategies, we will make use of the 

Tree<T> class, which appears in Listing 15-1. This class, which is a generic 

class, contains a State property representing a possible value (integer, 

string, array, matrix, and so forth) of the root node and a list of tree 

children. Several constructors were also included.

Listing 15-1.  Tree<T> Class

public class Tree<T>

    {

        public T State { get; set; }

        public List<Tree<T>> Children { get; set; }

        public Tree()

        {

            Children = new List<Tree<T>>();

        }

        public Tree(T state, IEnumerable<Tree<T>> children)

        {

            State = state;

            Children = new List<Tree<T>>(children);

        }
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        public Tree(T state)

        {

            State = state;

            Children = new List<Tree<T>>();

        }

         public bool IsLeaf {

                   get {  return Children.Count == 0; }

          }

    }

Trying to achieve a fine object-oriented design, we coded the 

UninformedMethod<T> abstract class (Listing 15-2) as the parent and 

container of shared fields for all the uninformed search strategies 

described in this section.

Listing 15-2.  UninformedMethod<T> Class

public abstract class UninformedMethod<T>

    {

        public Tree<T> Tree { get; set; }

        protected UninformedMethod(Tree<T> tree)

        {

            Tree = tree;

        }

        public abstract List<T>Execute();

    }

In the Bfs<T> class (Listing 15-3), we coded the BFS strategy using 

a Queue data structure. This data structure is used to expand nodes by 

enqueuing its children and eventually dequeuing the first node enqueued; 

hence the FIFO (First-In-First-Out) nature of the Queue gives us the effect 

of traversing the tree by levels.
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Listing 15-3.  Bfs<T> Class

public class Bfs<T>: UninformedMethod<T>

    {

        public Bfs(Tree<T> tree):base(tree)

        { }

        public override List<T>Execute()

        {

var queue = new Queue<Tree<T>>();

queue.Enqueue(Tree);

var path = new List<T>();

            while (queue.Count> 0)

            {

var current = queue.Dequeue();

path.Add(current.State);

                foreach (var c in current.Children)

queue.Enqueue(c);

            }

            return path;

        }

    }

The DFS implemented in Listing 15-4 relies on a stack data structure 

that is used to simulate the intrinsically recursive nature of DFS; thus it 

helps us avoid having to use function recursion and allows us to reduce the 

coding to a simple loop. Remember: Stacks are LIFO (Last-In-First-Out) 

data structures, and therefore we stack children in reverse order, as the 

following code illustrates.
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Listing 15-4.  Dfs<T> Class

public class Dfs<T> :UninformedMethod<T>

    {

        public Dfs(Tree<T> tree):base(tree)

        {

        }

        public override List<T>Execute()

        {

var path = new List<T>();

var stack = new Stack<Tree<T>>();

stack.Push(Tree);

            while (stack.Count> 0)

            {

var current = stack.Pop();

path.Add(current.State);

                �for (vari = current.Children.Count - 1; i>= 0; 

i--)

stack.Push(current.Children[i]);

            }

            return path;

        }

    }

Any other uninformed search strategy is basically a variation of the 

previous ones—DFS and BFS. The depth-limited search class illustrated 

in Listing 15-5 is a direct descendant of DFS. In this class, we include two 

properties:

•	 DepthLimit: defines the maximum depth reached

•	 Value: determines the value to be found in the tree of states
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In this case, we implement the recursive version of the DFS algorithm; 

it is easier for us to build the path from the root to the Value node if we use 

recursion. Notice we have three stopping conditions in the algorithm: the 

Value node has been found, we have reached the depth limit, or we have 

reached a leaf.

Listing 15-5.  Dls<T> Class

public class Dls<T>: UninformedMethod<T>

    {

        public intDepthLimit{ get; set; }

        public T Value { get; set; }

        �public Dls(Tree<T> tree, intdepthLimit, T value) : 

base(tree)

        {

DepthLimit = depthLimit;

            Value = value;

        }

        public override List<T>Execute()

        {

var path = new List<T>();

            if (RecursiveDfs(Tree, 0, path))

                return path;

            return null;

        }

        �private bool RecursiveDfs(Tree<T> tree, int depth, 

ICollection<T> path)

        {

            if (tree.State.Equals(Value))

                return true;
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            if (depth == DepthLimit || tree.IsLeaf)

                return false;

path.Add(tree.State);

            �if (tree.Children.Any(child =>RecursiveDfs(child, 

depth + 1, path)))

                return true;

path.Remove(tree.State);

            return false;

        }

    }

Finally, iterative deepening search, as previously described, uses 

depth-limit search as a submethod to find the shallowest depth to a goal 

state (Listing 15-6).

Listing 15-6.  Ids<T> Class

public class Ids<T> :UninformedMethod<T>

    {

        public Dls<T>Dls{ get; set; }

        public intMaxDepthSearch{ get; set; }

        public intDepthGoalReached{ get; set; }

        public T Value { get; set; }

        public Ids(Tree<T> tree, intmaxDepthSearch, T value)

            : base(tree)

        {

MaxDepthSearch = maxDepthSearch;

            Value = value;

        }
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        public override List<T>Execute()

        {

            for (var depth = 1; depth <MaxDepthSearch; depth++)

            {

Dls = new Dls<T>(Tree, depth, Value);

DepthGoalReached = depth;

var path = Dls.Execute();

                if (path != null)

                    return path;

            }

DepthGoalReached = -1;

            return null;

        }

    }

The Ids<T> generic class includes properties that correspond to the 

Value searched for in the tree as well as properties for determining the 

depth of the goal node found (DepthGoalReached) and the maximum 

depth the search will get to (MaxDepthSearch). From the Execute() 

method we can see the algorithm consists of a loop that applies DLS on 

depths 0, 1, …, MaxDepthSearch.

Let’s test our algorithms in a console application and declare a tree, 

like the one illustrated in Listing 15-7.
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Listing 15-7.  Testing Uninformed Search Algorithms

var tree = new Tree<string>{ State = "A" };

tree.Children.Add(new Tree<string> { State = "B",

                Children = new List<Tree<string>>

                               {

                                   new Tree<string>("E")

                               } });

tree.Children.Add(new Tree<string> { State = "C",

             Children = new List<Tree<string>>

                               {

                                   new Tree<string>("F")

                               }

            });

tree.Children.Add(new Tree<string> { State = "D" });

varbfs = new Bfs<string>(tree);

vardfs = new Dfs<string>(tree);

vardls = new Dls<string>(tree, 21, "E");

var ids = new Ids<string>(tree, 10, "F");

var path = bfs.Execute();

            //var path = dfs.Execute();

           // var path = dls.Execute();

            //var path = ids.Execute();

foreach (var e in path)

Console.Write(e + ", ");
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Uncommenting the Execute() lines for each method, we would get the 

results seen in Figure 15-7, shown in the order BFS, DFS, DLS, IDS.

Notice that in this case, and as it was implemented, both BFS and 

DFS traverse the tree in their defined order while DLS and IDS perform 

searches on the tree by looking for a specific value.

�Practical Problem: Implementing 
Bidirectional Search on the Sliding Tiles 
Puzzle
We have mentioned several times the Sliding Tiles Puzzle as an example of a 

board game that can be solved using search strategies like the ones discussed 

thus far, and in this section we will implement a bidirectional search to solve 

the 8-puzzle (3 x 3 grid). The positive aspect of applying bidirectional search 

to the Sliding Tiles Puzzle is that it’s very easy to calculate the reverse of the 

swap operation; in other words, it’s very easy to calculate the predecessors 

of a goal state. We would just need to move the blank tile in every possible 

direction. Thus, in order to move from the goal state backward, we wouldn’t 

need to implement any extra features, but rather slightly adapt the same 

expansion procedure we use for the forward search.

Figure 15-7.  Results obtained after executing BFS, DFS, DLS, and IDS
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First of all, let’s examine the SlidingTilesPuzzle and Board classes 

we will be using to deal with node expansion and game-related logic 

(Listing 15-8). The SlidingTilesPuzzle class is very simple, and its only 

purpose is to provide a meaningful way to refer to a “game” and organize 

the logic of the program. The key support class for developing the AI is 

Board<T>.

Listing 15-8.  Sliding Tiles Puzzle and Board Classes

public class SlidingTilesPuzzle<T>

    {

        public Board<T> Board { get; set; }

        public Board<T> Goal { get; set; }

        �public SlidingTilesPuzzle(Board<T> initial, Board<T> goal)

        {

            Board = initial;

            Goal = goal;

        }

    }

public class Board<T> :IEqualityComparer<Board<T>>

    {

        public T[,] State { get; set; }

        public T Blank { get; set; }

        public string Path { get; set; }

        private readonly Tuple<int, int> _blankPos;

        private readonlyint _n;

        public Board() {}

        �public Board(T[,] state, T blank, Tuple<int, 

int>blankPos, string path)

        {
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            State = state;

            Blank = blank;

            _n = State.GetLength(0);

            _blankPos = blankPos;

            Path = path;

        }

        public List<Board<T>>Expand(bool backwards = false)

        {

var result = new List<Board<T>>();

var up = Move(GameProgramming.Move.Up, backwards);

var down = Move(GameProgramming.Move.Down, backwards);

varlft = Move(GameProgramming.Move.Left, backwards);

varrgt = Move(GameProgramming.Move.Right, backwards);

            �if (up._blankPos.Item1 >= 0 && (string.IsNullOrEmpty 

(Path) || Path.Last() != (backwards ? 'U' : 'D')))

            result.Add(up);

            �if (down._blankPos.Item1 >= 0 && (string.IsNullOrEmpty 

(Path) || Path.Last() != (backwards ? 'D' : 'U')))

            result.Add(down);

            �if (lft._blankPos.Item1 >= 0 && (string.IsNullOrEmpty 

(Path) || Path.Last() != (backwards ? 'L' : 'R')))

            result.Add(lft);

            �if (rgt._blankPos.Item1 >= 0 && (string.IsNullOrEmpty 

(Path) || Path.Last() != (backwards ? 'R' : 'L')))

            result.Add(rgt);

            return result;

        }
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        public Board<T>Move(Move move, bool backwards = false)

        {

varnewState = new T[_n, _n];

Array.Copy(State, newState, State.GetLength(0) * State.

GetLength(1));

varnewBlankPos = new Tuple<int, int>(-1, -1);

var path = "";

            switch (move)

            {

                case GameProgramming.Move.Up:

                    if (_blankPos.Item1 - 1 >= 0)

                    {

                        // Swap positions of blank tile and x tile

var temp = newState[_blankPos.Item1 - 1, _blankPos.Item2];

newState[_blankPos.Item1 - 1, _blankPos.Item2] = Blank;

newState[_blankPos.Item1, _blankPos.Item2] = temp;

newBlankPos = new Tuple<int, int>(_blankPos.Item1 - 1,  

_blankPos.Item2);

                        path = backwards ? "D" : "U";

                    }

                    break;

                case GameProgramming.Move.Down:

                    if (_blankPos.Item1 + 1 < _n)

                    {

var temp = newState[_blankPos.Item1 + 1, _blankPos.Item2];

newState[_blankPos.Item1 + 1, _blankPos.Item2] = Blank;

newState[_blankPos.Item1, _blankPos.Item2] = temp;

newBlankPos = new Tuple<int, int>(_blankPos.Item1 + 1,  

_blankPos.Item2);

                        path = backwards ? "U" : "D";

                    }

                    break;
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                case GameProgramming.Move.Left:

                    if (_blankPos.Item2 - 1 >= 0)

                    {

var temp = newState[_blankPos.Item1, _blankPos.Item2 - 1];

newState[_blankPos.Item1, _blankPos.Item2 - 1] = Blank;

newState[_blankPos.Item1, _blankPos.Item2] = temp;

newBlankPos = new Tuple<int, int>(_blankPos.Item1,  

_blankPos.Item2 - 1);

                        path = backwards ? "R" : "L";

                    }

                    break;

                case GameProgramming.Move.Right:

                    if (_blankPos.Item2 + 1 < _n)

                    {

var temp = newState[_blankPos.Item1, _blankPos.Item2 + 1];

newState[_blankPos.Item1, _blankPos.Item2 + 1] = Blank;

newState[_blankPos.Item1, _blankPos.Item2] = temp;

newBlankPos = new Tuple<int, int>(_blankPos.Item1,  

_blankPos.Item2 + 1);

                        path = backwards ? "L" : "R";

                    }

                    break;

            }

            �return new Board<T>(newState, Blank, newBlankPos, 

Path + path);

        }

        public bool Equals(Board<T> x, Board<T> y)

        {

            if (x.State.GetLength(0) != y.State.GetLength(0) ||

x.State.GetLength(1) != y.State.GetLength(1))

                return false;
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            for (vari = 0; i<x.State.GetLength(0); i++)

            {

                for (var j = 0; j <x.State.GetLength(1); j++)

                {

if (!x.State[i, j].Equals(y.State[i, j]))

return false;

                }

            }

            return true;

        }

        public intGetHashCode(Board<T>obj)

        {

            return 0;

        }

    }

    public enum Move

    {

        Up, Down, Left, Right

    }

The Board<T> class contains the following properties and variables:

•	 State: matrix of T values; recall T is generic and as a result 

it can be of any type, e.g., integer, string, or any other

•	 Blank: determines the blank element to be used in the 

board

•	 Path: path built from the root up to the node 

representing this board
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•	 _blankPos: integer tuple determining the position of 

the blank tile on the board

•	 _n: number of rows (columns) of the board

In the Expand() method we generate the neighborhood of the current 

node; in other words, we generate the set of neighbor boards (obtained 

by moving the blank tile in every possible direction). Because we can 

generate a move in either the forward or the backward search, we define 

the Boolean variable backward to identify whether the generated move 

is forward or backward. Using this variable, we control several aspects of 

node generation and contemplate the cases where we execute a search 

from the root to the goal node (forward) or from the goal node to the root 

node. This is actually the intention of bidirectional search—to execute 

two searches and have them meet at some point along the way. This 

meeting point determines the path or sequence of moves needed to solve 

the puzzle. The statement Path.Last() != (backwards ? 'U' : 'D') 

guarantees that, in either the forward or the backward search, we avoid 

repeating states on consecutive moves. For instance, if we are moving 

forward in the search, we would not want to move the blank tile to the 

right and then, when expanding that same node, move it back to the left, 

because that would leave us in the same state, thus causing the algorithm 

to consume more computational time.

In the Move() method, we make use of the Move enum shown in 

Listing 15-8 to develop the logic behind blank tile moves and to determine 

whether certain moves are possible given the boundaries of the board. 

Again, the statement path = backwards ? "R" : "L" has the purpose of 

deciding the type of move executed at the current step and determining 

whether we are searching backward or not; this decision is then added 

to the Path variable of the generated node as an extension of the path 

“walked” so far. Remember that when going backward, right means left, 

left means right, up means down, and down means up from the forward 

perspective. Because, eventually, we want to concatenate this backward 
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path with the forward path, we decided to transform it into its “forward” 

version from the beginning. To achieve this transformation, we have the 

previous statement (path = backwards ? "R" : "L").

Because we need to compare different boards to determine whether 

the forward and backward searches have met, we implement the 

IEqualityComparer<Board<T>> interface on the Board<T> class, which 

forces us to implement the Equals() and GetHashCode() methods. The 

last one will be left to the reader as an exercise, and in this book we simply 

leave it to return 0. The first one compares the State matrixes of each 

board, and if each cell coincides it outputs true; otherwise, it outputs false.

The bidirectional search class is illustrated in Listing 15-9.

Listing 15-9.  Bs<T> Class

public class Bs<T>

{

        public SlidingTilesPuzzle<T> Game { get; set; }

        public Bs(SlidingTilesPuzzle<T> game)

        {

            Game = game;

        }

        public string BidirectionalBfs()

        {

varqueueForward = new Queue<Board<T>>();

queueForward.Enqueue(Game.Board);

varqueueBackward = new Queue<Board<T>>();

queueBackward.Enqueue(Game.Goal);

            while (queueForward.Count> 0 &&queueBackward.Count> 0)

            {

varcurrentForward = queueForward.Dequeue();
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varcurrentBackward = queueBackward.Dequeue();

varexpansionForward = currentForward.Expand();

varexpansionBackward = currentBackward.Expand(true);

                foreach (var c in expansionForward)

                {

if (c.Path.Length == 1 &&c.Equals(c, Game.Goal))

                        return c.Path;

queueForward.Enqueue(c);

                }

                foreach (var c in expansionBackward)

queueBackward.Enqueue(c);

var path = SolutionMet(queueForward, expansionBackward);

                if (path != null)

                    return path;

            }

            return null;

        }

        �private string SolutionMet(Queue<Board<T>>expansion 

Forward, List<Board<T>>expansionBackward)

        {

            for (vari = 0; i<expansionBackward.Count; i++)

            {

                �if (expansionForward.Contains 

(expansionBackward[i], new Board<T>()))

                {

var first = expansionForward.First(b =>b.Equals(b, 

expansionBackward[i]));
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Figure 15-8.  The forward search (on the left) and the backward search 
(on the right).The point in the middle indicates the current node being 
processed in the BFS, and the circles around it represent different levels 
of the tree. Blue points indicate nodes that have been discovered and 
processed during the search, and gray ones indicate queued nodes. The 
green points indicate the node where both searches would meet.

return first.Path + new string(expansionBackward[i].Path.

Reverse().ToArray());

}

            }

            return null;

        }

  }

Our BS algorithm will perform two searches, each consisting of a BFS 

procedure that uses a queue to traverse the state tree through levels. We 

implement a BFS to search forward and another to search backward, and 

the point where these two searches meet is iteratively checked by the 

SolutionMet() method. The loop examining whether every expanded 

node with Path length 1 matches the goal state acts as a base case for the 

scenario where the goal state is a step away from the initial board. Figure 15-8 

graphically depicts the functioning of the bidirectional search algorithm.
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Both searches meet at the green point. To find this link or relationship 

between the forward and backward searches we checked the set of 

expanded nodes (gray points in the figure) using the SolutionMet() 

method. The purpose of this method is to check all enqueued points from 

the forward search against all expanded nodes (points in the nearest 

circle to the middle processed node) from the backward search and look 

for matches in their state or board. If a full match is found then we output 

the path that results from adding the subpaths of the node, forward and 

backward, where both searches met.

