
Practical
Artificial
Intelligence

Machine Learning, Bots, and
Agent Solutions Using C#
—
Arnaldo Pérez Castaño

www.allitebooks.com

http://www.allitebooks.org

Practical Artificial
Intelligence

Machine Learning, Bots, and
Agent Solutions Using C#

Arnaldo Pérez Castaño

www.allitebooks.com

http://www.allitebooks.org

Practical Artificial Intelligence

ISBN-13 (pbk): 978-1-4842-3356-6		 ISBN-13 (electronic): 978-1-4842-3357-3
https://doi.org/10.1007/978-1-4842-3357-3

Library of Congress Control Number: 2018943123

Copyright © 2018 by Arnaldo Pérez Castaño

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484233566.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Arnaldo Pérez Castaño
Havana, Cuba

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3357-3
http://www.allitebooks.org

To ML, thanks for the theater and the lovely moments

To my mother, my father, my brother, my grandma,
and my entire family, thanks for your immense support

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: �Logic & AI���1

What Is Logic?��2

Propositional Logic���3

Logical Connectives���6

Negation���7

Conjunction���8

Disjunction��9

Implication��10

Equivalence��11

Laws of Propositional Logic���12

Normal Forms��16

Logic Circuits���17

Practical Problem: Using Inheritance and C# Operators to Evaluate
Logic Formulas��21

Practical Problem: Representing Logic Formulas as Binary
Decision Trees��26

Practical Problem: Transforming a Formula into Negation
Normal Form (NNF)��31

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

www.allitebooks.com

http://www.allitebooks.org

vi

Practical Problem: Transforming a Formula into Conjunctive
Normal Form (CNF)��36

Summary���40

Chapter 2: �Automated Theorem Proving & First-Order Logic��������������41
Automated Theorem Proving��42

Practical Problem: Clauses and CNFs Classes in C#��45

DPLL Algorithm��55

Practical Problem: Modeling the Pigeonhole Principle in
Propositional Logic���67

Practical Problem: Finding Whether a Propositional Logic Formula is SAT��������������68

First-Order Logic��75

Predicates in C#���80

Practical Problem: Cleaning Robot���82

Summary���89

Chapter 3: �Agents��91

What’s an Agent?���92

Agent Properties��95

Types of Environments���99

Agents with State���102

Practical Problem: Modeling the Cleaning Robot as an Agent
and Adding State to It���103

Agent Architectures��113

Reactive Architectures: Subsumption Architecture��������������������������������������114

Deliberative Architectures: BDI Architecture���119

Hybrid Architectures���127

Touring Machines���131

InteRRaP���133

Summary���135

Table of ContentsTable of Contents

vii

Chapter 4: �Mars Rover���137

What’s a Mars Rover?��138

Mars Rover Architecture��140

Mars Rover Code��143

Mars Rover Visual Application��176

Summary���192

Chapter 5: �Multi-Agent Systems��193

What’s a Multi-Agent System?���194

Multi-Agent Organization���197

Communication��199

Speech Act Theory��201

Agent Communication Languages (ACL)��204

Coordination & Cooperation���211

Negotiation Using Contract Net��215

Social Norms & Societies���218

Summary���220

Chapter 6: �Communication in a Multi-Agent System Using WCF�������221

Services���222

Contracts��224

Bindings���227

Endpoints���229

Publisher/Subscriber Pattern���230

Practical Problem: Communicating Among Multiple Agents Using WCF������������231

Summary���248

Table of ContentsTable of Contents

viii

Chapter 7: �Cleaning Agents: A Multi-Agent System Problem������������249

Program Structure���250

Cleaning Task���251

Cleaning Agent Platform��254

Contract Net���256

FIPA-ACL��262

MAS Cleaning Agent���267

GUI��280

Running the Application���283

Summary���288

Chapter 8: �Simulation��289

What Is Simulation?���290

Discrete-Event Simulation���292

Probabilistic Distributions��294

Practical Problem: Airport Simulation��297

Summary���313

Chapter 9: �Support Vector Machines���315

What Is a Support Vector Machine (SVM)?���318

Practical Problem: Linear SVM in C#��328

Imperfect Separation���343

Non-linearly Separable Case: Kernel Trick���345

Sequential Minimal Optimization Algorithm (SMO)��348

Practical Problem: SMO Implementation���356

Summary���365

Table of ContentsTable of Contents

ix

Chapter 10: �Decision Trees��367

What Is a Decision Tree?��368

Generating a Decision Tree: ID3 Algorithm���372

Entropy and Information Gain���375

Practical Problem: Implementing the ID3 Algorithm�������������������������������������377

C4.5 Algorithm��393

Practical Problem: Implementing the C4.5 Algorithm�����������������������������������399

Summary���410

Chapter 11: �Neural Networks��411

What Is a Neural Network?��412

Perceptron: Singular NN���415

Practical Problem: Implementing the Perceptron NN�����������������������������������420

Adaline & Gradient Descent Search��427

Stochastic Approximation���431

Practical Problem: Implementing Adaline NN���432

Multi-layer Networks��435

Backpropagation Algorithm��440

Practical Problem: Implementing Backpropagation &
Solving the XOR Problem��446

Summary���459

Chapter 12: �Handwritten Digit Recognition���������������������������������������461

What Is Handwritten Digit Recognition?��462

Training Data Set��464

Multi-layer NN for HDR���464

Table of ContentsTable of Contents

x

Implementation��467

Testing���476

Summary���478

Chapter 13: �Clustering & Multi-objective Clustering�������������������������479

What Is Clustering?��480

Hierarchical Clustering���484

Partitional Clustering���486

Practical Problem: K-Means Algorithm��490

Multi-objective Clustering��499

Pareto Frontier Builder���501

Summary���507

Chapter 14: �Heuristics & Metaheuristics���509

What Is a Heuristic?���510

Hill Climbing���512

Practical Problem: Implementing Hill Climbing��515

P-Metaheuristics: Genetic Algorithms��522

Practical Problem: Implementing a Genetic Algorithm
for the Traveling Salesman Problem��526

S-Metaheuristics: Tabu Search��538

Summary���548

Chapter 15: �Game Programming���549

What Is a Video Game?��551

Searching in Games���553

Uninformed Search��556

Practical Problem: Implementing BFS, DFS, DLS, and IDS���������������������������������560

Table of ContentsTable of Contents

xi

Practical Problem: Implementing Bidirectional Search
on the Sliding Tiles Puzzle���568

Informed Search��580

A* for the Sliding Tiles Puzzle��583

Summary���588

Chapter 16: �Game Theory: Adversarial Search & Othello Game��������589

What Is Game Theory?���590

Adversarial Search���593

Minimax Search Algorithm���596

Alpha-Beta Pruning��599

Othello Game��602

Practical Problem: Implementing the Othello Game in Windows Forms������������607

Practical Problem: Implementing the Othello Game AI Using Minimax��������������628

Summary���631

Chapter 17: �Reinforcement Learning���633

What Is Reinforcement Learning?��634

Markov Decision Process���636

Value/Action–Value Functions & Policies���640

Value Iteration Algorithm��644

Policy Iteration Algorithm���646

Q-Learning & Temporal Difference���647

Practical Problem: Solving a Maze Using Q-Learning��650

Summary���668

Index��669

Table of ContentsTable of Contents

xiii

About the Author

Arnaldo Pérez Castaño is a computer scientist

based in Havana, Cuba. He’s the author of

PrestaShop Recipes (Apress, 2017) and a

series of programming books—JavaScript Fácil,

HTML y CSS Fácil, and Python Fácil

(Marcombo S.A.)—and writes AI-related

articles for MSDN Magazine, VisualStudio

Magazine.com, and Smashing Magazine. He is

one of the co-founders of Cuba Mania Tour

(http://www.cubamaniatour.com).

His expertise includes Java, VB, Python,

algorithms, optimization, Matlab, C#, .NET Framework, and artificial

intelligence. Arnaldo offers his services through freelancer.com and

served as reviewer for the Journal of Mathematical Modelling and

Algorithms in Operations Research. Cinema and music are some of his

passions. Many of his colleagues around the world call him “Scientist of

the Caribbean.” He can be reached at arnaldo.skywalker@gmail.com.

http://www.cubamaniatour.com/
http://www.freelancer.com

xv

About the Technical Reviewer

James McCaffrey works in the Machine

Learning Group at Microsoft Research in

Redmond, WA. James has a Ph.D. in cognitive

psychology and computational statistics from

the University of Southern California, a BA

in psychology, a BA in applied mathematics,

and an MS in computer science. James is a

frequent speaker at developer conferences.

James learned to speak to the public while

working at Disneyland as a college student, and he can still recite the

entire Jungle Cruise ride narration from memory.

xvii

Acknowledgments

First of all, a big thank you to Dr. James McCaffrey from Microsoft Research

in Redmond, WA, who kindly accepted the role of technical reviewer of

this book. I e-met James when writing articles for MSDN Magazine. His

comments at that time were always very useful, and they continued to be

extremely useful throughout the review process of this book. I must

also thank James for his patience because what it was supposed to be a

nine-chapter book eventually became a seventeen-chapter book, and he

stood up with us along the way.

Another thank you must go to my editors, Pao Natalie and Jessica

Vakili, who were also very patient and understanding during the writing

process.

Finally, I would like to acknowledge all researchers on AI/machine

learning out there who day after day try to push this very important field

of science forward with new advancements, techniques, and ideas. Thank

you, all!

xix

Introduction

Practical Artificial Intelligence (PAI) is a book that proposes a new model

for learning. Most AI books deeply focus on theory and abandon practical

problems that demonstrate the theory introduced throughout the book.

In PAI we propose a model that follows Benjamin Franklin’s (Founding

Father of the United States of America) ideas: “Tell me and I forget. Teach

me and I remember. Involve me and I learn.” Therefore, PAI includes

theoretical knowledge but guarantees that at least one fully coded (C#)

practical problem is included in every chapter as a way to allow readers to

better understand and as a way to get them involved with the theoretical

concepts and ideas introduced during the chapter. These practical

problems can be executed by readers using the code associated with

this book and should give them a better insight into the concepts herein

described.