In order to test our BS we will create the experiment shown in  

Listing 15-10.

Listing 15-10.  Testing Our Bidirectional Search Algorithm on the 

Hardest 8-Puzzle Configuration

var state = new[,]

                            {

                                {6, 4, 7},

                                {8, 5, 0},

                                {3, 2, 1}

                            };

vargoalState = new[,]

                            {

                                {1, 2, 3},

                                {4, 5, 6},

                                {7, 8, 0}

                            };

var board = new Board<int>(state, 0, new Tuple<int, int>(1, 2), "");

var goal = new Board<int>(goalState, 0, new Tuple<int, int> 

(2, 2), "");
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Figure 15-9.  Solution obtained in 11 seconds

varslidingTilesPuzzle = new SlidingTilesPuzzle<int>(board, 

goal);

varbidirectionalSearch = new Bs<int>(slidingTilesPuzzle);

varstopWatch = new Stopwatch();

stopWatch.Start();

var path = bidirectionalSearch.BidirectionalBfs();

stopWatch.Stop();

            foreach (var e in path)

Console.Write(e + ", ");

Console.WriteLine('\n' + "Total steps: " + path.Length);

Console.WriteLine("Elapsed Time: " + stopWatch.

ElapsedMilliseconds / 1000 + " segs");

In this experiment, we are using one of the hardest 8-puzzle 

configurations; it requires 31 steps to be solved in the optimal case. We 

are also using an object of type Stopwatch to measure the time consumed 

by the algorithm while finding a solution. The result after executing the 

previous code can be seen in Figure 15-9.

To verify the correctness of the solution we can simply loop through 

the path or list of moves obtained and execute the equivalent moves from 

the initial board, checking that the last board obtained matches the goal 

state.
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Note  Before outputting the sequence of moves of the BS algorithm 
we must reverse the path string obtained in the backward search. 
Remember that this path was built by adding moves to the end, not 
the beginning, of the string; therefore, we must reverse it in order to 
get the correct path to the goal node.

�Informed Search
In an informed search we use knowledge of the problem apart from 

its own definition with the intention of using it in solving a problem as 

efficiently as possible. Thus, in an informed search algorithm we try to be 

smart about what paths to explore. The general approach for informed 

search methods is represented by a family of algorithms known as Best 

First Search.

A Best First Search type of method always relies on an evaluation 

function F(n) that associates a value with every node n of the state tree. 

This value is supposed to represent how close the given node is to reaching 

a goal node; hence, a Best First Search method usually chooses a node n 

with the lowest value F(n) to continue the search procedure (Figure 15-10). 

Even though we refer to this family of algorithms as “Best First,” in reality 

there’s no certain way to determine the lowest-cost path to a goal node. 

If that were possible then we would always be able to obtain an optimal 

solution without the need to put in any extra effort (heuristics and so 

forth).
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Because informed search strategies search the most promising 

branches of the state space first, they are capable of

•	 finding a solution more quickly;

•	 finding solutions even when there is limited time 

available; and

•	 finding a better solution, since the more profitable 

parts of the state space can be examined while ignoring 

the unprofitable parts.

Best First Search is a search strategy and, as mentioned before, a family 

of algorithms whose main representatives are Greedy Best First Search and 

the A* search.

A Greedy Best First Search is basically a Best First Search in which the 

evaluation function F(n) is a heuristic function; i.e., F(n) = H(n). Examples 

of heuristic functions for different problems include straight distance on 

a map between two points, number of misplaced elements, and so on. 

They represent an approach for embedding additional knowledge in the 

solution process of a problem. When H(n) = 0 it implies we have reached 

a goal node. Greedy Best First Search expands the node that appears to be 

closest to goal but is neither optimal nor complete (can fall into infinite 

Figure 15-10.  In a Best First Search method we always pick a node n 
with the lowest possible F(n) value to continue the search. In this case, 
F = 3, so the search continues from that node.
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loops). An obvious problem with the method is that it doesn’t take into 

account the cost up to the current node, so as mentioned before it isn’t 

optimal and can wander into deadends, like DFS. In methods where we 

use heuristics we could obtain a drastic reduction of complexity if we use a 

smart heuristic that would lead us in the right direction in a few steps.

Note  When the state space is too big, an uninformed blind search 
can simply take too long to be practical, or can significantly limit 
how deep we’re able to look into the space. Thus, we must look for 
methods that reduce the area of the state space by making smart 
decisions along the way; i.e., we must look for informed methods.

A* search (Hart, Nilsson, and Raphael, 1968) is a very popular 

method and is the best-known member of the Best First Search family of 

algorithms. The main idea behind this method is to avoid expanding paths 

that are already expensive (considering the cost of traversing through the 

root to the current node) and always expanding the most promising first. 

The evaluation function in this method is the sum of two functions; i.e., 

F(n) = G(n) + H(n), where

•	 G(n) is the cost (so far) of reaching node n; and

•	 H(n) is a heuristic to estimate the cost of reaching a 

goal state from node n.

Because we’re actually looking for the optimal path between the initial 

state and some goal state, a better measure of how promising a state is 

would be the sum of the cost-so-far and our best estimate of the cost from 

that node to the nearest goal state (Figure 15-11).
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Figure 15-11.  Diagram showing the relation between G(s) and H(s)

To guide the search through the immense space state, we use 

heuristics. The information provided by the heuristic is supposed to help 

us find a feasible, short path to the goal state or configuration.

When developing a heuristic it’s important to make sure that it holds 

the admissibility criteria. A heuristic is considered admissible if it doesn’t 

overestimate the minimum cost of reaching the goal state from the current 

state, and if admissible then the A* search algorithm will always find an 

optimal solution.

�A* for the Sliding Tiles Puzzle
The tree structure representing the state space for the Sliding Tiles Puzzle 

will be the same as was developed for the bidirectional search. The 

neighborhood of the current node will consist of boards that have their 

blank tile swapped into all possible positions.

The most common heuristic for the Sliding Tiles Puzzle is Misplaced 

Tiles, and it is probably also the simplest heuristic for this puzzle. The 

Misplaced Tiles heuristic, as the name suggests, returns the number of tiles 

that are misplaced—whose position in the current board does not match 

their position in the goal state or board. It’s admissible since the number 

returned does not overestimate the minimum number of moves required 

to get to the goal state. At the very least you have to move every misplaced 

tile once to swap them to their goal position; hence, it is admissible.
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It’s important to point out that when calculating any heuristic for the 

Sliding Tiles Puzzle we should never take into account the blank tile. If 

we consider the blank tile in the heuristic calculation then we could be 

overestimating the real cost of the shortest path to the goal state, which 

makes the heuristic non-admissible. Consider what would happen if we 

took into account the blank tile in a board that is just a step away from 

reaching the goal state, as shown in Figure 15-12.

The A* algorithm with the Misplaced Tiles heuristic takes about  

2.5 seconds to find the goal state. In reality, we can do much better than 

that, so let’s try to find a more clever heuristic that will lower the timeframe 

and the number of nodes visited.

Note  For a full code in C# of this problem, refer to the following 
article by the author: https://visualstudiomagazine.com/
Articles/2015/10/30/Sliding-Tiles-C-Sharp-AI.aspx.

Figure 15-12.  If we consider the blank tile, our path to a goal state 
would be 2, but in reality it is 1; thus, we are overestimating the real 
cost of a shortest path toward a goal state
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The Manhattan Distance, or Block Distance, heuristic between points 

A=(x1, y1) and B=(x2, y2) is defined as the sum of the absolute difference 

of their corresponding coordinates:

MD x x y y= - + -1 2 1 2

Manhattan Distance is admissible because for each tile it returns the 

minimum number of steps required to move that tile to its goal position. 

Manhattan Distance is a more accurate heuristic than Misplaced Tiles; 

therefore, the reduction in time complexity and nodes visited will be 

substantial. We are providing better information to guide the search and 

so the goal is found much more quickly. Using this heuristic, we get an 

optimal solution in 172 milliseconds (refer to the previously detailed 

article for the complete code in C#).

The Linear Conflict heuristic provides information on necessary moves 

that are not counted by the Manhattan Distance. Two tiles tj and tk are said 

to be in a linear conflict if tj and tk are in the same line, the goal positions 

of tj and tk are both in that line, tj is to the right of tk, and the goal position 

of tj is to the left of the goal position of tk.

To get them to their goal positions we must move one of them down 

and then up again; these moves are not considered in the Manhattan 

Distance. A tile cannot appear related in more than one conflict, as solving 

Figure 15-13.  Tiles 3 and 1 are in the correct row but in the wrong 
column
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a determined conflict might imply the resolution of other conflicts in 

the same row or column. Hence, if tile 1 is related to tile 3 in a conflict 

then it cannot be related to a conflict with tile 2, as this may become an 

overestimation of the shortest path to a goal state and could turn our 

heuristic into a non-admissible one.

To test the Linear Conflict + Manhattan Distance heuristic 

combination, we’ll use the 4 × 4 board seen in Figure 15-14; this board 

requires 55 moves to reach the goal state. The value of a node n will be 

given by F(n) = Depth(n) + MD(n) + LC(n). It’s possible to combine these 

heuristics as the moves they represent do not intersect, and consequently 

we will not be overestimating the cost of the shortest path to a goal state.

After completing an execution that traversed over a million nodes and 

consumed a time of 124199 milliseconds (little over 2 mins), the algorithm 

provided us with a solution.

The pattern database heuristic is defined by a database containing 

different states of the game. Each state is associated with the minimum 

number of moves required to take a pattern (subset of tiles) to its goal 

position. In this case, we built a small pattern database by making a BFS 

backward, starting at the 8-tile goal state. The results were saved in a 

Figure 15-14.  4 × 4 board for testing Manhattan Distance + Linear 
Conflict heuristic. A 15-tile problem has a much broader state space 
than the 8-tile problem.
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.txt file of merely 60,000 entries. The pattern chosen for the database is 

typically known as the fringe, and in this case it contains tiles from the top 

row and the leftmost column.

The pattern database heuristic function is computed by a table  

look-up function. In this case, it’s a dictionary lookup that has 60,000 

stored patterns. It philosophically resembles those of the Divide and 

Conquer and Dynamic Programming techniques.

Using the pattern database technique, we can obtain a time of  

50 milliseconds for solving the hardest 8-tile problem or configuration.

The more entries we add to the database the lower the time consumed 

by the algorithm in finding a goal state. In this case, the trade-off between 

memory and time favors the former and helps us obtain a good running 

time. This is how it usually works; you use more memory in order to 

reduce the execution time of your algorithms. The pattern database 

heuristic represents the definitive alternative when you want to solve 

4 x 4 puzzles or m x n puzzles where n and m are greater than 3. A final 

suggestion to the reader would be to combine the A* search and heuristics 

presented in this section with a bidirectional search and compare results.

Figure 15-15.  Pattern used in 3 × 3 board
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�Summary
In this chapter we introduced game programming and, more specifically, 

searching in games. We analyzed the fundamental methods for searching 

in state space, including those that classify as uninformed search—BFS, 

DFS, DLS, IDS, and BS—and those that classify as informed search: Best-

First Search and A*. We implemented a bidirectional search tailored to 

the Sliding Tiles Puzzle and using BFS as a sub-procedure. Ultimately, 

we showed how to develop an A* search for the Sliding Tiles Puzzle using 

different heuristics, combining some of those heuristics, and assessing 

their performance in regards to time complexity through the use of the C# 

Stopwatch class.
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CHAPTER 16

Game Theory: 
Adversarial Search & 
Othello Game
The most relevant figure associated with game theory is, without any 

doubt, John von Neumann, the Hungarian-American mathematician—

one of the greatest of the twentieth century. Although others preceded 

him in formulating concepts connected to game theory (notably Emile 

Borel), it was von Neumann who in 1928 published the paper that laid 

the foundation for the theory of two-person zero-sum games. His work 

culminated in an essential book on game theory written in collaboration 

with Oskar Morgenstern and titled Theory of Games and Economic 

Behavior (1944).

The theory developed by von Neumann and Morgenstern is highly 

associated with a class of games called two-person zero-sum games, or 

games where there are only two players and in which one player wins what 

the other player loses. Their mathematical framework initially made the 

theory applicable only under special and limited conditions. Over the past 

six decades this situation has dramatically changed, and the framework 

has been strengthened and generalized. Since the late 1970s it has been 

possible to assert that game theory is one of the most important and useful 
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tools in many fields of science, particularly in economics. In the 1950s and 

1960s, game theory was broadened theoretically and applied to problems 

of war and politics. Additionally, it has found applications in sociology and 

psychology and established links with evolution and biology. Game theory 

received special attention in 1994 with the awarding of the Nobel Prize in 

Economics to John Nash, John Harsanyi, and Reinhard Selten.

John Nash, the subject of the 2001 Oscar-winning movie A Beautiful 

Mind, transformed game theory into a more general tool that enabled the 

analysis of win-win and lose-lose scenarios, as well as win-lose situations. 

Nash enabled game theory to address a central question: should we 

compete or cooperate?

In this chapter, we will discuss various concepts and ideas drawn 

from game theory. We will address a sub-branch of game theory known as 

adversarial search, and we will describe the Minimax algorithm, which is 

typically applied in two-player zero-sum games of perfect information in a 

deterministic environment.

Note  In 1950, John Nash demonstrated that finite games always 
have an equilibrium point at which all players choose actions that are 
best for them given their opponents' choices. The Nash equilibrium, 
also called strategic equilibrium, is a list of strategies, one for each 
player, that has the property that no player can unilaterally change his 
strategy and get a better payoff.

�What Is Game Theory?
A game is a structured set of tasks defined in an entertaining environment 

and manner so as to attract players (1 or more) to comply with logical rules 

that if properly fulfilled result in the game’s being completed.
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Game theory is the mathematical theory of how to analyze games and 

how to play them optimally; it’s also a way of looking at multiple human 

behaviors as if they were part of a game. Some of the most popular games 

that can be analyzed in game theory are Othello, blackjack, poker, chess, 

tic-tac-toe, backgammon, and so on. In reality, not only games as we 

know them or think about them are the topic of analysis in game theory. 

Rather, there are many other situations that can be formulated as games. 

Whenever rational people must make decisions within a framework of 

strict and known rules, and when each player gets a payoff based on the 

decisions of other players, we have a game. Examples include auctions, 

negotiations, military tactics, and more. The theory was initiated by 

mathematicians in the first half of the last century, but since then much 

research in game theory has been done outside of the mathematics area.

The key aspects of game theory revolve around the identification of 

process participants and their various quantifiable options (choices), as 

well as the consideration of their preferences and subsequent reactions. 

If all these factors are carefully thought of, then the task of modeling the 

problem by game theory—along with the identification of all possible 

situations—becomes easier.

One of the classic examples presented in the scientific literature 

to describe how games are analyzed in game theory is the Prisoner’s 

Dilemma (PD). The name of the game derives from the following 

situation, typically used to exemplify it.

Suppose the police have arrested two people they know have committed 

an armed robbery together. Unfortunately, they lack enough admissible 

evidence to get a jury to convict them. They do, however, have enough 

evidence to send each prisoner away for two years for theft of the getaway car. 

The police chief now makes the following offer to each prisoner: If you will 

confess to the robbery, implicating your partner, and he does not also confess, 

then you’ll go free and he’ll get ten years. If you both confess, you’ll each get 

five years. If neither of you confesses, then you’ll each get two years for the 

auto theft. Table 16-1 illustrates the payoff or benefit matrix in this problem.

Chapter 16  Game Theory: Adversarial Search & Othello Game



592

The cells of the matrix define payoffs for both players and for each 

combination of actions. In every pair (a, b), player A’s payoff equals a and 

player B’s payoff equals b.

•	 If both players stay silent then they each get a payoff of 2.  

This appears in the upper-left cell.

•	 If neither of them stays silent, they each get a payoff of 5; 

this appears as the lower-right cell.

•	 If player A betrays and player B remains silent then 

player A gets a payoff of 10 (going free) and player B 

gets a payoff of 0 (ten years in prison); this appears in 

the lower-left cell.

•	 If player B betrays and player A stays silent then player 

B gets a payoff of 10 and player A gets 0; this appears in 

the upper-right cell.

Each player evaluates his or her two possible actions here by 

comparing their personal payoffs in each column, since this shows which 

of their actions is preferable, just to themselves, for each possible action 

by their partner. Therefore, if player B betrays then player A gets a payoff 

of 5 by also betraying and a payoff of 0 by staying silent. If player B stays 

silent then player A gets a payoff of 2 by also staying silent or a payoff of 

10 by betraying player B. Consequently, player A is better off betraying 

regardless of what player B does. Player B, on the other hand, evaluates his 

actions by comparing his payoffs down each row, and he comes to exactly 

Table 16-1.  Prisoner’s Dilemma Payoff Matrix

Prisoner B, stays silent Prisoner B, betrays

Prisoner A, stays silent 2, 2 0, 10

Prisoner A, betrays 10, 0 5, 5
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the same conclusion that player A does. Whenever an action for a player is 

superior when compared to each possible action by an opponent we say 

that the first action strictly dominates the second one (recall terms such as 

Pareto set and Pareto optimality from Chapter 13). In the PD, confessing 

strictly dominates refusing for both players. Both players know this about 

each other, entirely eliminating any temptation to depart from the strictly 

dominated path. Hence, both players will betray, and both will go to prison 

for five years.

These days, AIs capable of defeating human champions for games such as 

chess, checkers, and backgammon have been created. Most recently (March 

2016), the Google DeepMind’s AlphaGo program, using a self-learning 

algorithm (we’ll look into this in Chapter 17, “Reinforcement Learning”), was 

able to defeat the world champion of Go, Lee Sedol (Figure 16-1).

�Adversarial Search
In this book, we will focus on a sub-branch of game theory known as 

adversarial search, which is usually applied to board games. In adversarial 

search, we examine problems that arise when we try to plan ahead or look 

into the future of a world where other agents are planning against us. Thus, 

adversarial search becomes necessary in competitive environments where 

there are conflicting goals and more than one agent.

Board-game analysis is one of the oldest branches of AI (Shannon, 

Turing, Wiener, and Shanon 1950). Such games present a very abstract 

and pure form of competition between two opponents and clearly require 

a form of “intelligence.” The states of a game are easy to represent, and 

the possible actions of the players are well defined. The world states are 

fully accessible even though it’s a contingency problem, because the 

characteristics of the opponent are not known in advance. Board games 

are not only difficult because of their contingency, but also because the 

search trees can become astronomically large.
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Concepts from the area of game theory for which we will need to find a 

common ground of understanding are presented in the following points:

•	 Deterministic Game Environment: A game is said to be 

deterministic if it does not involve any random process 

like the throwing of a dice; i.e., a player’s actions lead 

to completely predictable outcomes. Games such as 

checkers, chess, and Othello are deterministic.

•	 Stochastic Game Environment: A game is said to be 

stochastic if it involves some random process like the 

throwing of a dice. Games such as backgammon and 

dominoes are stochastic.

•	 Utility Function: is a mapping from states of the world 

to real numbers. These numbers are interpreted as 

measures of an agent’s level of happiness in the given 

states.

Figure 16-1.  Lee Sedol vs AlphaGo, March 2016
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•	 Constant-Sum Game: A two-player game is constant-

sum if there exists a constant c such that for each 

strategy s ∈ A1 × A2 it is the case that u1(s) + u2(s) = c 

being A1 is the set of actions of one of the players and 

A2 the set of actions of the other player.

•	 Zero-Sum Game: a constant-sum game where c = 0; i.e., 

utility values at the end of the game are always equal in 

absolute value and opposite in sign.

•	 Imperfect Information Game: a game where the players 

do not have all information regarding the state of other 

players. Games such as poker, Scrabble, and bridge are 

imperfect in their information.

•	 Perfect Information Game: a game whose environment 

is fully observable by all players; i.e., every player is 

aware of other players’ state. Games such as Othello, 

checkers, and chess are of perfect Information.

Considering previously detailed concepts, we can create Table 16-2, 

which details by row and column headers what method would be required 

to solve a game that depends on conditions defined.

Table 16-2.  Methods for Solving Different Types of Games

Zero-Sum Non-Zero Sum

Perfect Information Minimax, Alpha-Beta Backward induction, retrograde 

analysis

Imperfect Information Probabilistic Minimax Nash equilibrium
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In this book, we will focus on two-player zero-sum games—games 

where the value achieved by a player is lost, in the same quantity, by the 

other. Thus, from the next section onward, we’ll be discussing the most 

relevant algorithm that is applied to this type of game.

Note A n international program known as “Prism” run by the US 
Secret Service agencies uses a software model based on game 
theory to determine the predictability of terrorist activities, identities, 
and possible locations.

�Minimax Search Algorithm
Minimax search is an algorithm applied in two-player, zero-sum, 

deterministic, perfect information games to determine the optimal 

strategy for a player (MAX) at a given stage of the game and assuming the 

other player will also make optimal plays (MIN). It’s applied in games such 

as chess, Othello, tic-tac-toe, and more. When executing this algorithm, 

we traverse the state space tree and represent each move in terms of 

losses or gains for one of the players. Therefore, this method can only be 

used to make decisions in zero-sum games, where one player’s loss is the 

other player’s gain. Theoretically, this search algorithm is based on Von 

Neumann’s Minimax theorem, which states that in these types of games 

(zero-sum, deterministic, perfect information) there is always a set of 

strategies that leads to both players’ gaining the same value, and that 

seeing as this is the best possible value one can expect to gain, one should 

employ this set of strategies.
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Note A  Minimax player (MAX) is a player that plays optimally, 
assuming its opponent (MIN) is also playing optimally but in a 
different direction; i.e., one maximizes and the other minimizes 
results.

Hence, in the Minimax algorithm we assume there are two players; 

namely, MAX and MIN. A search tree is generated in a depth-first style, 

starting with the current game position and going all the way up to an  

end-game position. An end-game position could be reached when we 

get to either a leaf node (node representing an actual end of the game) or 

a node at MaxDepth, the maximum depth the search will go to. Because 

most games possess a gigantic state search, we typically cannot make it to 

a leaf node. Thus, it is usually the node at MaxDepth where the DFS stops 

and starts backtracking. Before backtracking, the procedure gets a utility 

value from the end-game position node. This value is obtained from a 

heuristic that tells us how close we are to winning from that point onward.

Afterward, the utility value is backtracked, and, depending on whether 

the parent node N belongs to a tree level or a depth corresponding to a 

MAX player or a MIN player, the utility value of N is obtained from its 

children c1, c2, … ,cm as Max(c1, c2, …, cm), where Max() is a function 

returning the maximum value of its arguments, or as Min(c1, c2, …, cm), 

where Min() is a function returning the minimum value of its arguments. 

Figure 16-2 illustrates the functioning of the algorithm.
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A pseudocode of the algorithm would be the following:

Minimax(Node n): output Real-Value

{

   if (IsLeaf(n)) then return Evaluate(n);

   if (MaxDepth) then return Heuristics(n);

   if (n is a MAX node) {

         v = NegativeInfinity

   foreach (child of n)

         {

      v' = Minimax (child)

     if (v' > v) v= v'

         }

return v

   }

Figure 16-2.  Execution of a Minimax algorithm where MaxDepth = 2. 
The method first calculates the values of nodes at MaxDepth and then 
moves those values up according to whether a node is a Max node or 
a Min node. Nodes denoted in orange are the ones selected to have 
their values elevated in the tree.
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   if (n is a MINnode)  {

      v = PositiveInfinity

      foreach (child of n)

      {

           v' = Minimax (child)

 if (v' < v)  v= v'

      }

      return v

  }

}

Notice in the pseudocode that we distinguish two methods for 

evaluating end-game nodes (leaf or MaxDepth reached). If we reached a leaf 

node, the evaluation procedure would output H or L depending on whether 

the root player is MAX or MIN. These values correspond to the range [L; H] 

of possible values a node can take. H indicates a win for MAX and L a win 

for MIN; because this is a zero-sum game we know that L + H = 0; i.e., L = -H. 

If we reach a node at MaxDepth then we output a value in the range [L; H] 

indicating how good that path would be from that point onward.

Note E very single-agent problem can be considered as a special 
case of a two-player game by making the environment one of the 
players, with a constant utility function; e.g., always 0.

�Alpha-Beta Pruning
A Minimax algorithm can potentially explore many nodes of the generated 

tree whose paths would eventually be dismissed by the algorithm as they 

would be overtaken (in terms of higher or lower values) by the value of 

other nodes. Let’s consider this scenario in the Minimax tree shown in 

Figure 16-3.
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In this Minimax tree we have a subtree that can be pruned. Remember: 

Minimax executes a DFS for traversing the tree; therefore, at some point it 

will backtrack to the MIN node colored green—let it be G from now on. Once 

at G, it would have already discovered and updated values for MIN nodes 2 

and 3. All discovered nodes whose values would have been updated at the 

moment of updating G are colored orange. Because when updating G the 

algorithm would already be aware of sibling nodes and their corresponding 

utility values 2 and 3, and considering that it already knows that because G is 

a MIN node its value will be always lower than the value it already discovered 

(1), then by simple logic facts, it must be that the final value of the root at 

MAX node must be 3. Thus, any further exploration of children of G would be 

in vain, and those branches can be dismissed, pruned in the search.

For determining which branches or subtrees can be pruned, the 

Minimax algorithm suffers a slight modification where two values are 

added; namely, Alpha and Beta. The first will continuously update the 

highest value found on a level of the tree, while the latter will continuously 

update the lowest value. Using these values as reference, we will be able 

to decide whether a subtree should be pruned. A pseudocode of the 

algorithm can be seen in the next lines:

Figure 16-3.  Pruning child nodes of MIN node with utility value 1
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MinimaxAlphaBetaPruning(Node n, Real beta, Real alpha): output 

Real-Value

{

if (IsLeaf(n)) then return Evaluate(n);

if (MaxDepth) then return Heuristics(n);

 if (n is a max node) {

v = beta

       foreach (child of n) {

v' = minimax (child,v, alpha)

if (v' > v) v = v'

if (v >alpha) return alpha

}

return v

      }

if (n is a min node) {

v = alpha

foreach (child of n) {

v' = minimax (child,beta, v)

if (v' < v) v = v'

if (v <beta) return beta

}

return v

}}

How can Alpha-Beta pruning influence our Minimax search? That 

depends on the order in which children are visited. If children are 

visited in the worst possible order, then it could occur that no pruning 

is ever done. For Max nodes, we want to visit the best child first. For Min 

nodes, we want to visit the worst child first (from our perspective, not the 

opponent’s).
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When the optimal child is selected at every opportunity, Alpha-Beta 

pruning causes the rest of children to be pruned away at every other level 

of the tree; only that child is explored. This means that on average the 

tree can be searched twice as deeply as before, which represents a very 

significant increase in searching performance.

�Othello Game
Othello (a.k.a. Reversi, Yang) is a board game created in London during 

the late nineteenth century and modified in 1971 by Japanese inventor 

Goro Hasegawa (Figure 16-4), who registered the game as Othello (for 

Shakespeare’s play of the same name), changing several rules in the process.

Othello is played on an 8 x 8 board (Figure 16-5), and there are two 

players. One controls the set of white pieces, and the other controls the 

set of black pieces. The total number of pieces is 64, and once the game 

has ended, the player with the higher number of pieces of its color on the 

board wins the game. This is a strategic, abstract game, as is the case with 

other board games such as Go.

Figure 16-4.  Goro Hasegawa, creator of Othello as we know it today

Chapter 16  Game Theory: Adversarial Search & Othello Game



603

The initial configuration of the board is depicted in Figure 16-6.

Figure 16-5.  Othello board

Figure 16-6.  Initial configuration of Othello board and GUI of the 
Windows Forms application we’ll be developing throughout this 
chapter
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The player controlling the black pieces starts the game by making 

the first move. Available moves for this player are denoted in Figure 16-6 

as yellow squares on the board. A move in Othello consists of setting a 

piece on the board in a cell where it would flank the opponent’s pieces in 

a horizontal, vertical, or diagonal direction. In Figure 16-7, we can see an 

imaginary arrangement of pieces on the board.

Assuming it’s white pieces’ turn, a possible play would be to set a 

piece on row 6, column 2, numbered starting at 0 and going top-to-bottom 

(according to Othello’s move rules); it is illustrated in Figure 16-8.

Figure 16-7.  Imaginary Othello board setting

Figure 16-8.  Resulting board after setting a white piece on (6, 2)
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After setting a white piece on (6, 2), all black pieces will be flanked in 

all directions (horizontal, vertical, diagonal); thus, these pieces are flipped 

and become white pieces.

If a player cannot move any of their pieces (cannot flank any of the 

opponent’s pieces), their turn passes to the other player. If neither of the 

players has a move available, then it'’ game over, and the winner is the 

player with the highest number of pieces on the board; likewise for the 

case where all 64 pieces are on the board. This is clearly a deterministic, 

perfect information, zero-sum game. Therefore, one can develop an AI 

under a Minimax search.

Heuristics applied to this game seek to improve the performance of the 

search (Minimax); some of these heuristics are as follows:

•	 Piece Difference: A basic feature to analyze and build 

a heuristic from in Othello is piece difference; i.e., the 

difference between black and white pieces. Ultimately, 

the value obtained is the percentage of black (B) or 

white (W) pieces on the board, except when W = B. The 

calculation goes as follows:

•	 (B > W): 100 * B / (W + B)

•	 (B < W): 100 * W / (W + B)

•	 (B = W): 0

•	 Corner Occupancy: Corners are key positions in an 

Othello game; the player controlling corners controls a 

big part of the game. Corner occupancy measures how 

many corners are owned by each player. To compute 

the corner occupancy, we count the number of black 

pieces in corners, B, and the number of white pieces in 

corners, W. We then let the corner occupancy score be:

•	 25B − 25W
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•	 Corner Closeness: Squares contiguous to corners can 

be deadly if the corner is empty; they can create an 

opportunity for the opponent to capture the corner. 

Therefore, corner closeness measures those “deadly” 

pieces adjacent to empty corners. To compute the 

corner closeness score, we count the number of black 

pieces adjacent to corners and the number of white 

pieces adjacent to corners. The final score would be:

•	 -12.5B + 12.5W

•	 Mobility: One of the worst scenarios in Othello occurs 

when a player is out of moves and misses their turn; 

thus, this heuristic measures how many moves a 

player has. As with the Piece Difference heuristic, it’s 

calculated as a percentage, as follows:

•	 (B > W): 100 * B / (W + B)

•	 (B < W): 100 * W / (W + B)

•	 (B = W, W = 0, B = 0): 0

There are other heuristics, but we’ll settle for the ones just described 

in this book. Notice all of them output a value in the range [-100; 100]. This 

is the range of values we’ll contemplate for our Othello implementation, 

so a leaf node (assuming we can reach it at some point) with B > W will be 

rewarded with a value of 100, and a leaf node with W > B will be rewarded 

with a value of -100; a draw will return a value of 0.

To combine the previous heuristics, we can formulate a weighted sum 

that has weights in the range [0, 1], as if they would represent a percentage 

of priority given to every heuristic. The final utility value of a node would be

UtilityValue
n

h w
i

n

i i= *
=
å1

1
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where n is the number of heuristics combined, wi is the weight associated 

with the ith heuristic, and hi is the value of the ith heuristic. Notice we 

guarantee with the previous formulation that the utility value of a node 

will always be in the range [-100, 100]. In the following section, we will 

begin coding the Othello game in Windows Forms as well as the Minimax 

algorithm representing its AI component.

�Practical Problem: Implementing 
the Othello Game in Windows Forms
In this section, we will implement the Othello game in Windows Forms. 

We’ll boost this program later with a Minimax AI that follows the ideas 

described thus far and that should make it easy for us to test and improve 

the code. First, we’ll examine the OthelloBoard class shown in Listing 16-1.

Listing 16-1.  OthelloBoard Class, Properties, and Constructors

public class OthelloBoard

    {

        public int[,] Board { get; set; }

        public int N { get; set; }

        public int M { get; set; }

        public int Turn { get; set; }

        public List<Tuple<int, int>> Player1Pos { get; set; }

        public List<Tuple<int, int>> Player2Pos { get; set; }

        public Tuple<int, int>MoveFrom{ get; set; }

        internal double UtilityValue{ get; set; }

        internal readonly Dictionary<Tuple<int, int>, 

List<Tuple<int, int>>> Flips;
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        public OthelloBoard(int n, int m)

        {

            Board = new int[n, m];

            Turn = 1;

            �Flips = new Dictionary<Tuple<int, int>, List<Tuple 

<int, int>>>();

            Player1Pos = new List<Tuple<int, int>>

                              {

                                  �new Tuple<int, int>(n / 2 - 1,  

m / 2),

                                  �new Tuple<int, int>(n / 2,  

m / 2 - 1)

                              };

            Player2Pos = new List<Tuple<int, int>>

                              {

                                  �new Tuple<int, int>(n / 2 - 1,  

m / 2 - 1),

                                  �new Tuple<int, int>(n / 2,  

m / 2)

                              };

            // Initial Positions

Board[n / 2 - 1, m / 2 - 1] = 2;

Board[n / 2, m / 2] = 2;

Board[n / 2 - 1, m / 2] = 1;

Board[n / 2, m / 2 - 1] = 1;

            N = n;

            M = m;

        }

        private OthelloBoard(OthelloBoardothelloBoard)

        {
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            Board = new int[othelloBoard.N, othelloBoard.M];

            M = othelloBoard.M;

            N = othelloBoard.N;

            Turn = othelloBoard.Turn;

            Flips = new Dictionary<Tuple<int, int>, 

List<Tuple<int, int>>>(othelloBoard.Flips);

Array.Copy(othelloBoard.Board, Board, othelloBoard.N * 

othelloBoard.M);

            �Player1Pos = new List<Tuple<int, int>> 

(othelloBoard.Player1Pos);

            �Player2Pos = new List<Tuple<int, int>> 

(othelloBoard.Player2Pos);

        }

}

In the OthelloBoard class we included two constructors; one is 

intended to act as an initialization of the game and the other as a way 

to clone an Othello game received as argument. The class contains the 

following properties:

•	 Board: represents the Othello board

•	 N: number of rows

•	 M: number of columns

•	 Turn: player who should make the next move on the 

board; black player equals 1, white player equals 2

•	 Player1Pos: list of black pieces’ positions on the board 

detailed as pairs (x, y)

•	 Player2Pos: list of white pieces’ positions on the board 

detailed as pairs (x, y)
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•	 MoveFrom: represents the move that generated the 

current board. It can serve as a way to build the entire 

path from the root up to the current node.

•	 UtilityValue: represents the utility value of the board 

on a Minimax tree. Recall that this value is updated as 

the algorithm backtracks and has values calculated at 

lower levels of the tree.

•	 Flips: dictionary containing as key a pair (x, y) 

representing a position on the board where the  

player in turn can set one of their pieces and a value 

(f 1, f 2, .., fm) of the pieces that will have to be flipped 

after setting a piece at (x, y)

The class also includes the methods seen in Listing 16-2.