Explanations and definitions included in PAI are intended to be

as simple as they can be (not putting aside the fact that they belong

to a mathematical, scientific environment) so readers from different

backgrounds can engage with the content and understand it using

minimal mathematical or programming knowledge.

Chapters 1 and 2 explore logic as a fundamental founding block of

many sciences, like mathematics or computer science. In these chapters,

we will describe propositional logic, first-order logic, and automated

theorem proving; related practical problems coded in C# will be presented.

Throughout chapters 3–7, we will focus on agents and multi-agent

systems. We’ll dive into the different types of agents and their

architectures, then we’ll present a big practical problem where we’ll code

a Mars Rover whose task is to find water on Mars. We’ll include another

xx

practical problem where we set up a group of agents to communicate

using Windows Communication Foundation (WCF), and finally, we’ll end

this part of the book by presenting another practical problem (Chapter 7)

where a group of agents forming a multi-agent system will collaborate and

communicate to clean a room of its dirt.

Chapter 8 will describe a sub-field of AI known as simulation, where

by using statistical, probabilistic tools we simulate a scenario of real life.

In this case, we’ll simulate the functioning of an airport, with airplanes

arriving at and departing from the airport during a certain period of time.

Chapters 9–12 will be dedicated to supervised learning, a very

important paradigm of machine learning where we basically teach a

machine (program) to do something (usually classify data) by presenting

it with many samples of pairs <data, classification>, where data could

be anything; it could be animals, houses, people, and so on. For instance,

a sample set could be <elephant, big>, <cat, small>, and so forth.

Clearly, for the machine to be able to understand and process any data we

must input numerical values instead of text. Throughout these chapters we

will explore support vector machines, decision trees, neural networks, and

handwritten digit recognition.

Chapter 13 will explain another very important paradigm of machine

learning, namely unsupervised learning. In unsupervised learning we

learn the structure of the data received as input, and there are no labels

(classifications) as occurred in supervised learning; in other words,

samples are simply <data>, and no classification is included. Thus, an

unsupervised learning program learns without any external help and by

looking only at the information provided by the data itself. In this chapter,

we will describe clustering, a classic unsupervised learning technique.

We will also describe multi-objetive clustering and multi-objective

optimization. A method for constructing the Pareto Frontier, namely

Pareto Frontier Builder, proposed by the author, will be included in this

chapter.

IntroductionIntroduction

xxi

Chapter 14 will focus on heuristics and metaheuristics, a topic we

will be mentioning in previous chapters and will finally be studied here.

We will describe mainly two metaheuristics: genetic algorithms and tabu

search, which are two of the main representatives of the broadest classes

of metaheuristics, which are population-based metaheuristics and single

solution–based metaheuristics.

Chapter 15 will explore the world of game programming, specifically

games where executing a search is necessary. Many of the popular search

algorithms will be detailed and implemented. A practical problem where

we design and code a sliding tiles puzzle agent will also be included.

Chapter 16 will dive into game theory, in particular a sub-field of

it known as adversarial search. In this field, we will study the Minimax

algorithm and implement an Othello agent that plays using this strategy

(Minimax).

Chapter 17 will describe a machine-learning paradigm that nowadays

is considered the future of artificial intelligence; this paradigm is

reinforcement learning. In reinforcement learning, agents learn through

rewards and punishment; they learn over time like humans do, and when

the learning process is long enough they can achieve highly competitive

levels in a game, up to the point of beating a human world champion (as

occurred with backgammon and Go).

IntroductionIntroduction

1© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_1

CHAPTER 1

Logic & AI
In this chapter, we’ll introduce a topic that is vital not only to the world

of artificial intelligence (AI) but also to many other areas of knowledge,

such as mathematics, physics, medicine, philosophy, and so on. It

has been deeply studied and formalized since ancient times by great

philosophers like Aristotle, Euclid, and Plato and by some of the greatest

mathematicians of all time. Born in the early ages of mankind, it represents

a basic tool that allowed science to flourish up to the point where it is

today. It clarifies and straightens our complicated human minds and

brings order to our sometimes disordered thoughts.

Logic, this matter to which we have been referring thus far, will be the

main focus of this chapter. We’ll be explaining some of its fundamental

notions, concepts, and branches, as well as its relation to computer

science and AI. This subject is fundamental to understanding many of the

concepts that will be addressed throughout this book. Furthermore, how

can we create a decent artificial intelligence without logic? Logic directs

rationality in our mind; therefore, how can we create an artificial version

of our mind if we bypass that extremely important element (logic) that

is present in our “natural” intelligence and dictates decisions in many

cases—or, to be precise, rational decisions.

Propositional logic; first-order logic; practical problems where we’ll

learn how to create a logic framework, how to solve the SAT (satisfiability)

problem using an outstanding algorithm called DPLL, and how to code

a first, simple, naive cleaning robot using first-order logic components—

these topics will get us started in this book.

2

Note  Logic can be branched into mathematical logic, philosophical
logic, computational logic, Boolean logic, fuzzy logic, quantum logic,
and so forth. In this book, we will be dealing with computational logic,
the field related to those areas of computer science and logic that
necessarily overlap.

�What Is Logic?
Intuitively we all have a notion of what logic is and how useful it can be

in our daily lives. Despite this common sense or cultural concept of logic,

surprisingly there is, in the scientific community, no formal or global

definition (as of today) of what logic is.

In seeking a definition from its founding fathers, we could go back in

time to its roots and discover that the word logic actually derives from the

Ancient Greek logike, which translates as “concept, idea, or thought.”

Some theorists have defined logic as “the science of thought.” Even

though this definition appears to be a decent approximation of what we

typically associate with logic, it’s not a very accurate definition because

logic is not the only science related to the study of thoughts and reasoning.

The reality is that this subject is so deeply ingrained at the foundation of all

other sciences that it’s hard to provide a formal definition for it.

In this book, we’ll think of logic as a way to formalize human

reasoning.

Since computational logic is the branch of logic that relates to

computer science, we’ll be describing some important notions on this

subject. Ultimately, the concepts described here will be useful throughout

this book and in every practical problem to be presented.

Chapter 1 Logic & AI

3

Note  Logic is used extensively in computer science: at the processor
level by means of logical gates, in hardware and software verification
such as floating-point arithmetic, in high-level programming like
constraint programming, and in artificial intelligence for problems
such as planning, scheduling, agents control, and so forth.

�Propositional Logic
In daily life and during our human communication process, we constantly

listen to expressions of the language that possess a certain meaning;

among these we can find the propositions.

Propositions are statements that can be classified according to

their veracity (True or 1, False or 0, etc.) or according to their modality

(probable, impossible, necessary, etc.). Every proposition expresses a

certain thought that represents its meaning and content. Because of

the wide variety of expressions in our language, they can be classified

as narratives, exclamatory, questioning, and so forth. In this book, we’ll

focus on the first type of proposition, narratives, which are expressions of

judgment, and we’ll simply call them propositions from this point on.

The following list presents a few examples of propositions:

	 1.	 “Smoking damages your health.”

	 2.	 “Michael Jordan is the greatest basketball player of

all time.”

	 3.	 “Jazz is the coolest musical genre in the world.”

	 4.	 “100 is greater than 1.”

	 5.	 “There are wonderful beaches in Havana.”

Chapter 1 Logic & AI

4

	 6.	 “World War II ended in 1945.”

	 7.	 “I listen to Sting’s music.”

	 8.	 “I will read poems from Spanish poet Rafael Alberti.”

These are simple or atomic propositions that we can use in any

ordinary day during any ordinary conversation. In order to add complexity

and transform them into something a bit more meaningful we can rely

on compound propositions, which are obtained by means of logical

connectors linking simple propositions like the ones previously listed.

Hence, from the propositions just listed we could obtain the following

(not necessarily correct or meaningful) compound propositions.

	 1.	 “There are NOT wonderful beaches in Havana.”

	 2.	 “Smoking damages your health AND 100 is greater

than 1.”

	 3.	 “Michael Jordan is the greatest basketball player of

all time OR World War II ended in 1945.”

	 4.	 “IF Jazz is the coolest musical genre in the world

THEN I listen to Sting’s music.”

	 5.	 “I will read poems from Spanish poet Rafael Alberti

IF AND ONLY IF 100 is greater than 1.”

Logical connectives in these cases are shown in capital letters and are

represented by the words or phrases “NOT”, “AND”, “OR”, “IF …THEN”

and “IF AND ONLY IF”.

Simple or atomic propositions are denoted using letters (p, q, r, etc.)

known as propositional variables. We could name some of the preceding

propositions as follows:

	 1.	 p = “Smoking damages your health.”

	 2.	 q = “Michael Jordan is the greatest basketball player

of all time.”

Chapter 1 Logic & AI

5

	 3.	 r = “Jazz is the coolest musical genre in the world.”

	 4.	 s = “100 is greater than 1.”

A proposition that can be either True (1) or False (0) depending on

the truth value of the propositions that compose it is known as a formula.

Note that a formula can be simple; in other words, it can be composed

of a single proposition. Consequently, every proposition is considered a

formula.

The syntax of propositional logic is governed by the following rules:

	 1.	 All variables and propositional constants

(True, False) are formulas.

	 2.	 If F is a formula then NOT F is also a formula.

	 3.	 If F, G are formulas then F AND G, F OR G, F => G,

F <=> G also represent formulas.

An interpretation of a formula F is an assignation of truth values for

every propositional variable that occurs in F and determines a truth value

for F. Since every variable always has two possible values (True, False or 1, 0)

then the total number of interpretations for F is 2n where n is the total

number of variables occurring in F.

A proposition that is True for every interpretation is said to be a

tautology or logic law.

A proposition that is False for every interpretation is said to be a

contradiction or unsatisfiable.

We’ll be interested in studying the truth values of combined

propositions and how to compute them. In the Satisfiability problem, we

receive as input a formula, usually in a special, standardized form known as

Conjunctive Normal Form (soon to be detailed), and we’ll try to assign truth

values for its atomic propositions so the formula becomes True (1); if such

assignment exists, we say that the formula is Satisfiable. This is a classic

problem in computer science and will be addressed throughout this chapter.