Listing 16-2.  Methods EmptyCell(), Expand(), AvailableMoves(), 

and IsLegalMove()

        public bool EmptyCell(inti, int j)

        {

return Board[i, j] == 0;

        }

        public List<OthelloBoard>Expand(int player)

        {

var result = new List<OthelloBoard>();

var moves = AvailableMoves(player);

            foreach (var m in moves)

            {

varnewBoard = SetPieceCreatedBoard(m.Item1, m.Item2, player);

newBoard.MoveFrom = m;

result.Add(newBoard);
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            }

            return result;

        }

        public List<Tuple<int, int>>AvailableMoves(int player)

        {

var result = new List<Tuple<int, int>>();

varoppPlayerPositions = player == 1 ? Player2Pos : Player1Pos;

            foreach (varoppPlayerPos in oppPlayerPositions)

result.AddRange(AvailableMovesAroundPiece(oppPlayerPos, player));

            return result;

        }

        private bool IsLegalMove(inti, int j)

        {

            �return i>= 0 &&i< N && j >= 0 && j < M &&EmptyCell 

(i, j);

        }

A description of the previous methods is given in the following points:

•	 EmptyCell(): determines whether a cell on the board is 

empty

•	 Expand(): this method is mainly used in the Minimax 

algorithm. It expands the current board, returning a list 

of boards representing the execution of every possible 

move for the player in turn.

•	 AvailableMoves(): outputs a list of available moves for 

the player in turn

•	 IsLegalMove(): returns true if a move to cell (i, j) is 

valid according to board specifications
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Both Expand() and AvailableMoves() rely in their implementations 

on other methods; these methods are described in Listing 16-3.

Listing 16-3.  Methods AvailableMovesAroundPiece() and 

SetPieceCreatedBoard()

        �private IEnumerable<Tuple<int, int>>AvailableMovesAroun

dPiece(Tuple<int, int>oppPlayerPos, int player)

        {

var result = new List<Tuple<int, int>>();

vartempFlips = new List<Tuple<int, int>>();

            // Check Down

            �if (IsLegalMove(oppPlayerPos.Item1 + 1, 

oppPlayerPos.Item2))

            {

var up = CheckUpDown(oppPlayerPos, player, (i =>i>= 0), -1, 

tempFlips);

                if (up)

                {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 + 1, 

oppPlayerPos.Item2), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 + 1, 

oppPlayerPos.Item2));

                }

            }

            // Check Up

            �if (IsLegalMove(oppPlayerPos.Item1 - 1, 

oppPlayerPos.Item2))
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            {

tempFlips.Clear();

var down = CheckUpDown(oppPlayerPos, player, (i =>i< N), 1, 

tempFlips);

                if (down)

                {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 - 1, 

oppPlayerPos.Item2), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 - 1, 

oppPlayerPos.Item2));

                }

            }

            // Check Left

            �if (IsLegalMove(oppPlayerPos.Item1, oppPlayerPos.

Item2 - 1))

            {

tempFlips.Clear();

varrgt = CheckLftRgt(oppPlayerPos, player, (i =>i< M), 1, 

tempFlips);

                if (rgt)

                {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1, 

oppPlayerPos.Item2 - 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1, 

oppPlayerPos.Item2 - 1));

                }

            }

            // Check Right

            �if (IsLegalMove(oppPlayerPos.Item1, oppPlayerPos.

Item2 + 1))
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            {

tempFlips.Clear();

varlft = CheckLftRgt(oppPlayerPos, player, (i =>i>= 0), -1, 

tempFlips);

                if (lft)

                {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1, 

oppPlayerPos.Item2 + 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1, 

oppPlayerPos.Item2 + 1));

                }

            }

            // Check Up Lft

            �if (IsLegalMove(oppPlayerPos.Item1 - 1, 

oppPlayerPos.Item2 - 1))

            {

tempFlips.Clear();

vardownRgt = CheckDiagonal(oppPlayerPos, player, (i =>i< N),  

(i =>i< M), 1, 1, tempFlips);

                if (downRgt)

                {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 - 1, 

oppPlayerPos.Item2 - 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 - 1, 

oppPlayerPos.Item2 - 1));

                }

            }

            // Check Down Lft

            �if (IsLegalMove(oppPlayerPos.Item1 + 1, 

oppPlayerPos.Item2 - 1))
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            {

tempFlips.Clear();

varupRgt = CheckDiagonal(oppPlayerPos, player, (i =>i>= 0),  

(i =>i< M), -1, 1, tempFlips);

                if (upRgt)

                {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 + 1, 

oppPlayerPos.Item2 - 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 + 1, 

oppPlayerPos.Item2 - 1));

                }

            }

            // Check Up Rgt

            �if (IsLegalMove(oppPlayerPos.Item1 - 1, 

oppPlayerPos.Item2 + 1))

            {

tempFlips.Clear();

vardownLft = CheckDiagonal(oppPlayerPos, player, (i =>i< N),  

(i =>i>= 0), 1, -1, tempFlips);

                if (downLft)

                {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 - 1, 

oppPlayerPos.Item2 + 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 - 1, 

oppPlayerPos.Item2 + 1));

                }

            }

            // Check Down Rgt

            �if (IsLegalMove(oppPlayerPos.Item1 + 1, 

oppPlayerPos.Item2 + 1))
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            {

tempFlips.Clear();

varupLft = CheckDiagonal(oppPlayerPos, player, (i =>i>= 0),  

(i =>i>= 0), -1, -1, tempFlips);

                if (upLft)

                {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 + 1, 

oppPlayerPos.Item2 + 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 + 1, 

oppPlayerPos.Item2 + 1));

                }

            }

            return result;

        }

        �public OthelloBoardSetPieceCreatedBoard(inti, int j, 

int player)

        {

varnewOthello = new OthelloBoard(this);

newOthello.Board[i, j] = player;

FlipPieces(i, j, player, newOthello);

newOthello.Flips.Clear();

            return newOthello;

        }
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As has been the model so far, we describe the set of methods from 

Listing 16-3 in the following points:

•	 AvailableMovesAroundPiece(): This method starts at 

the position of an opponent’s piece and checks all of its 

adjacent cells, seeking to set a piece that would flank 

various opponent pieces.

•	 SetPieceCreatedBoard(): sets a piece on the board 

and flips all opponent’s pieces that are flanked by the 

new piece

To process and analyze every possible direction from an opponent’s 

piece, we have included methods CheckUpDown(), CheckLftRgt(), and 

CheckDiagonal(). To avoid or minimize any duplicated code, we have 

condensed searches up and down in a single method. These searches 

are very similar in their coding; their only difference lies in the condition 

and direction of the loop (increase or decrease). Therefore, we coded the 

CheckUpDown() method using anonymous functions and a “direction” 

integer defining the direction the loop will take. Similar approaches were 

applied for CheckLftRgt() and CheckDiagonal(), as shown in Listing 16-4.  

You can check the conditions set for these methods in Listing 16-3.

Listing 16-4.  Methods CheckUpDown(), CheckLftRgt(), 

CheckDiagonal(), UpdateFlips(), SetPiece(), FlipPieces(), and 

UpdatePiecePos()

        �private bool CheckUpDown(Tuple<int, int>oppPlayerPos, 

int player, Func<int, bool> condition, int direction, 

List<Tuple<int, int>>tempFlips)

        {

            �for (vari = oppPlayerPos.Item1; condition(i); 

i+=direction)

            {
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                if (Board[i, oppPlayerPos.Item2] == player)

                {

UpdateFlips(oppPlayerPos, tempFlips);

                    return true;

                }

                if (EmptyCell(i, oppPlayerPos.Item2))

                {

tempFlips.Clear();

                    break;

                }

tempFlips.Add(new Tuple<int, int>(i, oppPlayerPos.Item2));

            }

            return false;

        }

        �private void UpdateFlips(Tuple<int, int>oppPlayerPos, 

IEnumerable<Tuple<int, int>>tempFlips)

        {

            if (!Flips.ContainsKey(oppPlayerPos))

Flips.Add(oppPlayerPos, new List<Tuple<int, int>>(tempFlips));

            else

                Flips[oppPlayerPos].AddRange(tempFlips);

        }

        �private bool CheckLftRgt(Tuple<int, int>oppPlayerPos, 

int player, Func<int, bool> condition, int direction, 

List<Tuple<int, int>>tempFlips)

        {

            �for (vari = oppPlayerPos.Item2; condition(i);  

i+= direction)

            {

                if (Board[oppPlayerPos.Item1, i] == player)
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                {

UpdateFlips(oppPlayerPos, tempFlips);

                    return true;

                }

                if (EmptyCell(oppPlayerPos.Item1, i))

                {

tempFlips.Clear();

                    break;

                }

tempFlips.Add(new Tuple<int, int>(oppPlayerPos.Item1, i));

            }

            return false;

        }

        �private bool CheckDiagonal(Tuple<int, int>oppPlayerPos, 

int player, Func<int, bool>conditionRow, Func<int, 

bool>conditionCol, intdirectionRow, intdirectionCol, 

List<Tuple<int, int>>tempFlips)

        {

vari = oppPlayerPos.Item1;

var j = oppPlayerPos.Item2;

            while(conditionRow(i) &&conditionCol(j))

            {

                if (Board[i, j] == player)

                {

UpdateFlips(oppPlayerPos, tempFlips);

                    return true;

                }

                if (EmptyCell(i, j))

                {
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tempFlips.Clear();

                    break;

                }

tempFlips.Add(new Tuple<int, int>(i, j));

i += directionRow;

                j += directionCol;

            }

            return false;

        }

        public void SetPiece(inti, int j, int player)

        {

Board[i, j] = player;

FlipPieces(i, j, player, this);

        }

        �private void FlipPieces(inti, int j, int player, 

OthelloBoardothello)

        {

varpiecesToFlip = Flips[new Tuple<int, int>(i, j)];

UpdatePiecePos(new Tuple<int, int>(i, j), player, othello);

            foreach (var pair in piecesToFlip)

            {

othello.Board[pair.Item1, pair.Item2] = player;

UpdatePiecePos(pair, player, othello);

            }

        }
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        �private void UpdatePiecePos(Tuple<int, int> pair, int 

player, OthelloBoardothello)

        {

varremoveFrom = player == 1 ? othello.Player2Pos : othello.

Player1Pos;

varaddTo = player == 1 ? othello.Player1Pos : othello.

Player2Pos;

            if (!addTo.Contains(pair))

addTo.Add(pair);

removeFrom.Remove(pair);

        }

Some of the methods just listed have not been discussed thus far; 

therefore, they are described in the following points:

•	 UpdateFlips(): adds the coordinate of an opponent’s 

piece that must be flipped after a piece of the opposite 

color has been set on the board

•	 SetPiece(): sets a piece on the board and flips all 

opponent’s pieces that are flanked by the new piece

•	 FlipPieces(): flips the set of opponent pieces 

using the Flips dictionary previously described and 

considering the coordinate of the new piece set on the 

board

•	 UpdatePiecePos(): updates properties Player1Pos and 

Player2Pos as pieces are flipped or added to the board
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Finally, to assign a UtilityValue to every node in the Minimax tree, we 

will be relying on the set of methods illustrated in Listing 16-5.

Listing 16-5.  Methods for Obtaining a Utility Value for a Game-End 

Node (Either a Leaf or a Maximum Depth Reached)

        internal double HeuristicUtility()

        {

            return PieceDifference();

        }

        private intPieceDifference()

        {

            if (Player1Pos.Count == Player2Pos.Count)

                return 0;

            if (Player1Pos.Count > Player2Pos.Count)

                �return 100 * Player1Pos.Count / (Player1Pos.

Count + Player2Pos.Count);

            �return -100 * Player2Pos.Count / (Player1Pos.Count 

+ Player2Pos.Count);

        }

internal double LeafNodeValue()

        {

            if (Player1Pos.Count > Player2Pos.Count)

                return 100;

            if (Player1Pos.Count < Player2Pos.Count)

                return -100;

            return 0;

        }
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HeuristicUtility() is the method we call when we want to 

calculate a heuristic for a given board. Other methods are representatives 

of the heuristics explained before (in this case we will include 

onlyPieceDifference) and the leaf-node evaluation, which was also 

detailed before.

The OthelloBoard class assumes much of the lifting regarding game 

functionality, but we are still missing a component—the GUI (graphical 

user interface) that Othello requires to make it easier and more enjoyable 

for users to play. As mentioned before, this GUI will be coded in a 

Windows Forms application whose main class can be seen in Listing 16-6.  

The GUI will include controls such as turnBoxColor, a picture box whose 

background will be set to black or white depending on the current turn; 

board, a picture box representing the Othello board; aiPlayTimer, a  

timer used for the AI to check whether its turn is up; blackCountLabel and 

whiteCountLabel, two labels showing the number of pieces on the Othello 

board for the black and white players, respectively; and blacksList and 

whiteList, which are rich-text boxes displaying the cells occupied by each 

player. All these controls will be seen in future listings.

Listing 16-6.  OthelloGui Class Representing the Visual Application 

of the Othello Game

public partial class OthelloGui : Form

    {

        private readonlyint _n;

        private readonlyint _m;

        private readonlyOthelloBoard _othelloBoard;

        private List<Tuple<int, int>> _availableMoves;

        private int _cellWidth;

        private int _cellHeight;

        private Minimax _minimax;
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        public OthelloGui(OthelloBoardothelloBoard)

        {

InitializeComponent();

            _othelloBoard = othelloBoard;

            _n = _othelloBoard.N;

            _m = _othelloBoard.M;

            �_availableMoves = _othelloBoard.AvailableMoves 

(_othelloBoard.Turn);

turnBox.BackColor = _othelloBoard.Turn == 1 ?Color.Black 

:Color.White;

            _minimax = new Minimax(3, false);

aiPlayTimer.Enabled = true;

        }

}

The constructor of the class receives the OthelloBoard instance to be 

visualized using Windows Forms facilities. Its fields are also initialized in 

the constructor; these fields are as follows:

•	 _n: number of rows of the board

•	 _m: number of columns of the board

•	 _othelloBoard: instance of the OthelloBoard class

•	 _availableMoves: list of pairs (x, y) representing the 

available moves of the player in turn

•	 _cellWidth: cell width of the board as it will be 

represented graphically

•	 _cellHeight: cell height of the board as it will be 

represented graphically

•	 _minimax: instance of the Minimax class (to be 

described in the next section)
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In this class we also implemented methods for handling paint and 

mouse-click events (Listing 16-7); the first draws all graphical elements 

(lines defining board, black and white pieces) and the second allows users 

to interact with the board by putting a piece of their color on the cell where 

the click occurred and assuming that cell matches an available move.

Listing 16-7.  Methods for Handling Paint and Mouse-Click Events

        private void BoardPaint(object sender, PaintEventArgs e)

        {

var pen = new Pen(Color.Wheat);

            _cellWidth = board.Width / _n;

            _cellHeight = board.Height / _m;

            for (vari = 0; i< _n; i++)

e.Graphics.DrawLine(pen, new Point(i * _cellWidth, 0),  

new Point(i * _cellWidth, i * _cellWidth + board.Height));

            for (vari = 0; i< _m; i++)

e.Graphics.DrawLine(pen, new Point(0, i * _cellHeight), new 

Point(i * _cellHeight + board.Width, i * _cellHeight));

            for (vari = 0; i< _n; i++)

            {

                for (var j = 0; j < _m; j++)

                {

                    if (_othelloBoard.Board[i, j] == 1)

e.Graphics.FillEllipse(new SolidBrush(Color.Black), j *  

_cellWidth, i * _cellHeight, _cellWidth, _cellHeight);

                    if (_othelloBoard.Board[i, j] == 2)

e.Graphics.FillEllipse(new SolidBrush(Color.White), j *  

_cellWidth, i * _cellHeight, _cellWidth, _cellHeight);

                }

            }
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            foreach (varavailableMove in _availableMoves)

e.Graphics.DrawRectangle(new Pen(Color.Yellow, 5), 

availableMove.Item2 * _cellWidth, availableMove.Item1 *  

_cellHeight, _cellWidth, _cellHeight);

        }

        �private void BoardMouseClick(object sender, MouseEventArgs e)

        {

            if (e.Button == MouseButtons.Left)

            {

var click = new Tuple<int, int>(e.Y / _cellWidth, e.X / _cellHeight);

                if (_availableMoves.Contains(click))

                {

                    �_othelloBoard.SetPiece(click.Item1, click.

Item2, _othelloBoard.Turn);

UpdateBoardGui();

                }

            }

        }

Notice that cells matching available moves are denoted on the board 

as yellow squares. The UpdateBoardGui() method (Listing 16-8), which is 

called in the mouse-click event, takes care of updating different GUI and 

game elements; for example, changing a label’s text, modifying a rich-text 

box to show position of black and white pieces, changing the turn back to 

the other player, clearing the flips dictionary for a new play, calculating 

new available moves, and checking whether is empty. If there are no 

moves available for the player who just received the turn, then its turn is 

passed to the other player. If no player has any available move then the 

game has ended; determining that scenario is the goal of the final loop  

of length 2.
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Listing 16-8.  UpdateBoardGui() Method and AiPlayTimerTick() 

Method for Handling the Timer Tick Event

        private void UpdateBoardGui()

        {

blackCountLabel.Text = "Blacks: " + _othelloBoard.Player1Pos.Count;

whiteCountLabel.Text = "Whites: " + _othelloBoard.Player2Pos.Count;

var blacks = "";

var whites = "";

            foreach (var black in _othelloBoard.Player1Pos)

                �blacks += "(" + black.Item1 + "," + black.Item2 

+ ")" + '\n';

            foreach (var white in _othelloBoard.Player2Pos)

                �whites += "(" + white.Item1 + "," + white.Item2 

+ ")" + '\n';

whitesList.Text = whites;

blacksList.Text = blacks;

board.Invalidate();

            for (vari = 0; i< 2; i++)

            {

                �_othelloBoard.Turn = _othelloBoard.Turn ==  

1 ?2 : 1;

                _othelloBoard.Flips.Clear();

                _availableMoves = _othelloBoard.