Chapter 1 Logic & AI

6

In the next section, we’ll take a closer look at logical connectives, as

they are determinant in establishing the final truth value of a formula.

�Logical Connectives
Commonly, logical connectives are represented using the following

symbols:

•	 ¬ denotes negation (“NOT”)

•	 ∧ denotes conjunction (“AND”)

•	 ∨ denotes disjunction (“OR”)

•	 => denotes implication (“IF … THEN”)

•	 <=> denotes double implication or equivalence
(“IF AND ONLY IF”)

Logical connectives act as unary or binary (receive one or two

arguments) functions that provide an output that can be either 1 (True) or

0 (False). In order to better understand what the output would be for every

connective and every possible input, we rely on truth tables.

Note T he tilde symbol (~) is also used to indicate negation.

In a truth table, columns correspond to variables and outputs and rows

correspond to every possible combination of values for each propositional

variable. We’ll see detailed truth tables for every connective in the

following subsections.

Chapter 1 Logic & AI

7

�Negation
If we have a proposition p then its negation is denoted ¬p (read Not p).

This is a unary logical connective because it requires a single proposition

as input.

Let’s try to negate some of the propositions previously presented:

	 1.	 “Smoking DOES NOT damage your health.”

	 2.	 “Michael Jordan is NOT the greatest basketball

player of all time.”

	 3.	 “Jazz is NOT the coolest musical genre in the world.”

	 4.	 “100 is NOT greater than 1.”

	 5.	 “There are NOT wonderful beaches in Havana.”

	 6.	 “World War II DID NOT end in 1945.”

The truth table for the negation connective is the following (Table 1-1).

Table 1-1.  Truth Table for

Negation Logical Connective

p ¬p

1 0

0 1

From Table 1-1 we can see that if a proposition p is True (1) then its

negation (¬p) is False (0), and vice versa if the proposition is False.

Chapter 1 Logic & AI

8

�Conjunction
If we have propositions p, q then their conjunction is denoted p ∧ q (read p

AND q). This is a binary logical connective; it requires two propositions as

input.

The conjunction of the previous propositions can be obtained by

simply using the AND word, as follows:

	 1.	 “Smoking damages your health AND I will read

poems from Spanish poet Rafael Alberti.”

	 2.	 “Michael Jordan is the greatest basketball player of

all time AND jazz is the coolest musical genre in the

world.”

	 3.	 “100 is greater than 1 AND there are wonderful

beaches in Havana.”

The truth table for the conjunction connective is shown in Table 1-2.

Table 1-2.  Truth Table for the

Conjunction Logical Connective

p q p ∧ q

1 0 0

0 1 0

0 0 0

1 1 1

Table 1-2 permits us to see that p ∧ q is True only when both p and q

are True simultaneously.

Chapter 1 Logic & AI

9

�Disjunction
If we have propositions p, q then their disjunction is denoted p ∨ q (read

p OR q). This is a binary logical connective; it requires two propositions as

input.

The disjunction of the previous propositions can be obtained by simply

using the OR word, as follows:

	 1.	 “I will read poems from Spanish poet Rafael Alberti

OR I listen to Sting’s music.”

	 2.	 “Michael Jordan is the greatest basketball player of

all time OR jazz is the coolest musical genre in the

world.”

	 3.	 “World War II ended in 1945 OR there are wonderful

beaches in Havana.”

The truth table for the conjunction connective is as follows (Table 1-3).

Table 1-3.  Truth Table for the

Disjunction Logical Connective

p q p ∨ q

1 0 1

0 1 1

0 0 0

1 1 1

From Table 1-3 we can see that p ∨ q is True when either p or q are True.

Chapter 1 Logic & AI

10

�Implication
Countless expressions in mathematics are stated as an implication; i.e., in

the manner “if . . . then.” If we have propositions p, q then their implication

is denoted p => q (read p IMPLIES q). This is a binary logical connective;

it requires two propositions as input and indicates that from p veracity we

deduce q veracity.

We say that q is a necessary condition for p to be True and p is a

sufficient condition for q to be True.

The implication connector is similar to the conditional statement (if)

that we find in many imperative programming languages like C#, Java,

or Python. To understand the outputs produced by the connective let us

consider the following propositions:

•	 p = John is intelligent.

•	 q = John goes to the theater.

An implication p => q would be written as “If John is intelligent then he

goes to the theater.” Let’s analyze each possible combination of values for

p, q and the result obtained from the connective.

Case 1, where p = 1, q = 1. In this case, John is intelligent and he goes to

the theater; therefore, p => q is True.

Case 2, where p = 1, q = 0. In this case, John is intelligent but does not

go to the theater; therefore, p => q is False.

Case 3, where p = 0, q = 1. In this case, John is not intelligent even

though he goes to the theater. Since p is False and p => q only indicates

what happens when p = John is intelligent, then proposition p => q is not

negated; hence, it’s True.

Case 4, where p = 0, q = 0. In this case, John is not intelligent and

does not go to the theater. Since p is False and p => q only indicates what

happens when p is True, then p => q is True.

Chapter 1 Logic & AI

11

In general, proposition p => q is True whenever p = 0 because if

condition p does not hold (John’s being intelligent) then the consequence

(John goes to the theater) could be anything. It could be interpreted as “If

John is intelligent then he goes to the theater”; otherwise, “If John is not

intelligent then anything could happen,” which is True.

The truth table for the implication connective is shown in Table 1-4.

Table 1-4.  Truth Table for the

Implication Logical Connective

p q p => q

1 0 0

0 1 1

0 0 1

1 1 1

Proposition p => q is True when p is False or both p and q are True.

�Equivalence
Propositions p, q are said to be equivalent, denoted p <=> q (read p Is

Equivalent to q or p If and Only If q), if it occurs that p => q and q => p both

have the same value.

The double implication or equivalence connective will output True

only when propositions p, q have the same value.

Chapter 1 Logic & AI

12

The truth table for the equivalence connective can be seen in Table 1-5.

Table 1-5.  Truth Table for the

Equivalence Logical Connective

p q p <=> q

1 0 0

0 1 0

0 0 1

1 1 1

Considering propositions p, q, r, the equivalence connective satisfies

the following properties:

•	 Reflexivity: p <=> p

•	 Transitivity: if p <=> r and r <=> q then

	 p <=> q

•	 Symmetry: if p <=> q then q <=> p

Both the implication and equivalence connectives have great

importance in mathematical, computational logic, and they represent

fundamental logical structures for presenting mathematical theorems. The

relationship between artificial intelligence, logical connectives, and logic

in general will seem more evident as we move forward in this book.

�Laws of Propositional Logic
Now that we have gotten acquainted with all logical connectors, let’s

introduce a list of logic equivalences and implications that, because of

their significance, are considered Laws of Propositional Logic. In this case,

Chapter 1 Logic & AI

13

p, q, and r are all formulas, and we will use the ≡ symbol to denote that

p <=> q is a tautology; i.e., it’s True under any set of values for p, q (any

interpretation). In such cases we say that p and q are logically equivalent.

This symbol resembles the equal sign used in arithmetic because its

meaning is similar but at a logical level. Having p ≡ q basically means that

p and q will always have the same output when receiving the same input

(truth values for each variable).

Logical equivalences:

	 1.	 p ∨ p ≡ p (idempotent law)

	 2.	 p ∧ p ≡ p (idempotent law)

	 3.	 [p ∨ q] ∨ r ≡ p ∨ [q ∨ r] (associative law)

	 4.	 [p ∧ q] ∧ r ≡ p ∧ [q ∧ r] (associative law)

	 5.	 p ∨ q ≡ q ∨ p (commutative law)

	 6.	 p ∧ q ≡ q ∧ p (commutative law)

	 7.	 p ∧ [q∨ r] ≡ [p ∧ q] ∨ [p ∧r] (distributive law over ˄)

	 8.	 p ∨ [q ∧ r] ≡ [p ∨ q] ∧ [p ∨ r] (distributive law over ˅)

	 9.	 p ∨ [p ∧ q] ≡ p

	 10.	 p ∧ [p ∨ q] ≡ p

	 11.	 p ∨ 0 ≡ p

	 12.	 p ∧ 1 ≡ p

	 13.	 p ∨ 1 ≡ 1

	 14.	 p ∧ 0 ≡ 0

	 15.	 p ∨ ¬p ≡ 1

	 16.	 p ∧ ¬p ≡ 0 (contradiction)

	 17.	 ¬[¬p] ≡ p (double negation)

Chapter 1 Logic & AI

14

	 18.	 ¬1 ≡ 0

	 19.	 ¬0 ≡ 1

	 20.	 ¬[p ∨ q] ≡ ¬p ∧ ¬q (De Morgan’s law)

	 21.	 ¬[p ∧ q] ≡ ¬p ∨ ¬q (De Morgan’s law)

	 22.	 p => q ≡ ¬p ∨ q (definition =>)

	 23.	 [p <=> q] ≡ [p => q] ∧ [q => p] (definition <=>)

Note the use of brackets in some of the previous formulas. As occurs

in math, brackets can be used to group variables and their connectives all

together to denote order relevance, association with logical connectives,

and so forth. For instance, having a formula like p ∨ [q ∧ r] indicates the

result of subformula q ∧ r is to be connected with the disjunction logical

connective and variable p.

In the same way as we introduced the ≡ symbol for stating that p, q

were logically equivalent we now introduce the ≈ symbol for denoting that

p, q are logically implied, written p ≈ q. If they are logically implied then

p => q must be a tautology.

Logical implications:

	 1.	 p ≈ q => [p ∧ q]

	 2.	 [p => q] ∧ [q => r] ≈ p => q

	 3.	 ¬q => ¬p ≈ p => q

	 4.	 [p => q] ∧ [¬p => q] ≈ q

	 5.	 [p => r] ∧ [q => r] ≈ [p ∨ q] => r

	 6.	 ¬p => [q ∧ ¬q] ≈ p

	 7.	 p => [q ∧ ¬q] ≈ ¬p

	 8.	 ¬p => p ≈ p

	 9.	 p => ¬p ≈ ¬p

Chapter 1 Logic & AI

15

	 10.	 p => [¬q => [r ∧ ¬r]] ≈ p => q

	 11.	 [p ∧ ¬q] => q ≈ p => q

	 12.	 [p ∧ ¬q] => ¬p ≈ p => q

	 13.	 [p => q] ∧ [¬p => r] ≈ q ∨ r

	 14.	 ¬p => q ≈ p ∨ q

	 15.	 p => q ≈ q ∨ ¬p

	 16.	 p ≈ p ∨ q

	 17.	 p ∧ q ≈ p

	 18.	 p ≈ q => p

Many of these laws are very intuitive and can be easily proven by

finding all possible values of the variables involved and the final outcome

of every formula. For instance, equivalence ¬[p ∨ q] ≡ ¬p ∧ ¬q, which is

known as De Morgan’s law, can be proven by considering every possible

value for p, q in a Truth table, as shown in Table 1-6.

Table 1-6.  Truth Table Verifying ¬[p ∨ q] ≡ ¬p ∧ ¬q

p q ¬[p ∨ q] ¬p ∧ ¬q

0 0 1 1

0 1 0 0

1 0 0 0

1 1 0 0

So far we have presented some of the basic topics of computational

logic. At this point, the reader might wonder what the relationship

between propositional logic and artificial intelligence may be. First of all,

propositional logic and logic in general are the founding fields of many

Chapter 1 Logic & AI

16

areas related to AI. Our brain is crowded with logical decisions, On (1) /

Off (0) definitions that we make every step of the way, and that on multiple

occasions are justified by our “built-in” logic. Thus, because AI tries to

emulate our human brain at some level, we must understand logic and

how to operate with it in order to create solid, logical AIs in the future. In

the following sections we’ll continue our studies of propositional logic, and

we’ll finally get a glimpse of a practical problem.

�Normal Forms
When checking satisfiability, certain types of formulas are easier to work

with than others. Among these formulas we can find the normal forms.

•	 Negation Normal Form (NNF)

•	 Conjunctive Normal Form (CNF)

•	 Disjunctive Normal Form (DNF)

We will assume that all formulas are implication free; i.e., every

implication p => q is transformed into the equivalent ¬p ∨ q.

A formula is said to be in negation normal form if its variables are the

only subformulas negated. Every formula can be transformed into an

equivalent NNF using logical equivalences 17, 20, and 21 presented in the

previous section.

Note  Normal forms are useful in automated theorem proving (also
known as automated deduction or ATP), a subfield of automated
reasoning, which at the same time is a subfield of AI. ATP is
dedicated to proving mathematical theorems by means of computer
programs.

Chapter 1 Logic & AI

17

A formula is said to be in conjunctive normal form if it’s of the form

(p1 ∧ p2 … ∨ pn) ∧ (q1 ∨ q2 … ∨ qm) where each pi, qj is either a

propositional variable or the negation of a propositional variable. A

CNF is a conjunction of disjunctions of variables, and every NNF can be

transformed into a CNF using the Laws of Propositional logic.

A formula is said to be in disjunctive normal form if it’s of the form

(p1 ∧ p2 … ∧ pn) ∨ (q1 ∧ q2 … ∨ qm) where each pi, qj is either a

propositional variable or the negation of a propositional variable. A DNF

is a disjunction of conjunctions of variables, and every NNF can also be

transformed into a CNF using the Laws of Propositional Logic.

At the end of this chapter, we’ll examine several practical problems

where we’ll describe algorithms for computing NNF and CNF; we’ll also

look at the relationship between normal forms and ATP.

Note A canonical or normal form of a mathematical object is a
standard manner of representing it. A canonical form indicates that
there’s a unique way of representing every object; a normal form
does not involve a uniqueness feature.

�Logic Circuits
The topics presented thus far regarding propositional logic find

applications in design problems and, more importantly, in digital logic

circuits. These circuits, which execute logical bivalent functions, are used

in the processing of digital information.

Furthermore, the most important logical machine ever created by

mankind (the computer) operates at a basic level using logical circuits.

Chapter 1 Logic & AI

18

The computer, the most basic, classical example of an AI container,

receives input data (as binary streams of ones and zeroes). It processes that

information using logic and arithmetic (as our brain does), and finally it

provides an output or action. The core of the computer is the CPU (central

processing unit), which is composed of the ALU (arithmetic-logic unit)

and the CU (control unit). The ALU—and therefore the entire computer—

processes information in digital form using a binary language with the

symbols 1 and 0. These symbols are known as bits, the elemental unit of

information in a computer.

Logical circuits represent one of the major technological components

of our current computers, and every logical connective described so far in

this chapter is known in the electronics world as a logical gate.

A logical gate is a structure of switches used to calculate in digital circuits.

It’s capable of producing predictable output based on the input. Generally,

the input is one of two selected voltages represented as zeroes and ones. The

0 has low voltage and the 1 has higher voltage. The range is between 0.7 volts

in emitter-coupled logic and approximately 28 volts in relay logic.

Note  Nerve cells known as neurons function in a more complex yet
similar way to logical gates. Neurons have a structure of dendrites
and axons for transmitting signals. A neuron receives a set of inputs
from its dendrites, relates them in a weighted sum, and produces
an output in the axon depending on the frequency type of the input
signal. Unlike logical gates, neurons are adaptables.

Every piece of information that we input into the computer (characters

from the keyboard, images, and so on) are eventually transformed into

zeroes and ones. This information is then carried on and transported via

logic circuits in a discontinuous or discreet manner. Information flows as

successive signals commonly made by electronic impulses constituted by

high (1) and low (0) voltage levels, as illustrated in Figure 1-1.

Chapter 1 Logic & AI

19

Logic circuits in the ALU transform the information received by executing

the proper logical gates (AND, OR, and so on). As a result, any transformation

endured by the incoming information is describable using propositional

logic. Circuits are built that connect various elementary electronic

components. We will abstract each electronic component and the operation

it represents into one of the diagrams shown in Figures 1-2, 1-3, and 1-4.

In Figure 1-5 we can see, as a first example of a logic circuit, a binary

comparer. This circuit receives two inputs p, q (bits) and outputs 0 if p

and q are equal; otherwise, it outputs 1. To verify that the output of the

diagram illustrated in Figure 1-5 is correct and actually represents a binary

comparer, we could go over all possible values of input bits p, q and check

the corresponding results.

A simple analysis of the circuit will show us that whenever inputs p,

q have different values then each will follow a path in which it is negated,

with the other bit left intact. This will activate one of the conjunction gates,

outputting 1 for it; thus, the final disjunction gate will output 1 as well, and

the bits will not be considered equals. In short, when the two inputs are

equal, the output will be 1, and if the inputs are not equal the output will be 0.

Figure 1-1.  Digital information flow

Figure 1-2.  Representation of negation component (NOT)

Chapter 1 Logic & AI

20

Figure 1-3.  Representation of disjunction component (OR)

Figure 1-4.  Representation of conjunction component (AND)

Chapter 1 Logic & AI

21

Now that we have studied various topics related to propositional logic,

it’s time to introduce a first practical problem. In the following section we’ll

present a way to represent logic formulas in C# using the facilities provided

by this powerful language. We’ll also see how to find all possible outputs of

a formula using binary decision trees.

�Practical Problem: Using Inheritance and
C# Operators to Evaluate Logic Formulas
Thus far, we have studied the basics of propositional logic, and in this

section we’ll present a first practical problem. We’ll create a set of classes, all

related by inheritance, that will allow us to obtain the output of any formula

from inputs defined a priori. These classes will use structural recursion.

In structural recursion the structure exhibited by the class—and

therefore the object—is recursive itself. In this case, recursion will be

present in methods from the Formula class as well as its descendants.

Using recursion, we’ll be calling methods all the way through the hierarchy

tree. Inheritance in C# will aid recursion by calling the proper version of

the method (the one that corresponds to the logical gate that the class

represents).

Figure 1-5.  Binary comparer circuit

Chapter 1 Logic & AI

22

In Listing 1-1 the parent of every other class in our formula design is

presented.

Listing 1-1.  Abstract Class Formula

public abstract class Formula

{

 public abstract bool Evaluate();

 public abstract IEnumerable<Variable> Variables();

}

The abstract Formula class states that all its descendants must

implement a Boolean method Evaluate() and an IEnumerable<Variable>

method Variables(). The first will return the evaluation of the formula

and the latter the variables contained within it. The Variable class will be

presented shortly.

Because binary logic gates share some features we’ll create an abstract

class to group these features and create a more concise, logical inheritance

design. The BinaryGate class, which can be seen in Listing 1-2, will

contain the similarities that every binary gate shares.

Listing 1-2.  Abstract Class BinaryGate

public abstract class BinaryGate : Formula

 {

 public Formula P { get; set; }

 public Formula Q { get; set; }

 public BinaryGate(Formula p, Formula q)

 {

 P = p;

 Q = q;

 }

Chapter 1 Logic & AI

23

 public override IEnumerable<Variable> Variables()

 {

 return P.Variables().Concat(Q.Variables());

 }

 }

In Listing 1-3 the first logic gate, the AND gate, is illustrated.

Listing 1-3.  And Class

public class And: BinaryGate

 {

 public And(Formula p, Formula q): base(p, q)

 { }

 public override bool Evaluate()

 {

 return P.Evaluate() &&Q.Evaluate();

}

 }

The implementation of the And class is pretty simple. It receives two

arguments that it passes to its parent constructor, and the Evaluate

method merely returns the logic AND that is built in to C#. Very similar are

the Or, Not, and Variable classes, which are shown in Listing 1-4.