AvailableMoves(_othelloBoard.Turn);

turnBox.BackColor = _othelloBoard.Turn == 1 ?Color.Black 

:Color.White;
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                if (_availableMoves.Count> 0)

                    return;

            }

MessageBox.Show("Game Ended", "Result");

        }

        private void AiPlayTimerTick(object sender, EventArgs e)

        {

            if (_othelloBoard.Turn == 2)

            {

var move = _minimax.GetOptimalMove(_othelloBoard, false);

                _othelloBoard.SetPiece(move.Item1, move.Item2, 

_othelloBoard.Turn);

UpdateBoardGui();

            }

        }

In order to allow the AI to play, we use a timer that checks every 1.5 

secs if it’s the AI’s turn; if it is then we execute the Minimax algorithm, 

which will be coded in the following section, set the outputted move on 

the board, and update the game components as just detailed using the 

UpdateBoardGui() method.

�Practical Problem: Implementing 
the Othello Game AI Using Minimax
At this point we have a complete, functional Othello game like the one 

depicted in Figure 16-9.
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We are missing a fundamental component: the AI of the game. As 

mentioned before, our AI will consist of a Minimax player—a player that 

tries to play optimally assuming the other player is also playing optimally. 

The Minimax class, along with its properties, fields, and constructor, is 

shown in Listing 16-9.

Listing 16-9.  Minimax Class, Properties, and Fields

public class Minimax

{

        public intMaxDepth{ get; set; }

        public bool Max { get; set; }

        private Tuple<int, int> _resultMove;

        public Minimax(intmaxDepth, bool max)

        {

MaxDepth = maxDepth;

            Max = max;

        }

}

Figure 16-9.  Othello game developed using Windows Forms
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The Minimax class contains only three properties or fields. The 

MaxDepth property indicates how deep we’ll go into the search tree, Max 

defines whether we want to maximize or minimize the outcome, and  

_resultMove is a private variable we use for storing the first move of the 

best path found when executing the Minimax algorithm. Furthermore, we 

will include the following methods (Listing 16-10).

Listing 16-10.  GetOptimalMove() and Execute() Methods of the 

Minimax Class

        �public Tuple<int, int>GetOptimalMove(OthelloBoard 

board, bool max)

        {

Execute(board, max, 0);

            return _resultMove;

        }

private double Execute (OthelloBoard board, bool max, int depth)

        {

            if (depth == MaxDepth)

                return board.HeuristicUtility();

var children = board.Expand(max ? 1 : 2);

            if (children.Count == 0)

                return board.LeafNodeValue();

var result = !max ? double.MaxValue : double.MinValue;

            foreach (varothelloBoard in children)

            {

var value = Execute(othelloBoard, !max, depth + 1);

othelloBoard.UtilityValue = value;

                �result = max ?Math.Max(value, result) :Math.

Min(value, result);

            }
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            if (depth == 0)

                �_resultMove = children.First(c =>c.UtilityValue 

== result).MoveFrom;

            return result;

        }

The Minimax algorithm is coded in the Execute() method. The 

GetOptimalMove() method is the simplified, public face of the algorithm 

used in the GUI. It is a simple design issue as it saves us from having to 

include the initial depth as well as other arguments in the public method; 

these arguments are unnecessary information for the GUI component.

It’s now up to the reader to complement the code herein provided. You 

can add more heuristics, combine them in a weighted sum, experiment 

with weight values, optimize the Minimax algorithm (by means of an 

Alpha-Beta pruning technique), and create the strongest AI for the Othello 

game—the foundations have already been created throughout this chapter.

�Summary
In this chapter, we briefly mentioned and studied some of the basic 

elements and problems of game theory. We ultimately submerged 

ourselves in a sub-branch of game theory known as adversarial search 

and examined one of its most popular representatives: the Minimax 

algorithm. We described an optimization technique for the algorithm—the 

Alpha-Beta pruning technique. Then, we introduced the famous Othello 

game and presented multiple heuristics for it. A full implementation 

of the Othello game in Windows Forms was also included, and the 

implementation of a very simple AI for this game using a single heuristic 

(PieceDifference) was included as well.
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CHAPTER 17

Reinforcement 
Learning
So far in this book we have examined both supervised and unsupervised 

learning algorithms. In this chapter, we will discuss reinforcement 

learning algorithms. Remember: In supervised learning we had a dataset 

composed of samples (x, y) where x was usually a vector of features of 

some object (house, plane, person, city, and so on) and y was the correct 

classification of x. Thus, supervised learning was the process of learning 

or approximating a function from tabular data. This approach more 

closely resembles the way computers analyze data than the way humans 

do. Supervised learning simulates the process where you teach someone 

about different kinds of objects available in the world; for instance, you 

could show someone the image of an object with all its properties (color, 

size, etc.) and assign a name to it (y), so something like (yellow, 10cm, 

eatable, fruit) is a banana.

In unsupervised learning we don’t have labeled data as we do in 

supervised learning. In this case, we don’t use any external information 

(correct label of data). In unsupervised learning our goal is to learn the 

structure of data using the information that the data itself provides or 

intrinsically possesses, without the use of any external help as we did 

in supervised learning. In this sense, one could say that unsupervised 

learning is more independent of external entities or information and 
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more attached to data structure or data relations. Clustering, which was 

discussed in Chapter 13, is a clear example of unsupervised learning 

algorithms.

In this chapter we will study reinforcement learning, the machine 

learning paradigm that is considered the best approximation of the human 

way of thinking. This paradigm allows us to create AIs that evolve over 

time; this evolution of the “mind” is accomplished by means of penalties 

and rewards given to the agent for executing incorrect or correct actions. 

Thus, during this chapter, we will describe Markov decision processes 

(MDP), describe reinforcement learning methods such as Q learning and 

temporal difference (TD), and provide a coding example of a situation 

where RL allows us to design an agent that improves its performance over 

time and learns how to solve a maze in the shortest number of steps.

Note  AlphaGo, the AI created by Google’s Deep Mind that defeated 
the world champion of the complex game of GO, Lee Sedol, in March 
2016, learned the game through a reinforcement learning algorithm.

�What Is Reinforcement Learning?
Reinforcement learning (RL), as with supervised learning and 

unsupervised learning, is not a method or algorithm but rather a broad 

family of algorithms that follow a common idea or paradigm. In reality, 

the three just mentioned represent paradigms for building AI methods; 

they represent the blueprint, and algorithms represent the realization of a 

procedure that resembles what the blueprint detailed.

In the RL paradigm, learning occurs by trial-and-error, having as the 

outcome either a reward or a punishment (negative reward), and the goal 

is to achieve the highest reward in the long term. One could say that RL is a 

continuous evolution or optimization over time. Figure 17-1 illustrates the 
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basic flow of an RL algorithm. The agent interacts with the environment 

acting over it, then the environment updates the state of the agent and 

assigns a reward (which could be negative) to the agent for having moved 

to this new state.

It’s important to consider that rewards do not have to always be 

immediate; there might be states with reward 0, which is the same 

as saying no reward. When developing an RL method, we model the 

environment, states, agent actions, and rewards; hence, the entire problem 

is a Markov decision process (we’ll soon discuss this topic).

RL is based on the Reward Hypothesis, which states that all goals can 

be described by the maximization of expected cumulative reward.

A RL agent may implement different components—a policy that 

defines an agent’s behavior, a value function defining how good each state 

and/or action is, and a model as a representation of the environment.

Note  Like a human, RL agents can construct and learn their own 
knowledge directly from raw inputs, such as vision, without any 
hardwired features or domain-specific heuristics.

Figure 17-1.  Basic flow of a RL algorithm. The agent observes the 
environment, executes an action to interact with the environment, 
and receives positive, negative, or zero reward.
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�Markov Decision Process
Markov decision processes (MDPs) are the most common approach to 

formally describing an environment in RL, and many problems can be 

modeled as MDPs. An MDP is a discrete state–time transition system that 

includes a set of possible world states s, a set of possible actions a, a real 

valued reward function R(s, a), a description T of the effect of each action 

in each state, and an initial state s0.

In order to understand what an MDP is in a real-life problem, let’s 

consider an environment where a robot mouse is trapped and must find its 

way out of a maze, as Figure 17-2 illustrates.

Assume the robot mouse is trying to reach the ultimate reward of 

cheese at the end of the maze (+10000 points) or the less significant reward 

of water along the way (+100 points), and at the same time it wants to 

avoid locations that deliver an electric shock (-1000 points). The mouse’s 

Figure 17-2.  The robot mouse must find a way out of the maze. 
Finding a water location rewards him with +100, finding the cheese 
has a reward of +10000, and electricty spots result in a punishment or 
negative reward of -1000.
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wandering through the maze can be formalized as an MDP, which is a 

process with specified transition probabilities from state to state. An MDP 

for this problem could be modeled as follows:

•	 Finite set of states: possible positions of the mouse 

within the maze

•	 Set of actions available in each state: all possible moves 

of the mouse at each state, i.e., {up, down, left, right}, 

and when available; e.g., if on a corner it would have 

only two moves available

•	 Transitions between states: combination of a current 

state (given cell on the maze) and some action (move 

left) that leaves the mouse robot in a new position 

(state). Transitions can be associated with a set of 

probabilities that relate to more than one possible state.

•	 Rewards associated with transitions: in the maze scenario 

and for the mouse robot; most of the rewards are 0, but 

they’re positive if you reach a point that has water or 

cheese and negative if you reach a cell with electricity

•	 Discount factor γ in the range [0, 1]: quantifies the 

difference in importance between immediate rewards 

and future rewards. For instance, when γ equals .7, and 

there's a reward of 5 after three steps, the present value 

of that reward is .73 * 5.

•	 Memorylessness or Markov Property: Once the current 

state is known, the history of the mouse’s travels 

through the maze can be erased because the current 

Markov state contains all useful information from the 

history. In other words, “the future is independent of 

the past given the present.” This is also known as the 

Markov Property.
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Now, our goal in RL is to maximize the sum of rewards in the long term, 

which is given by the following formula:

t

t

=

=¥

å * ( ) ( )( )
0

g t r x t a t,

where t is a time step, r(x, a) is the reward function, x(t) represents the state of 

the agent at time t, and a(t) the action executed when at that state and also at 

time t. This is the main problem RL algorithms try to solve, and it’s basically an 

optimization problem where we optimize time. The sooner we get a reward, 

the more it will mean to us, because the discount factor will decrease the value 

of rewards over time. We use a discount factor for several reasons:

•	 To prefer earlier rewards

•	 To represent the uncertainty of the future

•	 Animal/human behavior shows preference for 

immediate reward

•	 Avoids infinite returns (we will soon define what a 

return is) in cyclic Markov processes

•	 When dealing with financial rewards an immediate 

reward may earn more interest than a delayed reward.

Other types of rewards we might find in different textbooks could be 

the following:

•	 Total Reward:

t
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=
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•	 Average Reward:
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We could also see an MDP as a combination of a Markov reward 

process (MRP) and decisions. A Markov reward process consists of a set of 

states S, a state transition matrix T (as earlier), a reward function R, and a 

discount factor γ.

At the same time, an MRP) can be seen as a Markov chain with values. 

A Markov chain (a.k.a. Markov process) consists of a set of states S and a 

state transition matrix T. Figure 17-3 illustrates an MRP where we briefly 

model the working day of an android (it checks Facebook). Real numbers 

in the range [0.0; 1.0] indicate the probabilities of having a transition 

from one state to the other; circles indicate states, and rows indicate the 

transition from one state to the other. In this case, the leftmost state is the 

initial state.

In this figure, all actions are either stochastic— i.e., T : S x A -> Prob(S) 

where Prob(S) is a probability distribution—or deterministic, where  

T : S x A -> S.

Note  Both planning and MDPs are considered search problems, 
with the difference being that in the first we deal with explicit 
actions and subgoals and in the latter we deal with uncertainty 
and utilities.

In MDPs, a horizon determines whether our decision-making process 

will have an infinite time, a finite time, or an indefinite time (until some 

criteria is met). MDPs with infinite horizons are easier to solve as they 

do not have a deadline; furthermore, because in many cases it’s not clear 

how long a process will execute, it’s popular to consider infinite-horizon 

models of optimality.
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An infinite-horizon return vt is the total discounted reward from time 

step t up to infinity:

v rt t= + * +¼= *+ +
=

¥

+ +å1 2
0

1g gr rt
k

k
t k

Notice again the convenience of the discount factor. If we were to add 

up all the rewards out into infinity, the sums would be infinite in general. 

To keep the math nice, and to put some pressure on the agent to get 

rewards sooner rather than later, we use a discount factor.

�Value/Action–Value Functions & Policies
Having rewards in MRPs and MDPs permits us to define values for states 

depending on the associated rewards. These tabular values are part of the 

value function, state–value function, or simply value of a state in an MRP. 

It’s the expected return starting from state s:

V s R s( ) = ( ) + * [ ]* ( )¢ ¢
¢Î ( )

( )

åg
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N s

T s s V s,

Figure 17-3.  MRP modeling the working day of an android
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In the preceding formula, we compute the expected long-term value 

of the next state by summing over all possible next states or neighbor 

states, s′, the product of the probability of making a transition from s to s′, 
and the infinite horizon expected discounted reward; i.e., value of s’. This 

formulation is based on Bellman’s Equation (1957), a.k.a. the Dynamic 

Programming Equation, and its Principle of Optimality, which states that 

an optimal policy has the property that whatever the initial state and initial 

decision are, the remaining decisions must constitute an optimal policy 

with regard to the state resulting from the first decision. In this case, the 

value function can be decomposed into an immediate reward R and a 

discounted value of a successor, neighbor state s′; i.e., γ * V(s′).

Note  In computer science, a problem that can be divided into 
subproblems that produce an overall optimal solution (such as using 
Bellman’s Principle) is said to have optimal substructure.

To see how to calculate this equation, let’s assume a discount factor 

g = 0 9.  and the MDP shown on a prior figure; we can calculate the value of 

the leftmost state (Wash Face) as follows:

V('Wash Face') = 1 + 0.9 * (0.7 * V('Have Breakfast') +  

0.3 * V('Get Dressed'))

Notice that if we were to set g = 0  then the values associated with each 

state would match its reward. To fully compute V(s), for all s, we would 

need to solve n equations in n unknowns, considering n is the number of 

states in the MRP.

In classical planning, we created a plan that was either an ordered 

list of actions or a partially ordered set of actions (we discussed it in prior 

chapters) meant to be executed without reference to the state of the 

environment. In an MDP, the assumption is that you could potentially go 

from any state to any other state in one step. And so, to be prepared, it is 

typical to compute a whole policy rather than a simple plan.
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A policy is a mapping from states to actions that defines a course of 

action or sequence of actions that the agent will follow in the environment. 

It’s usually denoted by the Greek letter pi: π(s). Because of the Markov 

property, we’ll find that the choice of action only needs to be dependent 

on the current state (and possibly the current time) and not on any of the 

previous states. We’ll try to find the policy that maximizes, for each state, 

the expected reward of executing the policy in that state. We will call such a 

policy an optimal policy and denote it as π*(s).

A policy can be deterministic and output a single action for each state 

or stochastic and output an action dependent on various probabilities.

Note  Since a policy is a sequence of actions, when you take an 
MDP and fix a policy then all actions have been chosen and what you 
have left is a Markov chain.

The state–value function V. at follows policy π in an MDP is the 

expected return starting from state s and then following policy π:

V s R sp p p pg( ) = ( ) + * [ ]* ( )¢ ¢
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An optimal state–value function is the maximum value function over all 

policies, as follows:

V s V sp p p
* max( ) = ( )

The action–value function Q(s, a), or simply Q-function, is the expected 

return starting from state s, taking action a, and then following policy π, as 

follows:
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Note that Q(s, a) can be expressed in terms of V(s) and that it considers 

not only states but also actions leading to states.

Note T he Q-function represents the quality of a certain action given 
a state.

An optimal action–value function is the maximum action–value 

function over all policies, as follows:

Q s a Q s ap p p
* , max ,( ) = ( )

What would be the goal of an RL agent? Its goal should be to learn 

an optimal policy by optimizing either V(s) or Q(s, a); it has been proven 

that all optimal policies achieve the optimal state–value and action–value 

functions, as follows:

V s Q s s V Qp p p* * * *,( ) = ( )( ) = =

where V*, Q* represent the optimal values of V(s) and Q(s, a) respectively. 

Thus, it would seem logical to try to optimize one of these functions to 

obtain an optimal policy for the agent. Remember that this is our main 

goal in MDP and specifically in RL.

If the reward and transition values are known to the agent, then he can 

use a model-based algorithm known as value iteration to calculate V* and 

obtain an optimal policy.

Another approach for obtaining an optimal policy and solving MDPs 

is the policy iteration algorithm. This is also a model-based method that 

manipulates the policy directly rather than finding it indirectly via the 

optimal value function. As occurs with the value iteration method, it 

assumes the agent is aware of the reward and transition functions.
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Later, we will discuss Q-learning, a model-free learning method 

that can be used in situations where the agent initially knows only that 

certain states and actions are possible but is unaware of the transition 

and reward probability functions. In Q-learning the agent improves 

its behavior by learning from the history of interactions with the 

environment. It only discovers that there is a reward for going from 

one state to another via a given action when it does so and receives a 

reward. Similarly, it only figures out what transitions are available  

from a given state by ending up in that state and looking at its 

options. If state transitions are stochastic, it learns the probability of 

transitioning between states by observing how frequently different 

transitions occur.

Note  In a model-based method, the agent has a built-in model 
(reward and transition functions) of the environment and therefore 
can simulate it so as to find the right decision. In a model-free 
method, the agent knows how to act, but doesn’t explicitly know 
anything about the environment.