Listing 1-4.  Or, Not, Variable Classes

public class Or : BinaryGate

 {

 public Or(Formula p, Formula q): base(p, q)

 { }

 public override bool Evaluate()

Chapter 1 Logic & AI

24

 {

 return P.Evaluate() || Q.Evaluate();

 }

 }

 public class Not : Formula

 {

 public Formula P { get; set; }

 public Not(Formula p)

 {

 P = p;

 }

 public override bool Evaluate()

 {

 return !P.Evaluate();

 }

 public override IEnumerable<Variable> Variables()

 {

 return new List<Variable>(P.Variables());

 }

 }

 public class Variable : Formula

 {

 public bool Value { get; set; }

 public Variable(bool value)

 {

 Value = value;

}

Chapter 1 Logic & AI

25

 public override bool Evaluate()

 {

 return Value;

 }

 public override IEnumerable<Variable> Variables()

 {

 return new List<Variable>() { this };

}

 }

Notice the Variable class is the one we use for representing variables

in formulas. It includes a Value field, which is the value given to the

variable (true, false), and when the Variables() method is called it returns

a List<Variable> whose single element is itself. The recursive inheritance

design that we have come up with then moves this value upward in the

inheritance to output the IEnumerable<Variable> with the correct objects

of type Variable when requested.

Now, let’s try to create a formula and find its output from some defined

inputs, as illustrated in Listing 1-5.

Listing 1-5.  Creating and Evaluating Formula ¬p ∨ q

var p = new Variable(false);

var q = new Variable(false);

var formula = new Or(new Not(p), q);

Console.WriteLine(formula.Evaluate());

p.Value = true;

Console.WriteLine(formula.Evaluate());

Console.Read();

Chapter 1 Logic & AI

26

The result obtained after executing the previous code is illustrated in

Figure 1-6.

Since every implication can be transformed into a free implication

formula using the OR and NOT expressions (according to the laws of

propositional logic) and every double implication can be set free of

implications’ transforming it into a conjunction of implications, then

having the preceding logic gates is enough to represent any formula.

�Practical Problem: Representing Logic
Formulas as Binary Decision Trees
A binary decision tree (BDT) is a labelled binary tree satisfying the

following conditions:

•	 The leaves are labelled with either 0 (False) or 1 (True).

•	 Non-leaf nodes are labelled with positive integers.

•	 Every non-leaf node labelled i has two child nodes,

both labelled i + 1.

•	 Every branch leading to a left child has a low value (0),

and every branch leading to a right child has a high

value (1).

Figure 1-6.  Result after executing code in Listing 1-5

Chapter 1 Logic & AI

27

Note A binary decision tree is just another way of representing or
writing the truth table of a formula.

In Figure 1-7 we can see a binary decision tree with leaf nodes

represented as squares and non-leaf nodes represented as circles.

In a BDT, every level of the tree matches a variable, and its two

branches correspond to its possible values (1, 0). A path from the root to

a leaf node represents an assignment for all variables of the formula. The

value found at a leaf node represents an interpretation of the formula; i.e.,

the result of an assignation from the root.

Now that we have studied some topics related to propositional

logic, it’s time to create our first AI data structure. As we’ll see, by using

the Formula class introduced in the last practical problem we will be

able to create our binary decision tree in just a few lines of code. Three

constructors, for different uses, will be included in the class, as shown in

Listing 1-6.

Figure 1-7.  Binary decision tree for p ∨ ¬q

Chapter 1 Logic & AI

28

Listing 1-6.  Constructors and Properties of BinaryDecisionTree

Class

public class BinaryDecisionTree

 {

 private BinaryDecisionTreeLeftChild { get; set; }

 private BinaryDecisionTreeRightChild { get; set; }

 private int Value { get; set; }

 public BinaryDecisionTree()

 { }

 public BinaryDecisionTree(int value)

{

 Value = value;

 }

 �public BinaryDecisionTree(int value, BinaryDecisionTreelft,

BinaryDecisionTreergt)

 {

 Value = value;

LeftChild = lft;

RightChild = rgt;

}

 ...

}

A binary decision tree is a recursive structure; as a result, its template

or class will include two properties, LeftChild and RightChild, that are of

type BinaryDecisionTree. The Value property is an integer that identifies

the variable as provided in the order given by the Variables() method in

the Formula class; this order is equivalent to the height of the tree; i.e., in

the first level the root node will have value 0, then at level (height) 1 every

node (all representing the same variable) will have value 1 and so on.

Chapter 1 Logic & AI

29

Note  In a binary decision tree every level represents a variable in
the formula. The left branch leaving a node (variable) corresponds
to the decision where that variable will have value 0 (false), and the
right branch indicates that the variable will have value 1 (true).

The static methods shown in Listing 1-7 will take care of building the

binary decision tree.

Listing 1-7.  Methods to Build Binary Decision Tree from Formula

public static BinaryDecisionTreeFromFormula(Formula f)

 {

 return TreeBuilder(f, f.Variables(), 0, "");

 }

 �private static BinaryDecisionTreeTreeBuilder(Formula f,

IEnumerable<Variable> variables, intvarIndex, string path)

 {

 �if (!string.IsNullOrEmpty(path))

variables.ElementAt(varIndex - 1).Value = path[path.Length - 1]

!= '0';

 if (varIndex == variables.Count())

 �return new BinaryDecisionTree(f.Evaluate() ?

1 : 0);

 �return new BinaryDecisionTree(varIndex,

TreeBuilder(f, variables, varIndex + 1, path + "0"),

TreeBuilder(f, variables, varIndex + 1, path + "1"));

 }

The public method FromFormula uses an auxiliary private method that

relies on recursion to create the tree.

Chapter 1 Logic & AI

30

The varIndex variable defines the height of the tree or, equivalently,

the index of the variable representing that tree level.

Path stores the evaluation of every variable as a binary string; e.g.,

“010” denotes the path where the root variable r is evaluated false, then its

left child lft is evaluated true, and finally lft’s right child is evaluated false.

Once we have reached a depth that equals the number of variables of the

formula, we evaluate the formula with the assignment matching the path

built so far and leave the final result in a leaf node.

By traversing the decision tree we can obtain the output of the

formula under a predefined set of values (path from root to leaf node)

for its variables. This feature can be very useful during decision-making

processes because the tree structure is very intuitive and easy to interpret

and understand. Decision trees will be covered deeply in Chapter 4; for

now we should know that they provide several advantages or benefits.

Among these, it’s worth mentioning that they create a visual representation

of all possible outputs and follow-up decisions in one view. Each

subsequent decision resulting from the original choice is also depicted

on the tree so we can see the overall effect of any one decision. As we go

through the tree and make choices, we’ll see a specific path from one node

to another and the impact a decision made now could have down the road.

As mentioned before, we will describe in the next section various

practical problems related to normal forms. We’ll learn how to transform

a formula in its regular state to negation normal form (NNF) and from

there to conjunctive normal form (CNF). This transformation will come in

handy when manipulating formulas and especially for developing

logic-related algorithms like DPLL.

Chapter 1 Logic & AI

31

�Practical Problem: Transforming a Formula
into Negation Normal Form (NNF)
In this problem, we’ll finally study an algorithm that transforms any

formula into negation normal form. Remember, normal forms are useful

because

•	 they reduce logic operators (implication, etc.);

•	 they reduce syntactical structure (nesting of

subformulas); and

•	 they can be taken advantage of to seek efficient data

structures.

The NNF transformation algorithm is determined by the following

recursive ideas; assuming F is the input formula, this is a pseudocode.

Function NNF(F):

If F is a variable or negated variable Then return F

If F is ¬(¬p) Then return NNF(p)

If F is p ∧ q Then return NNF(p) ∧ NNF(q)

If F is p ∨ q Then return NNF(p) ∨ NNF(q)

If F is ¬(p ∨ q) Then return NNF(¬p) ∧ NNF(¬q)

If F is ¬(p ∧ q) Then return NNF(¬p) ∨ NNF(¬q)

We will assume that all formulas are implication free and take

advantage of the Formula hierarchy to implement the pseudocode

described.

Chapter 1 Logic & AI

32

Note T he formulas ¬p ∧ q, p ∨ q, (p ∧ (¬q ∨ r)) are all in negation
normal form. The formulas ¬(q ∨¬r), ¬(p ∧ q) on the other hand are
not in negation normal form as some of these formulas include Or,
And formulas that are being negated. To be in NNF only variables can
be negated.

We’ll start by modifying the Formula abstract class as shown in Listing 1-8.

Listing 1-8.  Abstract Method ToNnf() Added to Abstract Class

Formula

public abstract class Formula

 {

 public abstract bool Evaluate();

 public abstract IEnumerable<Variable> Variables();

public abstract Formula ToNnf();

}

The And, Or classes require a little modification, including an override

to the newly created ToNnf() abstract method (Listing 1-9).

Listing 1-9.  And, Or Classes with ToNnf() Method Override

public class And: BinaryGate

 {

 public And(Formula p, Formula q): base(p, q)

 { }

 public override bool Evaluate()

 {

 return P.Evaluate() &&Q.Evaluate();

 }

Chapter 1 Logic & AI

33

public override Formula ToNnf()

 {

return new And(P.ToNnf(), Q.ToNnf());

 }

}

 public class Or : BinaryGate

 {

 public Or(Formula p, Formula q): base(p, q)

 { }

 public override bool Evaluate()

 {

 return P.Evaluate() || Q.Evaluate();

 }

public override Formula ToNnf()

 {

return new Or(P.ToNnf(), Q.ToNnf());

 }

 }

The Not class incorporates most of the steps (if statements) from the

NNF pseudocode; its final implementation can be seen in Listing 1-10.

Listing 1-10.  Not Class with Nnf() Override

public class Not : Formula

 {

 public Formula P { get; set; }

 public Not(Formula p)

 {

 P = p;

 }

Chapter 1 Logic & AI

34

 public override bool Evaluate()

 {

 return !P.Evaluate();

}

 public override IEnumerable<Variable> Variables()

 {

 return new List<Variable>(P.Variables());

 }

 Public override Formula ToNnf()

 {

if (P is And)

 �return new Or(new Not((P as And).P), new Not((P

as And).Q));

 if (P is Or)

 �return new And(new Not((P as Or).P), new Not((P

as Or).Q));

 if (P is Not)

 return new Not((P as Not).P);

 return this;

 }

 }

Finally, the Variable class includes a simple override of the Nnf()

abstract method inherited from its parent; the entire class is shown in

Listing 1-11.