�Value Iteration Algorithm
In value iteration we will compute V*(s) for all states s by applying an 

iterative procedure in which our current approximation for V*(s) gets 

closer to the optimal value over time. We start by initializing V(s) to 0 

for all states. We could actually initialize to any values we want, but it’s 
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easiest to just start at 0. This algorithm uses the updating rule for V(s); a 

pseudocode of the method is shown in the following lines:

 

A common stopping condition for this problem is having a change in 

value from step t to step t + 1 less than or equal to a predefined epsilon 

multiplied by a discount factor variable, as shown in the previous 

pseudocode. In this case, δ represents the maximum change of V(s) in 

some iteration. V and V′ represent utility vectors and ε the maximum error 

allowed in the utility of a state. This algorithm converges to the correct 

utilities over time.
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�Policy Iteration Algorithm
In the policy iteration algorithm we search for optimal policy and utility 

values at the same time; thus, we manipulate the policy directly rather 

than finding it indirectly via the optimal value function. A pseudocode of 

the algorithm is shown in the following lines:

 

Chapter 17  Reinforcement Learning



647

where V is the utility vector and π. presents the policy outputted by the 

algorithm, initialized with random values. The PolicyEvaluation() 

subroutine solves the following:

system of linear equations:

R s si i( ) + * ( )éë ùû * ¢( )¢ ¢
¢Î ( )
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PI picks an initial policy, usually just by taking rewards on states 

as their utilities and computing a policy according to the maximum 

expected utility principle. Then, it iteratively performs two steps: value 

determination, which calculates the utility of each state given the current 

policy, and policy improvement, which updates the current policy if 

any improvement is possible. The algorithm terminates when the policy 

stabilizes. Policy iteration often converges in a few iterations, but each 

iteration is expensive; recall the method has to solve large systems of linear 

equations.

�Q-Learning & Temporal Difference
The value iteration and policy iteration algorithms work perfectly for 

determining an optimal policy, but they assume our agent has a great 

deal of problem-specific knowledge. Specifically, they assume the agent 

accurately knows the transition function and the reward for all states in the 

environment. This is actually quite a bit of information; in many cases, our 

agent may not have access to this.

Fortunately, there is a way to learn this information. In essence, we can 

trade learning time for a priori knowledge. One way to do this is through a 

form of reinforcement learning known as Q-learning. Q-learning is a form 

of model-free learning, meaning that an agent does not need to have any 

model of the environment; it only needs to know what states exist and 
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what actions are possible in each state. The way this works is as follows: we 

assign each state an estimated value, called a Q value. When we visit a state 

and receive a reward, we use this to update our estimate of the value of that 

state. (Since our rewards might be stochastic, we may need to visit a state 

many times.)

Considering that V (s) max Q(s,a )
a

*

¢
= ¢ , we can rewrite the previously 

detailed formula for Q(s, a) only in terms of the Q function.

Q s a R s ap p pg, , , ,( ) = ( ) + * [ ]* ( )¢ ¢
¢Î ( )

( )

å
s N s

N s
aT s s Q s a

The previous formula is the update rule used in the Q-learning 

algorithm, described in the following lines:

 

For Q-learning to converge we must guarantee that every state is 

visited infinitely often; one cannot learn from that which it does not 

experience, and therefore it must infinitely visit every state in order to 

guarantee convergence and find an optimal policy.
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Q-learning belongs to a class of methods known as temporal 

difference algorithms. In a temporal difference algorithm (TDA) we 

learn by reducing the difference between estimates at different time 

frames (t, t′). Q-learning is a particular case of TDA where we reduce 

the estimate of Q for a state and its consecutive states, also known as 

neighbors or successors. We could just as well design an algorithm that 

reduces discrepancies between this state and more distant descendants 

or ancestors.

The most popular TD algorithm is probably TD(λ) (Sutton 1988), a 

general version of TDA that relies on the idea that we can calculate Q as 

follows:

Q s a r ,n
t t t, max( ) = + * +¼+ + ( )* *+

-
+ - +g g gr r Q s at

n
t n

n

a
t n1

1
1

Notice in the previous formulation that we do not only include a one-

step lookahead as we did in Q-learning, but rather we are considering n 

steps into the future. TD(λ) mixes various lookahead distances using a 

0 1£ £l  parameter in the following manner:

Q s a Q s a Q s a Q s at t t t t t t t
l l l l, , , ,( ) = -( )* ( ) + * ( ) + ( ) +¼éë ùû*1 1 2 2 3

When considering l = 0  we end up with the Q-learning rule, the 

one where we simply look one step ahead. As we increase λ, he 

algorithm places more emphasis on discrepancies based on more-

distant lookaheads. When we reach the value l =1, only the observed 

rt i+  values are considered, with no contribution from the current Q 

estimate value. The motivation for the TD(λ) method is that in some 

settings training will be more efficient if more-distant lookaheads are 

considered.
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�Practical Problem: Solving a Maze Using 
Q-Learning
In this practical problem we will demonstrate the application of the 

Q-learning method through a very simple and intuitive situation: solving a 

maze. In the maze, the agent starts at cell (0, 0) and must find a way out at 

cell (n - 1, m - 1) where n represents the number of rows and m the number 

of columns in a zero index–based matrix. Figure 17-4 illustrates the maze 

to be solved in this chapter.

Notice how in the previous maze there are several policies the agent can 

follow to reach the exit cell, but there’s only one optimal policy (Figure 17-5).

Because learning will occur over time (as occurs in real life) we must 

guarantee a continuous visit of every state (cell) in each episode; this is the 

necessary condition for Q-learning to converge. An episode is how we’ll refer 

to an agent’s completing the maze, and whenever the maze is completed 

we’ll say that the agent will move from episode E to episode E + 1.

Figure 17-4.  Maze to be solved
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The Q-learning agent, which we will call Qagent, is represented by the 

class shown in Listing 17-1.

Listing 17-1.  Properties, Fields, and Constructor of the QAgent 

Class

public class QAgent

{

        public int X { get; set; }

        public int Y { get; set; }

        �public Dictionary<Tuple<int, int>, List<double>>  

QTable { get; set; }

        public double Randomness { get; set; }

        public double[,] Reward { get; set; }

        private readonly bool[,] _map;

        private readonly int _n;

        private readonly int _m;

Figure 17-5.  Optimal policy followed by the agent to solve the 
maze
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        private readonly double _discountFactor;

        private static readonly Random Random = new Random();

        �private readonly Dictionary<Tuple<int, int>,  

int> _freq;

        �public QAgent(int x, int y, double discountFactor, int 

n, int m, double [,] reward, bool [,] map,  

double randomness)

        {

            X = x;

            Y = y;

            Randomness = randomness;

            InitQTable(n, m);

            _n = n;

            _m = m;

            Reward = reward;

            _map = map;

            _discountFactor = discountFactor;

            �_freq = new Dictionary<Tuple<int, int>, int>  

{{new Tuple<int, int>(0, 0), 1}};

        }

}

This class contains the following properties or fields:

•	 X: represents the row of the agent’s position on the 

board

•	 Y: represents the column of the agent’s position on the 

board
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•	 QTable: matrix representing the Q function in tabular 

form, i.e., the Q(s, a) function where rows indicate 

states and columns indicate actions. It’s coded as a 

dictionary of Tuple<int, int> (states) and a list of 

four (actions up, down, left, right) double values for 

each tuple.

•	 Randomness: Because from time to time we need to 

wander around to try to get the agent to visit every 

state, we use the Randomness variable to indicate a 

value in the range [0; 1] corresponding to the chance of 

generating a random action.

•	 Reward: represents the reward matrix for every state

•	 _ map: variable that represents the map of the 

environment (maze)

•	 _n: number of rows in the environment

•	 _m: number of columns in the environment

•	 _discountFactor: discount factor as previously 

detailed and used in the Q-learning update rule

•	 _freq: dictionary detailing the frequency of visit of 

every state; it will be used in the strategy applied to 

guarantee the agent visits every state infinitely often 

and seeking to obtain an optimal policy

The InitQTable() method (Listing 17-2) included in the class 

constructor was created with the purpose of initializing the QTable; i.e., the 

dictionary of (state, {actionUp, actionDown, actionLeft, actionRight}) 

entries. At the beginning it will be that Q(s, a) = 0 for every possible action a.

Chapter 17  Reinforcement Learning



654

Listing 17-2.  InitQTable() Method

private void InitQTable(int n, int m)

{

    �QTable = new Dictionary<Tuple<int, int>, List<double>>();

    for (var i = 0; i < n; i++)

    {

        for (var j = 0; j < m; j++)

            �QTable.Add(new Tuple<int, int>(i, j), new 

List<double> { 0, 0, 0, 0});

    }

}

The Q-learning process occurs in the following method (Listing 17-3);  

the actionByFreq parameter will determine if we use the strategy of 

visiting states by frequency + randomness or if we will rely only on Q values 

to complete the maze. Since every learning process requires some time, 

we will need to rely merely on the frequency + randomness strategy to 

try to “learn”—i.e., visit every state frequently enough to learn from these 

experiences and be able to learn in the end an optimal policy that would 

lead us to the exit of the maze in the shortest time and in the shortest 

number of steps.

Listing 17-3.  InitQTable() Method

public void QLearning(bool actionByFreq = false)

{

    var currentState = new Tuple<int, int>(X, Y);

    var action = SelectAction(actionByFreq);

    if (!_freq.ContainsKey(ActionToTuple(action)))

        _freq.Add(ActionToTuple(action), 1);
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    else

        _freq[ActionToTuple(action)]++;

    ActionToTuple(action, true);

    �var reward = Reward[currentState.Item1,  

currentState.Item2];

    �QTable[currentState][(int) action] = reward +  

_discountFactor * QTable[new Tuple<int, int>(X, Y)].Max();

}

The very important action-selection strategy that will lead the agent 

into learning an optimal policy is coded in the SelectAction() method 

shown in Listing 17-4. In case the actionByFreq variable has been 

activated (set to True), the agent will perform an action according to a 

frequency + randomness strategy; otherwise, it will always choose the 

Q(s', a) with the highest value.

Listing 17-4.  SelectAction() Method

private QAgentAction SelectAction(bool actionByFreq)

{

    var bestValue = double.MinValue;

    var bestAction = QAgentAction.None;

    var availableActions = AvailableActions();

    if (actionByFreq)

        return FreqStrategy(availableActions);

    for (var i = 0; i < 4; i++)

    {

        �if (!availableActions.Contains(Action 

Selector(i)))

            continue;
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        var value = QTable[new Tuple<int, int>(X, Y)][i];

        if (value > bestValue)

        {

            bestAction = ActionSelector(i);

            bestValue = value;

        }

    }

    return bestAction;

}

The previous method uses the FreqStrategy() method seen in 

Listing 17-5. In this method, we apply a random action with probability 

0.5 or a frequency-based visit; i.e., visit the adjacent state least visited 

according to the _freq dictionary.

Listing 17-5.  FreqStrategy() Method

�private QAgentAction FreqStrategy(List<QAgentAction> 

availableActions)

{

    �var newPos = availableActions.Select(availableAction => 

ActionToTuple(availableAction)).ToList();

    var lowest = double.MaxValue;

    var i = 0;

    var bestIndex = 0;

    if (Random.NextDouble() <= Randomness)

        �return availableActions[Random.Next 

(availableActions.Count)];

    foreach (var tuple in newPos)

    {
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        if (!_freq.ContainsKey(tuple))

        {

            bestIndex = i;

            break;

        }

        if (_freq[tuple] <= lowest)

        {

            lowest = _freq[tuple];

            bestIndex = i;

        }

        i++;

    }

    return availableActions[bestIndex];

}

To determine the set of available actions for the agent (the one that 

does not make the agent stumble against a wall) we included in the QAgent 

class the AvailableActions() method, as Listing 17-6 illustrates.

Listing 17-6.  AvailableActions() Method

private List<QAgentAction> AvailableActions()

{

    var result = new List<QAgentAction>();

    if (X - 1 >= 0 && _map[X - 1, Y])

        result.Add(QAgentAction.Up);

    if (X + 1 < _n && _map[X + 1, Y])

        result.Add(QAgentAction.Down);

    if (Y - 1 >= 0 && _map[X, Y - 1])

        result.Add(QAgentAction.Left);
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    if (Y + 1 < _m && _map[X, Y + 1])

        result.Add(QAgentAction.Right);

    return result;

}

We adopted the convention of matching actions in the order  

{up, down, left, right} with integers starting from 0; hence, up = 0,  

down = 1, left = 2, right = 3. The ActionSelector() method shown in 

Listing 17-7 mutates an integer into its equivalent action (we’ll soon see 

the QAgentAction enum).

In Listing 17-7 we can also see the ActionToTuple() method, which 

converts a QAgentAction into a Tuple<int,int> representing the resulting 

state after executing that action.

Listing 17-7.  ActionSelector() and ActionToTuple() Methods

public QAgentAction ActionSelector(int action)

{

    switch (action)

    {

        case 0:

            return QAgentAction.Up;

        case 1:

            return QAgentAction.Down;

        case 2:

            return QAgentAction.Left;

        case 3:

            return QAgentAction.Right;

        default:

            return QAgentAction.None;

    }

}
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�public Tuple<int, int> ActionToTuple(QAgentAction action,  

bool execute = false)

{

    switch (action)

    {

        case QAgentAction.Up:

            if (execute) X--;

            return new Tuple<int, int>(X - 1, Y);

        case QAgentAction.Down:

            if (execute) X++;

            return new Tuple<int, int>(X + 1, Y);

        case QAgentAction.Left:

            if (execute) Y--;

            return new Tuple<int, int>(X, Y - 1);

        case QAgentAction.Right:

            if (execute) Y++;

            return new Tuple<int, int>(X, Y + 1);

        default:

            return new Tuple<int, int>(-1, -1);

    }

}

To conclude the QAgent class, we add the Reset() method (Listing 17-8), 

which resets or prepares the agent for a new episode by setting it to the start 

position and cleaning the _frequency dictionary. The QAgentAction enum 

describing possible agent actions is shown in Listing 17-8.

Listing 17-8.  Reset() Method and QAgentAction Enum

    public void Reset()

    {

        X = 0;

        Y = 0;

Chapter 17  Reinforcement Learning



660

        _freq.Clear();

    }

public enum QAgentAction

{

    Up, Down, Left, Right, None

}

We already presented the machine learning code of the program, but 

we are missing a component: the GUI on Windows Forms.

The inheritor of the Form class that will visually represent the maze 

is MazeGui, illustrated in Listing 17-9. Remember that we are coding a 

Windows Forms application.

Listing 17-9.  Fields and Constructor from MazeGui Class

public partial class MazeGui : Form

    {

        private readonly int _n;

        private readonly int _m;

        private readonly bool[,] _map;

        private readonly QAgent _agent;

        private Stopwatch _stopWatch;

        private int _episode;

        �public MazeGui(int n, int m, bool [,] map, double [,] 

reward)

        {

            InitializeComponent();

            timer.Interval = 100;

            _n = n;

            _m = m;

            _map = map;

            _�agent = new QAgent(0, 0, 0.9, _n, _m, reward,  

map, .5);
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            _stopWatch = new Stopwatch();

        }

}

The class contains the following properties or fields:

•	 _n: number of rows in the maze

•	 _m: number of columns in the maze

•	 _map: matrix with Boolean values indicating whether a 

cell is a wall or not

•	 _agent: instance of the QAgent class

•	 _stopWatch: stopwatch used to measure the time taken 

in every episode of the Q-learning process

•	 _episode: number of episodes carried out so far in the 

Q-learning process

To draw all elements on the maze, we implement the Paint event for 

the drawing control (Picture Box) as shown in Listing 17-10.

Listing 17-10.  Paint Event of the Picture Box Representing the Maze

�private void MazeBoardPaint(object sender, PaintEventArgs e)

{

    var pen = new Pen(Color.Wheat);

    var cellWidth = mazeBoard.Width / _n;

    var cellHeight = mazeBoard.Height / _m;

    for (var i = 0; i < _n; i++)

        �e.Graphics.DrawLine(pen, new Point(i * cellWidth, 0), 

new Point(i * cellWidth, i * cellWidth +  

mazeBoard.Height));
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    for (var i = 0; i < _m; i++)

        �e.Graphics.DrawLine(pen, new Point(0, i * cell 

Height), new Point(i * cellHeight + mazeBoard.Width,  

i * cellHeight));

    for (var i = 0; i < _map.GetLength(0); i++)

    {

        for (var j = 0; j < _map.GetLength(1); j++)

        {

            if (!_map[i, j])

                �e.Graphics.FillRectangle(new Solid 

Brush(Color.LightGray), j * cellWidth,  

i * cellHeight, cellWidth, cellHeight);

        }

    }

    for (var i = 0; i < _map.GetLength(0); i++)

    {

        for (var j = 0; j < _map.GetLength(1); j++)

        {

            if (_map[i, j])

                �e.Graphics.DrawString(String.Format("{0:0.00}", 

_agent.QTable[new Tuple<int, int>(i, j)][0].

ToString(CultureInfo.GetCultureInfo 

("en-US"))) + "," +

                �String.Format("{0:0.00}", _agent.QTable[new 

Tuple<int, int>(i, j)][1].ToString(CultureInfo.

GetCultureInfo("en-US"))) + "," +

                �String.Format("{0:0.00}", _agent.QTable[new 

Tuple<int, int>(i, j)][2].ToString 

(CultureInfo.GetCultureInfo("en-US"))) + "," +
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                �String.Format("{0:0.00}", _agent.QTable[new 

Tuple<int, int>(i, j)][3].ToString(CultureInfo.

GetCultureInfo("en-US")))

            �,new Font("Arial", 8, FontStyle.Bold),  

new SolidBrush(Color.White), j * cellWidth,  

i * cellHeight);

        }

    }

            �e.Graphics.FillEllipse(new SolidBrush(Color.

Tomato), _agent.Y * cellWidth, _agent.X * 

cellHeight, cellWidth, cellHeight);

            �e.Graphics.DrawString("Exit", new Font("Arial", 12, 

FontStyle.Bold), new SolidBrush(Color.Yellow),  

(_m - 1) * cellWidth + 15, (_n - 1) * cellHeight + 15);

}

We will draw the agent as an ellipse and the walls as gray cells; we will 

also draw four values on each walkable cell: the values Q(s, a) for state s 

and all possible actions.

To get and execute an action from the agent we included a timer 

that triggers every second and calls upon the QLearning() method of 

the agent using the frequency + randomness strategy while the current 

episode is less than 20. It’s also in the method that handles the tick event 

(Listing 17-11) that we reset the stopWatch and the agent’s state and 

write the episode elapsed time in a file.

Note  When in a goal state s, we do not apply the Q-learning rule to 
update Q(s, a); on the contrary, we take the reward value of the goal 
state and assign it directly to Q(s, a).
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Finally, we refresh the mazeBoard to show the new set of changes to  

the GUI.

Listing 17-11.  Method Handling the Tick Event

    private void TimerTick(object sender, EventArgs e)

    {

        if (!_stopWatch.IsRunning)

            _stopWatch.Start();

        if (_agent.X != _n - 1 || _agent.Y != _m - 1)

            _agent.QLearning(_episode < 20);

        else

        {

            �_agent.QTable[new Tuple<int, int> 

(_n - 1, _m - 1)] = new List<double>

                                          {

                                          �_agent.Reward 

[_n - 1, _m - 1],

                                          �_agent.Reward 

[_n - 1, _m - 1],

                                          �_agent.Reward 

[_n - 1, _m - 1],

                                          �_agent.Reward 

[_n - 1, _m - 1]

                                          };

            _stopWatch.Stop();

            _agent.Reset();

            �var file = new StreamWriter("E:/time_difference.txt", 

true);

            file.WriteLine(_stopWatch.ElapsedMilliseconds);

            file.Close();
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            _stopWatch.Reset();

            _episode++;

        }

        mazeBoard.Refresh();

    }

}

Now that we have all components in place, let’s try to test the application 

and run it, as we have done throughout this book, in a console application, 

creating the necessary map and reward matrixes (Listing 17-12).

Listing 17-12.  Testing the MazeGui Application

var map = new [,]

               {

                   {true, false, true, false, true},

                   {true, true, true, false, true},

                   {true, false, true, false, true},

                   {true, false, true, true, true},

                   {true, true, true, false, true}

               };

var reward = new [,]

               {

                   {-0.01, -0.01, -0.01, -0.01, -0.01},

                   {-0.01, -0.01, -0.01, -0.01, -0.01},

                   {-0.01, -0.01, -0.01, -0.01, -0.01},

                   {-0.01, -0.01, -0.01, -0.01, -0.01},

                   {-0.01, -0.01, -0.01, -0.01, 1},

               };

Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

Application.Run(new MazeGui(5, 5, map, reward));
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Using the exploration strategy previously described (the one where we 

mix frequency of visited cells and randomness for executing actions), we 

continuously visit each state in each episode. After 20 episodes have been 

completed, the agent starts taking actions that rely only on the Q values 

learned and always executing the action that corresponds to Q(s', a) with 

the highest value. In this case, we were able to find the optimal policy, 

which was detailed in Figure 17-5.

The result obtained after executing the code from Listing 17-12 would 

be an instance of the Windows Forms application developed throughout 

this chapter (Figure 17-6). The reward function contains a reward of 1 for 

the goal state and -0.01 for any other state. Once the agent has completed 

the first episode the goal state (Exit) will contain reward 1 for every action; 

i.e., Q('Exit', {up, down, left, right}) = 1.

Figure 17-6.  Episode 2, the QAgent is learning and updating Q 
values, which are shown in the upper-left corner of every cell

Chapter 17  Reinforcement Learning



667

Figure 17-7.  Optimal policy found and executed by the agent

Figure 17-7 illustrates the values ultimately calculated for Q(s, a) and 

after 20 episodes have passed. The reader can check that a path starting 

at cell (0, 0) and choosing always the action (remember they appeared in 

the order up, down, left, right) with the highest Q value will lead it to the 

optimal policy—the one leading to the Exit (goal state) in the least number 

of steps.

Recall that our goal in Q-learning is to actually learn the Q function, 

Q(s, a). In this case, we learn the function in its tabular form, which 

has states as rows and actions as columns of a table or matrix. In some 

scenarios it might be intractable to do it this way, given the fact that we 

may have a large state space. In such a scenario, we can rely on a function 

approximator such as neural networks to approximate the Q function. 

This is actually the approach used by Tesauro in its popular backgammon 

agent, capable of defeating the backgammon world champion of its time.
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�Summary
In this chapter, we described the interesting topic of reinforcement 

learning (RL), one of the most important machine learning paradigms 

along supervised and unsupervised Learning. We began by defining 

Markov decision processes (MDPs), the mathematical framework used in 

RL to model problems of the real world. We described the value function 

(V) and the action–value function (Q) and demonstrated the relationship 

between these and their importance in obtaining an optimal policy. The 

concept of policy was also included in the chapter. We provided several 

methods for solving MDPs. Namely, we detailed the value iteration and 

policy iteration algorithms. In the end, we discussed Q-learning and 

implemented a practical problem where we used it to get an agent to learn 

how to exit a maze in the shortest number of steps.
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discrete, 101
dynamic, 101
episodic, 102
inaccessible, 101

non-deterministics, 100–101
static, 101

fundamental AI entities, 91
intelligent, 93–94
proactive, 97
proactiveness, 95
properties of, 98–99
purely reactive, 95
rationality, 95
reactive agent

advantages, 96
cleaning robot, 96
decision-making process, 

95–96
disadvantages, 97

reactivity, 95
sensors, 92
social ability, 95
state-based, 102–103

Agglomerative clustering, 484, 486
Airport simulation

Airplane class, 298–299
AirplaneEvtArrival 

<TimeSpan> class, 302–303
AirplaneEvtBreakdown 

<TimeSpan> class, 305
AirplaneEvtProcess 

Cargo<int> class, 303–304
AirportEvent<T> abstract  

class, 299
methods, 302
properties, 301

arrivals, time and lambda 
parameter, 297
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console application, 312
constructor, fields and 

properties of Simulation 
class, 305–307

Execute() method, 307–309
initialize and test  

simulation, 311
passengers, cargo, 297–298
RunwayAvailable() and 

TryToLand() methods, 310
Alpha-Beta pruning

branches/subtrees, 600
Minimax tree, 599–600
optimal child, 602
pseudocode, 600

Application programming interface 
(API), 221

Artificial immune systems  
(AISs), 522

Atomic propositions, 4
Automated theorem proving  

(ATP), 40
applications, 42
automation, 43
binary decision tree, 45
Boolean values, 44
classical application, 43
description, 42
flow diagram, 42
hardware verification, 43
logical language, 43
proof assistant, 43
proof checking, 44
proof generation, 45

SATisfiability (SAT), 44
software verification, 43
string-matching algorithms, 42

Average linkage clustering, 485

B
Backpropagation algorithm

ActivationValue and ErrorTerm 
properties, 454

chain rule, 442
classification-related  

methods, 455
classification vector, 456
CreateLayers() method, 448
flow backward, 445
FunctionDerivative() method, 

451, 452
gradient descent search 

method, 440, 459
handwritten digit  

recognition, 459
hyperbolic tangent and ReLU 

units, 444, 453–454
List of SigmoidUnit, 448
MultiLayerNetwork and Layer 

classes, 446–448
Predict() method, 455
PredictSet() method, 448
ReLU function, 445
ReturnIndexByHalf() and 

ReturnIndexByMax() 
methods, 455

SigmoidUnit class, 449
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stochastic approximation, 
441–442

training data set, 441
Training() method, 450, 451
TrainingSample class, 457–458
UpdateWeight() method, 

454–455
weight-update formulas, 443

Basic geostatical area (BGA), 542
BDT, see Binary decision t 

ree (BDT)
Bee colony (BC), 522
Beliefs, Desires, and Intentions 

(BDI) architecture
agent’s action function, 127
beliefs, 124
bold agent, 125
cautious agent, 125
components, 126–127
desires, 124
diagram, 123
intentions, 124–125
practical reasoning, 126

Best First Search, 580–581
Bidirectional search (BS)

simultaneous searches, 559
Sliding Tiles Puzzle (see Sliding 

Tiles Puzzle)
Binary comparer circuit, 19, 21
Binary decision tree (BDT)

advantages, 30
AI data structure, 27
conditions, 26

constructors and properties, 
27–28

decision-making processes, 30
leaf and non-leaf nodes, 27
recursive structure, 28
static methods, 29
varIndex variable, 30
visual representation, 30

Breadth-first search (BFS), 142, 
157–158

Bfs<T> class, 561–562
derivations, 559
graph-based search  

algorithms, 556
procedure, 557
time and space  

complexity, 556

C
C4.5 algorithm

binary decision node, 397–398
error reduction, 394–396
Gain() method, 405–406
GainContinuous() method, 

403–404
gain ratio, 397
GainRatio() and 

SplitInformation(), 
404–405

handling continuous attributes, 
393, 397

handling missing values,  
393, 398

Backpropagation algorithm (cont.)
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HighestGainAttribute() method, 
401, 403

implementation, 399
main body, 399–401
overfitting, 393–394
pruning process,  

cross-validation, 394
rule pruning, 394, 396
SubsetEntropy() method,  

406, 407
testing, console application, 

408–410
validation set, training data, 395

Canonical hyperplane, 323
Centroid linkage clustering, 485
Clause class, 46–47

methods, 48
Cleaning agents, 249, 288

CleaningAgentPlatform class, 
254–255

CleaningTask class, 251–252
fields/properties, 253
methods, 253

Contract Net, 256–261
static methods, 261

FipaAcl class, 262–265
methods, 266–267

GUI, Room class, 280–282
MasCleaningAgent class

Action() method, 278–279
Bid() method, 274–276
fields, properties, and 

constructor, 267–268
methods, 280

propertiesand fields, 
269–270

ReactionTimeOnTick() 
method, 272–274

Run() method, 271
SetSocialLaw() method, 

276–278
program structure, 250–251
running application

agents exchange messages, 
Contract Net, 284–285

console application, 283–284
InitCommunicationService() 

method, 284
“Task Finished” message, 

286–287
Cleaning robot

CleaningRobot C#  
class, 83–87

creation, 82
features, 82
grid, 82
predicates and functions, 83
print() method, 87
Start() method, 87
terrain, 88

Clustering
algorithms family, 483
applications, 481
compactness, 482
criterion/objective  

function, 481
definition, 480
Euclidean distance, 482
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hierarchical (see Hierarchical 
clustering)

isolation/separation, 483
Manhattan distance, 482
Minkowski distance, 482
object color, 480–481
optimization, 481
partitional algorithms  

(see K-means algorithm)
similarity measure, 481

Cnf class, 48–50
DPLL algorithm, 52
Formula hierarchy, 52, 53
Literals() method, 53, 54
methods, 51
RemoveParenthesis(And and) 

method, 52
Common Language Runtime 

(CLR), 222
Communication

ACL (see Agent Communication 
Language (ACL))

blackboard systems, 200–201
classification, agents, 199–200
message passing, 201
Speech Act Theory, 201
WCF (see Windows 

Communication 
Foundation (WCF))

Complete linkage clustering, 485
Compound propositions, 4
Conjunction logical connective, 8

Conjunctive normal form  
(CNF), 5, 17

And class with ToCnf() method 
override, 38

DISTRIBUTE-CNF, 36
function, 36
Or class with ToCnf() method 

override, 38–39
ToCnf() and DistributeCnf() 

methods, 37
ToCnf() method override, Not 

and Variable classes, 39
transformation  

algorithm, 36
variables, 36

Contract Net
announcement, 215
awarding, 215
bidding, 215
contractors, 215, 217
expediting, 215
FIPA-ACL specification, 218
manager, 215, 217
process, 215, 216

Coordination and cooperation
approaches, 212
basic strategy, 213
benevolent, 212
coherence, 211
Contract Net (see Contract Net))
decision making, 211
description, 211–212
designing, 212

Clustering (cont.)
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interests of individuals, 
organizations,  
companies, 212

possibilities, 213
results sharing, 214
social norms and societies, 

218–219
Subscribe/Notify pattern, 214
task sharing

problem decomposition, 213
solution synthesis, 214
subproblem solution, 214

Crytek (Far Cry), 549

D
Data contract, 224
Data mining, 367
Davis-Putnam-Logemann-

Loveland (DPLL) algorithm
auxiliary methods

Dpll(Cnfcnf) method, 57–59
OneLiteral(Cnfcnf) method, 

59–62
PureLiteralRule() method, 

62–65
Split() method, 65, 67

binary decision tree, 55
CNF formula, 55
definition, 55
heuristics and  

metaheuristics, 67
OneLiteral, 56–57
pseudocode, 55–56

PureLiteral, 56–57
SAT problem, 55
Split, 56–57
tree construction, 67

Decision tree (DT)
attributes and values, 369
data classification, 371
DecisionTree class, 380–382

methods, 383
properties, 382

definition, 368
generation

Hunt’s algorithm, 372
ID3 algorithm, 373
training data set size, 

373–374
leaf nodes, 369
multiple internal  

nodes, 369
partition, 368
root node, 369
SVM/neural networks, 369
training data set, 370–371

Depth-first search (DFS)
backtracks, 557
derivations, 559
Dfs<T> class, 562–563
DLS, 559
graph-based search  

algorithm, 557
infinite paths, 558
procedure, 558
time and space complexity, 558
visited nodes, 557

Index



676

Depth-limited search (DLS)
DFS, 559
Dls<T> class, 563–565

Digital information flow, 19
Dirichlet’s Box Principle, 67
Discreteet-event simulation  

(DES), 290–291, 313
events, 293
knowledge, 292
objects, 292
probability and statistics, 293
properties, 292
queues, 293
resources, 293
time, 292–293

Disjunction logical connective, 9
Disjunctive normal form (DNF), 17
DPLL algorithm, see Davis-

Putnam-Logemann-
Loveland (DPLL) 
algorithm)

E
Entropy

definition, 375
function, 375
ID3 algorithm, 376

Equivalence logical connective, 
11–12

Estimation of Distribution 
algorithms (EDAs), 522

Evolutionary algorithms (EAs), 522
Extension methods, 387–391

F
Fault contract, 224
First-order logic (FOL)

components, 77
evaluation, 79
formula, 77
interpretation, 79–80
predicates, 75

Dog class, 80
filter and get objects, 81
property, 76

propositional logic, 76
quantifiers, 78
requirement, 76
rules of interpretation, 78
syntax of, 77

FOL, see First-order logic (FOL)
Foundation for Intelligent Physical 

Agents (FIPA)
components, 207
inform performative, 210
parameters, 208
performatives, 208–209
request performative, 210
structure of, 207

G
Game programming

AI methods, 550
development, 549
disciplines specific, 550
economic impact, 549
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informed search
A* search, 582–583
Best First Search, 580–581
Greedy Best First Search, 581

search procedures
features, 555
information usage, 555
Sliding Tiles Puzzle, 553–555
systematicity, 555

uninformed search (see 
Uninformed search 
algorithms)

video game
AI game development, 552
companies, 549
design phase, 552
game engine, 552
Halo Series, 551
software development, 551

Game theory
A Beautiful Mind, 590
adversarial search (see 

Adversarial search)
applications in sociology and 

psychology, 590
definition, 591
identification of process 

participants, 591
mathematical framework, 589
Nobel Prize in Economics, 590
Othello (see Othello game)
popular games, 591
Prisoner’s Dilemma (PD), 

591–592

two-person zero-sum, 589
Gaussian kernel, 348
Genetic algorithms (GA), 523
Gradient descent search (GDS), 

428–431, 459
Greedy Best First Search, 581–582

H
Handwritten digit recognition 

(HDR)
classification, handwritten 

digits, 476–477
Classify button, 473–474
extract features from image, 

471–472
handwriting, 463
HandwrittenDigit 

RecognitionNn class, 467
HandwrittenRecognition 

Gui class, 468–469
low-resolution images, 462
Mouse-Event methods, 470–471
multi-layer NN

hidden layers, 465
image pixels, 465
initialization of weights, 467
structure of, 466
training data, 466

OCR applications, 463
physiological/behavioural 

characteristics, 462
ReadWeights() method, 

474–475
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testing, 476
training data set, 464
universe of characters, 463
visual application, 476
weights, training data set, 

472–473
Windows Forms  

application, 467
Hessian matrix, 333, 336, 341
Heuristics

features, 511
Mars Rover, 509
NP-Hard problems, 509
problem-independent iterative 

process, 510
Sliding Tiles Puzzle, 511
speed-up process, 510

Hierarchical clustering
agglomerative, 484, 486
divisive, 484
measures, 485

Hill climbing method
diversification, 523
intensification, 523
Execute() Method, 519, 521
GA, 523
genetic manner, 523
InitialSolution(), 

Neighborhood(), and 
NSpherePoints() methods, 
518–519

local optimum, 513–514

Local Search (LS), 515, 522
MathParserNuget package, 516
mutation operator, 524
n-sphere surrounding, 515–516
optimization methods, 525
parabolic function, 521
properties/fields, 517
pseudocode of  

algorithm, 514
public property, 516
selection, mutation and 

crossover methods, 525
testing, 521
TSP (see Traveling Salesman 

Problem (TSP)
types, 512–513

Hunt’s algorithm, 372–373

I, J
Implication logical connective, 

10–11
Incremental gradient descent, 

431–432
Information gain

calculation, 377
definition, 377
formula, 376

Inheritance and C# operators
abstract Formula class, 22
AND class, 23
BinaryGate class, 22
creating and evaluating 

formula, 25

Handwritten digit recognition 
(HDR) (cont.)
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Or, Not, and Variable classes, 
23–25

result, executing code, 26
structural recursion, 21

Integration of Rational Reactive 
behavior and Planning 
(InteRRaP), 133–134

Intelligent agent, 93–94
Interactive Dichotomizer 3 (ID3) 

algorithm, 373, 383–386
attributes and training data set, 

377–378
fields and properties, 379

attribute-splitting test, 373
DecisionTree class, 380–382

console application, 391–393
methods, 383
properties, 382–383

entropy, 373
extension methods, 387–390
implementation, 377
information gain, 373
tree splitting, 377