Chapter 1 Logic & AI

35

Listing 1-11.  Variable Class with Nnf() Override

public class Variable : Formula

 {

 public bool Value { get; set; }

 public Variable(bool value)

 {

 Value = value;

 }

 public override bool Evaluate()

 {

 return Value;

 }

 public override IEnumerable<Variable> Variables()

 {

 return new List<Variable>() { this };

}

public override Formula ToNnf()

 {

 return this;

 }

 }

To obtain an NNF out of a formula we can simply call the Nnf()

method in some instance of the Formula class.

Chapter 1 Logic & AI

36

�Practical Problem: Transforming a Formula
into Conjunctive Normal Form (CNF)
A conjunctive normal form (CNF) is basically an AND of ORs; i.e.,

groups of variables or negated variables all connected using disjunction

connectives where all groups are related among themselves by conjunctive

connectives; e.g., (p ∨ q) ∧ (r ∨ ¬q). Because of the multiple reasons

detailed earlier, we are interested in taking a formula to CNF. A pseudocode

of the CNF transformation algorithm is presented in the next lines.

Function CNF(F):

If F is a variable or negated variable Then return F

If F is p ∧ q Then return CNF(p) ∧ CNF(q)

If F is p ∨ q Then return DISTRIBUTE-CNF

(CNF(p),CNF(q))

Function DISTRIBUTE-CNF(P, Q):

If P is R ∧ S Then return DISTRIBUTE-CNF (R, Q) ∧

DISTRIBUTE-CNF (R, Q)

If Q is T ∨ U Then return DISTRIBUTE-CNF (P, T) ∧

DISTRIBUTE-CNF (P, U)

return P ∨ Q

The CNF algorithm relies on an auxiliary method called DISTRIBUTE-

CNF that uses the distributive laws of propositional logic to decompose a

formula in order to get it closer to the excepted form of a CNF.

Note T he CNF algorithm assumes the input formula is already in
NNF. Every NNF formula can be transformed into an equivalent CNF
formula using the distributive laws of propositional logic.

Chapter 1 Logic & AI

37

As we did with the NNF algorithm, we’ll insert the CNF algorithm

into the Formula hierarchy that we have been enhancing in the previous

practical problems. Necessary edits to the Formula abstract class are

shown in Listing 1-12.

Listing 1-12.  Adding ToCnf() and DistributeCnf() Methods to the

Formula Class

public abstract class Formula

{

 public abstract bool Evaluate();

 public abstract IEnumerable<Variable> Variables();

 public abstract Formula ToNnf();

 public abstract Formula ToCnf();

public Formula DistributeCnf(Formula p, Formula q)

 {

if (p is And)

return new And(DistributeCnf((p as And).P, q), DistributeCnf

((p as And).Q, q));

if(q is And)

 �return new And(DistributeCnf(p, (q as And).P),

DistributeCnf(p, (q as And).Q));

return new Or(p, q);

}

 }

Now that we have added the abstract method to the parent class we

can include the corresponding overrides in the child classes And, Or as

shown in Listings 1-13 and 1-14.

Chapter 1 Logic & AI

38

Listing 1-13.  And Class with ToCnf() Method Override

public class And: BinaryGate

{

 public And(Formula p, Formula q): base(p, q)

 { }

 public override bool Evaluate()

 {

 return P.Evaluate() &&Q.Evaluate();

 }

 public override Formula ToNnf()

 {

 return new And(P.ToNnf(), Q.ToNnf());

 }

public override Formula ToCnf()

{

return new And(P.ToNnf(), Q.ToNnf());

}

 }

The override implementation of the ToCnf() methods in the Or and

And classes represents a direct result drawn from the pseudocode of the

CNF function (Listing 1-14).

Listing 1-14.  Or Class with ToCnf() Method Override

public class Or : BinaryGate

 {

 public Or(Formula p, Formula q): base(p, q)

 { }

 public override bool Evaluate()

Chapter 1 Logic & AI

39

 {

 return P.Evaluate() || Q.Evaluate();

 }

 public override Formula ToNnf()

 {

 return new Or(P.ToNnf(), Q.ToNnf());

}

public override Formula ToCnf()

{

return DistributeCnf(P.ToCnf(), Q.ToCnf());

}

 }

The Not and Variable classes will simply return a reference to

themselves on their ToCnf() override as shown in Listing 1-15.

Listing 1-15.  ToCnf() Method Override in Not, Variable Classes

public override Formula ToCnf()

{

 return this;

}

Remember: The CNF algorithm expects as input a formula in NNF;

therefore, before executing this algorithm we need to call the ToNnf()

method and then the ToCnf() on the Formula object created. In the

following chapter, we’ll start diving into an application of AI and logic

that’s directly related to all the practical problems we have seen thus far:

automated theorem proving.

Chapter 1 Logic & AI

40

�Summary
In this chapter, we analyzed the relationship between AI and logic. We

introduced a basic logic—propositional logic. We described various codes

that included a hierarchy for representing formulas (variables, logical

connectives, and so on), and we complemented this hierarchy with

different methods. Among these methods were the negation normal form

transformation algorithm and the conjunctive normal form transformation

algorithm (relies on the distributive laws previously introduced). We

also described a binary decision tree for representing formulas and their

possible evaluations.

In the next chapter, we’ll begin studying a very important logic that

extends propositional logic: first-order logic. At the same time, we’ll dive

into the world of automated theorem proving (ATP) and present a very

important method for determining satisfiability of a formula, the DPLL

algorithm:

(x)IsFriend(x, Arnaldo)(x)IsFriend(x, Arnaldo) (y)

IsWorkingWith(y, Arnaldo)

Chapter 1 Logic & AI

41© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_2

CHAPTER 2

Automated Theorem
Proving & First-Order
Logic
Following the line of thought begun in Chapter 1, we’ll start this chapter

by introducing a topic related to AI and logic: automated theorem proving.

This is a field of AI that serves mathematicians in their research and assists

them in proving theorems, corollaries, and so forth. In this chapter, we’ll

also devote some pages to first-order logic, a logic that extends propositional

logic by allowing or including quantifiers (universal and existential) and

providing a more complete framework for easily representing different

types of logical scenarios that could arise in our regular life.

At the same time, we’ll keep extending the Formula hierarchy

introduced in Chapter 1 by inserting clauses and CNF C# classes and

describing a very important method for solving the SAT (satisfiability)

problem: the DPLL algorithm. Practical problems will help us to better

understand every concept hereafter described. We will end the chapter

by presenting a simple cleaning robot that will use some of the terms of

first-order logic and show how they can be applied in a real-life problem.

42

�Automated Theorem Proving
An automated theorem Prover (ATP) is a computer program that can

generate and check mathematical theorems and search for a proof of

the theorem’s veracity; i.e., its statement is always true. Theorems are

expressed using some mathematical logic, such as propositional logic,

first-order logic, and so on. In this case, we’ll only consider an ATP that

uses propositional logic as its language. We can think of an ATP’s workflow

as illustrated in the diagram in Figure 2-1.

Figure 2-1.  ATP workflow diagram

ATPs were originally created for mathematical computation but

recently have gained notice in the scientific community as a wide range of

potential applications have been associated with them. One of the several

applications of ATPs is adding intelligence to databases of mathematical

theorems; in other words, using automated theorem provers to astutely

query for equivalent theorems within a database of mathematical

theorems. An ATP would be used to verify whether a theorem within

the database was mathematically equivalent to another entered by the

user. String-matching algorithms or similar techniques wouldn’t be good

enough for such an application since the user may have phrased the

theorem in a different way than how it was stored in the database, or the

searched-for theorem could be a logical consequence rather than a direct

clone of existing theorems.

Chapter 2 Automated Theorem Proving & First-Order Logic

43

Another application of theorem provers and formal methods can be

found in the verification of hardware and software designs. Hardware

verification happens to be an extremely important task. The commercial

cost of an error in the design of a modern microprocessor, for instance, is

potentially so large that verification of designs is essential.

Software verification is similarly crucial as mistakes can be very costly in

this area. Examples of the catastrophic consequences of such mistakes are

the destruction of the Ariane 5 rocket (caused by a simple integer overow

problem that could have been detected by a formal verification procedure)

or the error in the floating-point unit of the Pentium II processor.

The classical application of ATPs of course is that for which it was

created—as a tool to aid mathematicians in their research. One could say

ATPs are mathematicians’ favorite robots.

Note S ome logics are more powerful and can express and prove
more theorems than others. Propositional logic is usually the weakest
and simplest of them all.

Theorem provers vary depending on the amount of human guidance

that is required in the proof search and the sophistication of the logical

language that may be used to express the theorem that is to be proven.

A tradeoff between the automation degree and the sophistication of the

logical language must be taken into account.

A high degree of automation is only possible if the language is

constrained. Proofs for flexible, high-order languages generally require

human guidance, and the associated theorem prover is referred to as a

proof assistant.

This human assistance can be provided by the programmer’s giving

hints a priori or interacting with the ATP during the proof process through

a prompt.

Chapter 2 Automated Theorem Proving & First-Order Logic

44

The simplest type of ATP is the SAT (SATisfiability) solver, which relies

on propositional logic as theorem language. SAT solvers are very useful,

but the expressive power of propositional logic is limited, and Boolean

expressions can become quite large. Additionally, the SAT problem was the

first to be proved NP(Non-Polynomial)-complete in complexity (S.A. Cook,

“The Complexity of Theorem-proving Procedures”). There is a large

amount of research done in finding heuristics for efficient SAT solving.

In pure mathematics, proofs are somewhat informal; they are

“validated” by peer review and are intended to convince and convey an

intuitive, clear idea of how the proof works, and the theorem statement

should be always true. ATPs provide formal proofs where the output could

be, as shown in Figure 1-8, the Boolean values Yes, No (True, False), or

maybe a counterexample if the statement is found to be False.

Note S oftware and hardware verification using the approach of
model checking works well with propositional logic. Expressions are
obtained after considering a state machine description of the problem
and are manipulated in the form of binary decision trees.

An Automated Theorem Proving (ATP) can usually handle two types

of tasks: they can check theorems in their logic or they can automatically

generate proofs.