Iterative deepening search (IDS), 
559, 565–566, 568

K
Karush-Kuhn-Tucker (KKT) 

conditions, 349–350
K-means algorithm

centroids, 487, 490
Cluster class, 490–492

methods, 493

properties, 493
data points and centroids, 

487–489
description, 486–487
Element class, 493
Euclidean distance, 488
execution of, 499
initialization  

phase, 487
inner and outer loops, 487
isolated data points, 490
KMeans and DataSet classes, 

494–496
properties and  

fields, 497
pseudocode, 488
SSE, 488, 499
testing, 497
unsupervised learning  

method, 487
Knowledge Interchange Format 

(KIF), 204
Knowledge Query and 

Manipulation Language 
(KQML), 204–207

L
Lagrange multipliers, 325–326
Lagrangian method, 325
Laws of Propositional  

Logic, 12, 14–16
Least Mean Square (LMS), 427
Linear regression, 316
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Linear SVM
classifying hyperplane, 343
console application, 341
GetIndicesFromValues() 

method, 336
Predict() method, 336–337
properties and fields, 328–330
SetInitValue() method, 

extension class, 335–336
SvmGui Windows Forms class, 

337–341
Training() method, dual-

optimization problem, 
330–333

UpdateWeightVector() and 
UpdateBias() methods, 334

Local Search (LS) algorithms, 515, 
522

Logic
circuits (see Logic circuits)
computational, 2
definition, 2
DPLL, 1
fundamental, 1
philosophers, 1

Logical connectives
conjunction, 8
disjunction, 9
equivalence, 11–12
implication, 10–11
negation, 7
symbols, 6
unary/binary functions, 6

Logical gate, 18–19

Logic circuits
binary comparer, 19, 21
bivalent functions, 17
computer, 18
conjunction component  

(AND), 20
conjunction gates, 19
disjunction component  

(OR), 20
electronic component, 19
information flows, 18
logical gate, 18–19
negation component (NOT), 19

M
Manhattan Distance, 585
Markov decision processes 

(MDPs), 634, 668
decision-making process, 639
discount factor, 638
discrete state–time transition 

system, 636
horizons, 639
infinite horizons, 639, 640
Markov chain, 639
MRP, 639
optimization problem, 638
probability distribution, 639
reward types, 638
robot mouse, 636
sum of rewards, 638
transition probabilities, 637
working day of android, 640
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Markov Property, 637
Markov reward process (MRP), 639
Mars Rover

architecture
BDI layer, 141
beliefs, 142
BFS, 142
deliberation process, 142
heuristics, 143
hybrid, 140
layers, 141
path-finding  

algorithms, 142
planning layer, 142
reactive layer, 141
relative frequency, 142
Total Relative Frequency, 

142–143
BDI, 137, 140
classic rovers, 139
coding

Action() method, 162–165
BDI classes, 148–152
beliefs, desires, percepts, 

plans and actions, 152
BFS algorithm, 157–158
Brf() method, 169–170
ExistsPlan() and 

ExecuteAction() methods, 
175–176

fields, variables, and 
constructor, 143–146

Filter() and ChoosePlan() 
methods, 174

FulFill() method, 158
GetCurrentTerrain() 

method, 160–161
GetPercepts() method, 

158–159
InjectBelief() method, 165
InjectBelief(), 

SetRelativeFreq(), and 
RelativeFreq() methods, 
167–169

Manhattan Distance, 173
Mars class, 147–148
MoveAvailable() and 

LookAround() methods, 159
Options() method, 172
Percept and Plan classes, 

153–157
RandomMove() method, 166
UpdateBelief() method, 

171–172
UpdatePerceivedCellsDicc() 

and CheckTerrain() 
methods, 161–162

definition, 138
diagram, 139
Earth, 139
movement, 139
obstacles, 140
space agencies, 138
space exploration, 137
spirit and  

opportunity, 138
visual application (Visual 

application, Mars Rover)
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MasCleaningAgent class, 267–268
Action() method, 278–279
Bid() method, 274–276
methods, 280
properties and fields, 269–270
ReactionTimeOnTick() method, 

272–274
Run() method, 271
SetSocialLaw() method, 

276–278
Message contract, 224
Minimax search algorithm

Alpha-Beta pruning (see Alpha-
Beta pruning)

backtracking, 597
description, 596
end-game position, 597
evaluation procedure, 599
execution, 598
game types, 596
pseudocode, 598
search tree, 597
utility value, 597
zero-sum games, 596

Misplaced Tiles, 583–584
Multi-agent organizations

description, 196
flat/democracy, 198
hierarchical, 197
hybrids, 198
modular, 198
subsumption, 198

Multi-agent systems (MAS)
agent architecture, 196

air traffic control scenario, 
194–195

autonomous, 196
cleaning agent, 193
coalition, 195
communication (see 

Communication)
definition, 194
discrete, 196
distributed artificial 

intelligence, 193
efficiency, 196
flexibility, 197
modularity, 196
multi-agent organization, 

196–198
platform, 195
problem solving, 196
real-world applications, 193
reliability, 197
reusability, 196
strategy, 195

Multi-layer networks
deep learning, 438
deep neural networks, 438
hidden layers, 439
layers, 435–436
layers and power, 438
sigmoid function, 437
underfitting, 439
XOR function, 437

Multi-objective clustering
inter-class distance, 500
intra-class distance, 500
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MOPs, 500–501
non-dominated vector, 500
objective function, 500
Pareto Frontier Builder (see 

Pareto Frontier Builder)
Pareto optimal, 500–501
zoning, 499

Multi-objective optimization 
problems (MOPs), 500–501

N
Negation logical  

connective, 7
Negation normal form (NNF), 16

function, 31
Nnf() override

Not class, 33–34
Variable class, 35

ToNnf() abstract method
Formula abstract class, 32
And, Or classes, 32–33

transformation algorithm, 31
Nerve cells, 18
Neural networks (NNs)

activation function, 413
Adaline and GDS, 427–430
Adaline class, 432–435
artificial, 461
artificial intelligence, 411
biological neuron, 413
electrochemical signals, 412
face recognition, 461
graph, 414

HDR (see Handwritten digit 
recognition (HDR))

iterative processes, 411
learning process, 461
multi-layer, 412, 435–439
neuron, 412
Perceptron algorithm (see 

Perceptron algorithm)
single-neuron networks, 414
stochastic approximation, 

431–432
training data set, 461

Neurons, 18
Normal forms, 16–17

O
Offline character recognition, 463
One-vs-All classification (OVA), 364
Online character recognition, 463
Operation contract, 224
Optical character recognition 

(OCR), 461, 463
Osuna’s theorem, 349–351
Othello game

8 x 8 board, 602–603
creator, Goro Hasegawa, 602
heuristics

corner closeness, 606
corner occupancy, 605
mobility, 606
piece difference, 605
range of values, 606
utility value, 606–607
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imaginary arrangement, 604
initial configuration, 603
Minimax class

GetOptimalMove() and 
Execute() methods, 630–631

properties and fields, 629
white pieces, 604–605
Windows Forms

AvailableMoves 
AroundPiece() and 
SetPieceCreatedBoard() 
methods, 612–617

CheckUpDown(), 
CheckLftRgt(), 
CheckDiagonal(), 
UpdateFlips(), SetPiece(), 
FlipPieces(), and 
UpdatePiecePos() 
methods, 617–621

development, 629
EmptyCell(), Expand(), 

AvailableMoves() and 
IsLegalMove() methods, 
610–611

handling paint and mouse-
click events, 625–626

HeuristicUtility(), 623
OthelloBoard class, 607–609
OthelloGui class, 623–624
UpdateBoardGui() and 

AiPlayTimerTick() 
methods, 626–628

UtilityValue, 622

P
Pareto Frontier Builder

bi-objective  
optimization, 501

description, 501
functions, 501
iterations, step  

values, 505–506
linkage mechanism, 503
stages, 502–503
strategy, 502–503
variations, 503–504

Pareto Frontier Linkage, 503
Pareto optimal, 500–501
Particle swarm optimization  

(PSO), 522
Perceptron algorithm

activation function, 415
class constructor, 422–423
console application, 425–426
data set, 426
dot product, 419
equation of line, 416
fields/properties, 422
hyperplanes, 416, 423
learning process, 417
learning rate, 420
learning rule, 419
linear classifier, 416
pseudocode, 418–419
setting random values, 417
SingleNeuralNetwork abstract 

class, 420–422

Othello game (cont.)
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fields and properties, 422
methods, 422–423
Perceptron class, 423–424

training data set, 417
training/learning process, 417
weight vector and bias, 426

Pigeonhole Principle, 67–68, 74
Policy iteration algorithm, 646–647
Polynomial kernel, 347
Prism, 596
Prisoner’s Dilemma (PD), 591–592
Proof assistant, 43
Proof checking, 44
Proof generation, 45
Propositional logic

ATP, 75
compound, 4
CNF, 5
contradiction/unsatisfiable, 5
definition, 3
examples, 3
formula (p ˅ q) ˄ (p ˅ ¬q) ˄ (¬p ˅ 

q) ˄ (¬p ˅ ¬r), 71–72
formula (p ˅ q ˅ ¬r) ˄ (p ˅ q ˅ r) ˄ 

(p ˅ ¬q) ˄ ¬p, 72
formula (p ˅ q ˅ r) ˄ (p ˅ q ˅ ¬r) ˄ 

(p ˅ ¬q ˅ r) ˄ (p ˅ ¬q ˅ ¬r) ˄ 
(¬p ˅ q ˅ r) ˄ (¬p ˅ q ˅ ¬r) ˄ 
(¬p ˅ ¬q ˅ r), 73

interpretation, 5
Name property to Variable class 

and ToString() overrides 
for Variable, Not, And, Or, 
and Cnf classes, 69–70

Pigeonhole Principle, 67–68, 74
simple/atomic, 4
syntax of, 5
tautology/logic law, 5

Propositional variables, 4
Pruning process

error reduction
pseudocode, 395
subtree replacement, 396

rule pruning
attribute tests, 397
steps, 396

Q
Q-learning, 634

agent, behavior, 644
model-free learning, 644, 647
optimal policy, 648
problem-specific  

knowledge, 647
Q value, 648
solving maze

ActionSelector() and 
ActionToTuple()  
methods, 658

AvailableActions()  
method, 657

fields and constructor, 
MazeGui class, 660–661

FreqStrategy() method, 
656–657

InitQTable() method, 
653–654

Index



686

method handling, tick event, 
663–665

neural networks, 667
optimal policy, 650–651, 667
Paint event of Picture Box, 

661–663
QAgent and Q values, 666
QAgent class, 651–653
Reset() method and 

QAgentAction enum, 659
SelectAction() method, 

655–656
testing, MazeGui 

application, 665
state transitions, 644

R
Reinforcement learning (RL)

action–value function, 642
basic flow, 635
Bellman’s Equation, 641
classical planning, 641
components, 635
definition, 634
development, 635
Dynamic Programming 

Equation, 641
machine learning paradigm, 634
MDPs (see Markov decision 

processes (MDPs))
optimal action–value  

function, 643

optimal policy, 643
optimal state–value  

function, 642
optimal values, 643
policy, 642
policy iteration, 646–647
Principle of Optimality, 641
Q-learning (see Q-learning)
Reward Hypothesis, 635
state–value function, 642
tabular values, 640
TDA, 649
trial-and-error, 634
value function, 641
value iteration, 644–645

S
SATisfiability (SAT), 1, 44, 55
Scatter search (SS), 522
Sequential minimal  

optimization (SMO)
All vs. All, 365
bias, 355
classifying hyperplane, 364
clipped value, 353
description, 348
ExamineExample() and 

TakeStep() methods, 
357–358

KKT conditions, 349–350
Lagrange multipliers, 

constraints, 351–352
learning rate, 355

Q-learning (cont.)
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learning/update rule, 353–355
LFunctionValue() and Kernel.

Polynomial() methods, 
361–362

LFunctionValue() method, bias 
and weight vector, 362–363

linear constraint, 352–354
multi-class, 364–365
Osuna’s theorem, 349–351
OVA, 364
TakeStep() method, 358–361
TrainingBySmo() method, 

LinearSvmClassifier class, 
356–357

training data, 351
Service contract, 224
Service-oriented application 

(SOA), 222–223
Simple Object Access Protocol 

(SOAP), 223
Simple propositions, 4
Simulation

airport (see Airport simulation)
analytic approach, 290–291
definition, 290
DES (see Discreteet-event 

simulation (DES))
flexibility, 290
modeling

classification, 289
definition, 289
features, 289

probabilistic distributions
discrete random variable, 294

exponential distribution, 295
normal distribution, 296
parameter μ, 294
parameter σ2, 294
Poisson process, 294–295

Single-linkage clustering, 485
Sliding Tiles Puzzle, 553–555

A* search algorithm
cost of shortest path, 584
Linear Conflict, 585
Linear Conflict + Manhattan 

Distance heuristic, 586
Manhattan Distance, 585
Misplaced Tiles, 583–584
pattern database, 586–587
tree structure, 583

AI search methods, board game, 
553, 568

Board classes, 569–573
Bs<T> class, 575–577
Expand() method, 574
forward and backward searches, 

577–578
hardest 8-puzzle configuration, 

578–579
IEqualityComparer<Board<T>> 

interface, 575
Move() method, 574
node generation, 574
path variable, 574
reverse of swap  

operation, 568
SolutionMet() method, 577–578
states and trees, 553–555
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S-metaheuristics algorithms
adaptive memory, 539
BGA, 542
clustering-related problem, 547
diversification, 539
HC-related components, 540
homogeneity, 542, 545
iteration, 539
iterative methods, 538
k data-set elements, 544
medium-and long-term 

memories, 540–541
multi-objective optimization 

problem, 542, 543
Pareto Frontier Builder, 543, 

545–546
Tabu List data structure, 544
Toluca Valley, 544
zoning problem, 543–544

Social commitment, 218
Social norms/laws, 218–219
Speech Act Theory, 201
Stochastic gradient descent (SGD), 

431–432
Subtree replacement, 396
Sum of Squared Errors (SSE),  

488, 499
Supervised learning

classifier, 316–317
dataset, 633
image, properties, 633
linear regression, 316
phases, 315
prediction, 315–316
regressor, 316–317

tabular data, 633
training data, 315–316

Support vector machines (SVMs)
classifiers and regressors, 318
duality, 325
generalized Lagrangian, 326
hyperplane

bias/intercept, 321
canonical, 323
classes, 321
classification, 319–320,  

323, 325
constraints, 323–324
normalization, 322
optimization problem, 324
support vectors, 321–323
weight vector, 321–322

Lagrange multipliers, 325–326
Lagrangian method, 325, 345
linear (see Linear SVM)
non-linear case

data mapping from 2D to 3D 
space, 346

feature mapping, 346
Gaussian kernel, 348
hyperplane, 346
kernel function, 347, 348
polynomial feature  

mapping, 347
polynomial kernel, 347
quadratic problem, 347
training data, 345

optimal classifying hyperplane, 
343–344

optimization problem, 318, 327
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reformulation, training  
data, 344

SMO (see Sequential minimal 
optimization (SMO))

soft-margin and  
hard-margin, 345

text-classification tasks, 319

T
Tabu Search (TS), see 

S-metaheuristics 
algorithms)

Take-Two Interactive (NBA2K 
series), 549

Temporal difference algorithm 
(TDA), 649

Temporal difference (TD), 634
Theory of Games and Economic 

Behavior, 589
Touring machines, 131–132
Traveling Salesman Problem (TSP)

biological process, 526
Canonic property, 531, 533
chromosome/solution 

encoding, 528
crossover operator, 531
GeneticAlgorithmTsp class, 

533–537
InitialPopulation() method, 534
NewPopulation() method, 534
NP-Hard problem, 527
OffSprings() method, 534
problem-specific issues, 528

Solution class, 529–531, 533
US map, 526–527

Two-person zero-sum games, 589

U
Ubisoft (Assassin’s Creed), 549
Uninformed search algorithms

BFS, 556, 558–559
blind search, 556
BS, 559
DFS, 557–559
DLS, 559
Execute() lines, results, 568
Graph Theory toolbox, 556
IDS, 559
testing, console application, 

566–567
Tree<T> class, 560–561
UninformedMethod<T> 

abstract class, 561
Unsupervised learning

data structure, 633
methods, 479–480

V
Value iteration algorithm, 644–645
Visual application, Mars Rover, 137

actual water location, 189–190
diversification, 187–188
explore–exploit tradeoff, 188
intensification phase, 188
lower-left corner, water 

location, 189
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new water-location belief, 191
plan (sequence of actions), 185
SenseRadius parameter, 184
set up, Mars Rover and world, 

182–183
WanderThreshold, 191
water-location belief,  

185–186, 191
water-location belief and 

obstacle-location belief, 
183–184, 186–187

Windows Form, 176–181, 184

W, X, Y, Z
Windows Communication 

Foundation (WCF)
agents

adding, WCF service, 232
AgentCommunication 

Service class, 237
Callback Contract 

implementation, 239–240
class and interface, 232
client application, 243–245
Client UI in Windows  

Forms, 245
console application, 241–242
create WCF service, 232
exchanging messages, 247
executing service and 

clients, 246

implementation process, 231
lock statement, 237
Proxy implementation, 238
Publisher/Subscriber 

pattern, 231
Send() method, 237
service and callback 

contracts, 232–233
service implementation, 

234–237
Subscriber() method, 237
synchronization context, 240
UpdatedListEventArgs, 

240–241
API, 221
bindings, 227–228
CLR types, 222
contracts

description, 224
Duplex pattern, 225
IHelloWorld service, 227
One-Way pattern, 225
Request–Response  

pattern, 225
service implementation, 

226–227
types, 224

endpoints, 229
.NET Framework, 221
network application, 222
Publisher/Subscriber pattern, 

221, 230–231

services, 222–223

Visual application, Mars Rover (cont.)
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