When proof checking, the ATP receives as input a formal proof, which

consists of a list (steps) of formulas, each justified either by an axiom or

inference rule applied to previous formulas:

Formulas Justification

F1 Axiom

F2 Rule X and F1

... ...

Theorem

Chapter 2 Automated Theorem Proving & First-Order Logic

https://doi.org/10.1007/978-1-4842-3357-3_1#Fig8

45

These types of proofs are very easy to check mechanically; we just need

to make sure that every justification is valid or is applied correctly.

However, proof generation is much harder. We need to generate a

list of formulas, each with a valid justification and guaranteeing that the

last formula is the theorem to be proven. For simple problems, proof

generation is very useful; for example, type inference (C#, Java), safety of

web applications, and so forth.

So far we have described a SAT solver—the binary decision tree, which

is suitable for small problems. However, its size is exponential, and to

check satisfiability we would need to explore the entire tree in the worst-

case scenario. Hence, in future sections we’ll detail more on this topic and

on how to obtain better results using other methods.

Note I n 1976 Kenneth Appel and Wolfgang Haken proved the
four-color theorem using a program that performed a gigantic case
analysis of billions of cases. The four-color theorem states that it’s
possible to paint a world map using only four colors and guaranteeing
that there will not be two neighboring countries that share the same
color.

�Practical Problem: Clauses and CNFs
Classes in C#
In this section, we’ll enhance the logic framework we have been developing

throughout this chapter with the addition of the Clause and Cnf classes.

We’ll make use of these classes when coding the DPLL algorithm, probably

the most ingenious algorithm for determining the satisfiability of a logic

formula and a basic tool for automated theorem proving.

Chapter 2 Automated Theorem Proving & First-Order Logic

46

Before we start developing this new enhancement, let’s take a brief

look at some definitions that will come in handy for understanding the

classes that we’ll be developing soon.

A literal is either a variable or the negation of a variable (e.g., p, ¬p, q, ¬q).

A clause is a disjunction of literals p1 ∨ p2 ∨ ... ∨ pm, and every CNF is

a set of clauses. From now on we’ll denote a clause as {p1, p2, ... pm} where

every pi(i = 1, 2, ... ,m) is a literal.

In Listing 2-1 we illustrate the proposed Clause class.

Listing 2-1.  Clause Class

public class Clause

 {

 public List<Formula> Literals { get; set; }

 public Clause()

 {

 Literals = new List<Formula>();

 }

 public bool Contains(Formula literal)

 {

if (!IsLiteral(literal))

 �throw new ArgumentException("Specified formula

is not a literal");

foreach (var formula in Literals)

 {

 if (LiteralEquals(formula, literal))

 return true;

 }

 return false;

 }

Chapter 2 Automated Theorem Proving & First-Order Logic

47

 public Clause RemoveLiteral(Formula literal)

 {

if (!IsLiteral(literal))

 �throw new ArgumentException("Specified formula

is not a literal");

var result = new Clause();

 for (vari = 0; i<Literals.Count; i++)

 {

 if (!LiteralEquals(literal, Literals[i]))

result.Literals.Add(Literals[i]);

 }

 return result;

 }

 public bool LiteralEquals(Formula p, Formula q)

 {

 if (p is Variable && q is Variable)

 �return (p as Variable).Name == (q as

Variable).Name;

 if (p is Not && q is Not)

 return LiteralEquals((p as Not).P, (q as Not).P);

 return false;

 }

 public bool IsLiteral(Formula p)

 {

 �return p is Variable || (p is Not && (p as Not).P

is Variable);

 }

}

Chapter 2 Automated Theorem Proving & First-Order Logic

48

The Clause class contains the following methods:

•	 public bool Contains(Formula literal):

determines whether a given literal belongs to the clause

•	 public Clause RemoveLiteral(Formula literal):

returns a new Clause that does not contain the literal

passed as argument

•	 public bool LiteralEquals(Formula p, Formula

q): determines whether literals p, q are equal

•	 public bool IsLiteral(Formula p): determines

whether a given formula is a literal

The Cnf class, which represents a conjunctive normal form, is

illustrated in Listing 2-2.

Listing 2-2.  Cnf Class

public class Cnf

 {

 public List<Clause> Clauses { get; set; }

 public Cnf()

 {

 Clauses = new List<Clause>();

 }

 public Cnf(And and)

 {

 Clauses = new List<Clause>();

RemoveParenthesis(and);

 }

Chapter 2 Automated Theorem Proving & First-Order Logic

49

 public void SimplifyCnf()

 {

Clauses.RemoveAll(TautologyClauses);

 }

 private bool TautologyClauses(Clause clause)

 {

 for (vari = 0; i<clause.Literals.Count; i++)

 {

 �for (var j = i + 1;

j <clause.Literals.Count - 1; j++)

 {

 �// Checking that literal i and literal

j are not of the same type; i.e., both

variables or negated literals.

 �if (!(clause.Literals[i] is Variable

&&clause.Literals[j] is Variable) &&

 �!(clause.Literals[i] is Not &&clause.

Literals[j] is Not))

 {

var not = clause.Literals[i] is Not ? clause.Literals[i] as

Not : clause.Literals[j] as Not;

var @var = clause.Literals[i] is Variable ? clause.Literals[i]

as Variable : clause.Literals[j] as Variable;

 if (IsNegation(not, @var))

 return true;

 }

 }

 }

 return false;

 }

Chapter 2 Automated Theorem Proving & First-Order Logic

50

 private bool IsNegation(Not f1, Variable f2)

 {

 return (f1.P as Variable).Name == f2.Name;

 }

private void Join(IEnumerable<Clause> others)

 {

Clauses.AddRange(others);

 }

 private voidRemoveParenthesis(And and)

 {

varcurrentAnd = and;

 while (true)

 {

 // If P is OR or literal and Q is OR or literal.

 �if ((currentAnd.P is Or || currentAnd.P is

Variable || currentAnd.P is Not) &&

 �(currentAnd.Q is Or || currentAnd.Q is

Variable || currentAnd.Q is Not))

 {

Clauses.Add(new Clause { Literals = new List<Formula>(currentAnd.

P.Literals()) });

Clauses.Add(new Clause { Literals = new List<Formula>(currentAnd.

Q.Literals()) });

 break;

 }

 // If P is AND and Q is OR or literal.

 �if (currentAnd.P is And && (currentAnd.Q is Or ||

currentAnd.Q is Variable || currentAnd.Q is Not))

 {

Chapter 2 Automated Theorem Proving & First-Order Logic

51

Clauses.Add(new Clause { Literals = new List<Formula>(currentAnd.

Q.Literals()) });

currentAnd = currentAnd.P as And;

 }

 // If P is OR or literal and Q is AND.

 �if ((currentAnd.P is Or || currentAnd.P is

Variable || currentAnd.P is Not) &¤tAnd.

Q is And)

 {

Clauses.Add(new Clause { Literals = new List<Formula>(currentAnd.

P.Literals()) });

currentAnd = currentAnd.Q as And;

 }

 // If both P and Q are ANDs.

 if (currentAnd.P is And &¤tAnd.Q is And)

 {

RemoveParenthesis(currentAnd.P as And);

RemoveParenthesis(currentAnd.Q as And);

 break;

 }

 }

 }

The Cnf class contains the following methods:

•	 public void SimplifyCnf(): simplifies the formula

by deleting every clause containing both p and ¬p.

Since p ∨ ¬p is always true, the entire clause becomes

true, and its analysis is unnecessary.

•	 public bool TautologyClauses(Clause clause):

determines whether the given clause contains p and ¬p

Chapter 2 Automated Theorem Proving & First-Order Logic

52

•	 private bool IsNegation(Not f1, Variable f2):

determines whether f 1 is the negation of variable f 2

•	 private void Join(IEnumerable<Clause> others):

concatenates the IEnumerable<Clause> others to Cnf’s

clauses

•	 private voidRemoveParenthesis(And and): changes

Cnf to a list of clauses

The method RemoveParenthesis(And and) is in charge of executing a

very important task. This method transforms the CNF formula that we have

as a series of concatenated AND connectives, And(p1, And(p2, And(...)

)), into a list of clauses.

The Formula hierarchy we have been using thus far has saved us

from having to implement a parser for logic formulas, but it cost us just

a little bit on clarity. We aim to recover it by executing this method and

transforming the And formula representing CNFs into a list of clauses. This

new representation will come in handy for any CNF-related algorithm that

we may need to develop; it will certainly be useful for the DPLL algorithm

that we will introduce shortly.

Note I f you would like to develop a parser for logic formulas, you
can use ANTLR (Another Tool for Language Recognition), a very useful
tool that helps developers in the grammar-writing process and the
creation of parsers. ANTLR generates and outputs parsers as Java
or C# classes (.cs files), allowing you to include them later in your
projects and use them at will.

The RemoveParenthesis(And and) method consists basically of a

while loop with several conditions contained within. These conditions

might mark the end of the loop, and each of them matches a different

Chapter 2 Automated Theorem Proving & First-Order Logic

53

scenario that could arise as we consider the types of formulas P and Q

from the argument And. These scenarios are as follows:

•	 P, Q are ORs or literals.

•	 (P is OR or literal) and Q is And.

•	 P is And and (Q is OR or literal).

•	 P, Q are both And.

Notice in the body of RemoveParenthesis(And and) that there exist

several calls to a Literals() method. This method must be created and

inserted all across the Formula hierarchy as we did before with the ToNnf()

and ToCnf() methods. We start from the top, the Formula abstract class, as

shown in Listing 2-3.

Listing 2-3.  Adding Literals() Abstract Method to Formula Abstract

Class

public abstract class Formula

 {

 public abstract bool Evaluate();

 public abstract IEnumerable<Variable> Variables();

 public abstract Formula ToNnf();

 public abstract Formula ToCnf();

 public abstract IEnumerable<Formula> Literals();

...

}

Now, we need to spread concrete implementations of the Literals()

method throughout the hierarchy. In Listing 2-4 we present the concrete

implementation for the remaining classes.

Chapter 2 Automated Theorem Proving & First-Order Logic

54

Listing 2-4.  Adding the Literals() Method to the Remaining Classes

of the Hierarchy

public abstract class BinaryGate : Formula

 {

...

public override IEnumerable<Formula> Literals()

 {

return P.Literals().Concat(Q.Literals());

}

 }

public class Not : Formula

{

...

public override IEnumerable<Formula> Literals()

 {

return P is Variable ? new List<Formula>() { this }:

P.Literals();

}

}

public class Variable : Formula

{

 ...

public override IEnumerable<Formula> Literals()

 {

 returnnew List<Formula>() { this };

 }

}

Chapter 2 Automated Theorem Proving & First-Order Logic

55

Up to this point we have built a framework for logic in C#; now, it’s time

to examine one of the simplest yet most efficient and ingenious algorithms

for determining the satisfiability of a formula: the DPLL algorithm.

�DPLL Algorithm
The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is a decision-

making procedure that uses backtracking to search for an assignment that

makes a formula in CNF satisfiable. It was introduced in two articles in

1960 (by Davis, Putnam) and 1962 (by Davis, Logemann, Loveland) and

even today still forms the basis for most efficient SAT solvers; it has even

been extended for small pieces of more complex logic, like first-order logic.

The SAT problem was the first problem to be proven to be NP-

Complete; as a result, it’s essential to find efficient procedures that solve

it. Furthermore, this problem has applications in automated theorem

proving, planning, scheduling, and many other areas of artificial

intelligence, so throughout the years it has inspired great interest in the

scientific community.

DPLL receives as input a CNF formula and tries to build an assignment

that verifies the formula using backtracking and applying certain rules

that simplify and reduce the complexity of the current formula. The set of

possible assignments is represented using a binary tree very much like the

binary decision tree we presented in Chapter 1.

A pseudocode of the algorithm is illustrated in the following lines:

DPLL(cnf):

 TERMINATION-CONDITIONS(cnf)

cnf' = Rule_OneLiteral(cnf)

cnf'' = Rule_PureLiteral(cnf')

Chapter 2 Automated Theorem Proving & First-Order Logic

56

 // Splits the decision tree into branches p and ¬p

 splitted = Rule_Split(cnf'')

 return DPLL(splitted[p]) || DPLL(splitted[¬p])

TERMINATION-CONDITIONS(cnf):

 If cnf.Clauses is Empty:

 return True

 If cnf.Clauses contains Empty_Clause:

 return False

DPLL builds a tree that is shaped using three rules: OneLiteral,

PureLiteral, and Split. The first two determine the formula that is

contained in every node while the latter creates new branches in the tree.

Let us examine them one by one:

•	 OneLiteral: If there is a unit clause—i.e., a clause

containing only one literal p—then delete that clause

as well as every clause containing p. Then, delete

the negation of p (¬p) from every clause of CNF. If a

formula is to be satisfiable then this literal necessarily

must be 1 since it determines the truth value of its

clause.

•	 PureLiteral: If there is a literal p such that ¬p does not

belong to any clause of CNF then delete every clause

containing p. In this case, we can assign value 1 to p

since its negation does not exist in CNF.

•	 Split: After applying the Pure Literal rule we know that

if there’s a literal p then its negation must also be there.

Thus, we select a literal p and divide the set of clauses

into Cp, C¬p, and R. The set of clauses Cp contains all

clauses including literal p. C¬p every clause containing

¬p and R the set of clauses that do not contain p or ¬p.

Chapter 2 Automated Theorem Proving & First-Order Logic

57

Finally we obtain the sets Cp + R and C¬p + R, where

Cp + R is the set obtained after adding every clause

in R to Cp; C¬p + R is the set obtained after adding

every clause in R to C¬p. These two sets will be the

new CNFs root nodes for the left and right branches

of the tree that we are forming under the DPLL

procedure.

An example of these rules can be seen in the following lines; in each

case an initial CNF formula is presented and then each rule is applied to it.

One Literal Example

CNF = {{p, q, ¬r},{p, ¬q}, {¬p}, {r}, {u}}

-Apply OneLiteral rule with L = ¬p

CNF' = {{p, q, ¬r},{p, ¬q}, {r}, {u}}

-Removing ¬L = p from clauses in Cnf'

CNF'' = {{q, ¬r},{¬q}, {r}, {u}}

Pure Literal Example

CNF = {{p, q},{p, ¬q}, {r, q}, {r, ¬q}}

-Apply PureLiteral rule with L = p

CNF' = {{r, q}, {r, ¬q}}

Split Example

CNF = {{p, ¬q, r},{¬p, q}, {¬r, q}, {¬r, ¬q}}

-Apply Split rule with L = p

CNF' = {{¬q, r}, {¬r, q}, {¬r, ¬q}}

CNF'' = {{q}, {¬r, q}, {¬r, ¬q}}

The DPLL algorithm as well as all its auxiliary methods will be

included in the Cnf class. The public Dpll() method will rely on an

auxiliary private Dpll method that will receive as argument a copy of the

Cnf class as shown in Listing 2-5.

Chapter 2 Automated Theorem Proving & First-Order Logic

58

Listing 2-5.  Dpll() Method and Its Auxiliary Method Dpll(Cnf cnf)

 public bool Dpll()

 {

 �return Dpll(new Cnf {Clauses = new

List<Clause>(Clauses)});

 }

 private bool Dpll(Cnfcnf)

 {

 // The CNF with no clauses is assumed to be True

 if (cnf.Clauses.Count == 0)

 return true;

 �// Rule One Literal: if there exists a clause with

a single literal

 �// we assign it True and remove every clause

containing it.

varcnfAfterOneLit = OneLiteral(cnf);

 if (cnfAfterOneLit.Item2 == 0)

 return true;

 if (cnfAfterOneLit.Item2 < 0)

 return false;

cnf = cnfAfterOneLit.Item1;

 �// Rule Pure Literal: if there exists a literal and

its negation does not exist in any clause of Cnf

varcnfPureLit = PureLiteralRule(cnf);

 �// Rule Split: splitting occurs over a literal and

creates 2 branches of the tree

var split = Split(cnfPureLit);

 return Dpll(split.Item1) || Dpll(split.Item2);

 }

Chapter 2 Automated Theorem Proving & First-Order Logic

59

From Listing 2-5 we can see that the Dpll(Cnfcnf) method is pretty

close to matching exactly the DPLL pseudocode previously presented.

First, we check that there are some clauses in the current Cnf class, and

then we execute the first simplification rule, which is the One Literal rule.

As illustrated in Listing 2-6, the OneLiteral(Cnfcnf) method returns a

Tuple<Cnf, int> where the resulting Cnf class in the tuple will be the one

obtained after executing the simplification and the resulting integer can be

either -1, 0, or 1. If its value is 0 then the Cnf formula has no more clauses

to check, and therefore it must be true (satisfiable); if its value is -1 then

an empty clause was found in the Cnf and it must be false (unsatisfiable).

Finally, in cases where it has value 1 the procedure must continue as no

conclusive result of Cnf’s satisfiability has been found.

A description of the two auxiliary methods used by

OneLiteral(Cnfcnf) are detailed here:

•	 Negate Literal(Formula literal): receives as

argument a Formula assumed to be a literal and returns

its negation. In any other case returns null.

•	 UnitClause(Cnfcnf): finds a clause with a single literal

and returns this literal. In cases where there’s not such

a clause it returns null.

The code of this rule would be as in Listing 2-6.

Listing 2-6.  OneLiteral() Rule and Its Auxiliary Methods

private Tuple<Cnf, int>OneLiteral(Cnfcnf)

 {

varunitLiteral = UnitClause(cnf);

 if (unitLiteral == null)

 return new Tuple<Cnf, int>(cnf, 1);

varnewCnf = new Cnf();

Chapter 2 Automated Theorem Proving & First-Order Logic

60

 while (unitLiteral != null)

 {

varclausesToRemove = new List<int>();

vari = 0;

 �// 1st Loop - Finding clauses where the

unit literal is, these clauses will not be

considered in the new Cnf

foreach (var clause in cnf.Clauses)

 {

 �if (clause.Literals.Any(literal =>clause.

LiteralEquals(literal, unitLiteral)))

clausesToRemove.Add(i);

i++;

 }

 �// New Cnf after removing every clause where

unit literal is

newCnf = new Cnf();

 �// 2nd Loop - Leave clause that do not include

the unit literal

 for (var j = 0; j <cnf.Clauses.Count; j++)

 {

 if (!clausesToRemove.Contains(j))

newCnf.Clauses.Add(cnf.Clauses[j]);

 }

 // No clauses, which implies SAT

 if (newCnf.Clauses.Count == 0)

 return new Tuple<Cnf, int>(newCnf, 0);

Chapter 2 Automated Theorem Proving & First-Order Logic

61

 �// Remove negation of unit literal from

remaining clauses

varunitNegated = NegateLiteral(unitLiteral);

varclausesNoLitNeg = new List<Clause>();

foreach (var clause in newCnf.Clauses)

 {

varnewClause = new Clause();

 �// Leaving every literal except the unit

literal negated

foreach (var literal in clause.Literals)

 �if (!clause.LiteralEquals(literal,

unitNegated))

newClause.Literals.Add(literal);

clausesNoLitNeg.Add(newClause);

 }

newCnf.Clauses = new List<Clause>(clausesNoLitNeg);

 // Resetting variables for next stage

cnf = newCnf;

unitLiteral = UnitClause(cnf);

 // Empty clause found

 if (cnf.Clauses.Any(c =>c.Literals.Count == 0))

 return new Tuple<Cnf, int>(newCnf, -1);

 }

 return new Tuple<Cnf, int>(newCnf, 1);

 }

Chapter 2 Automated Theorem Proving & First-Order Logic

62

 public Formula NegateLiteral(Formula literal)

 {

 if (literal is Variable)

 return new Not(literal);

 if (literal is Not)

 return (literal as Not).P;

 return null;

 }

 private Formula UnitClause(Cnfcnf)

 {

foreach (var clause in cnf.Clauses)

 if (clause.Literals.Count == 1)

 return clause.Literals.First();

 return null;

 }

The OneLiteral method consists of a while loop that ends when either

there are no more clauses of a single literal in the current Cnf class or one

of the termination conditions (no clauses in Cnf or empty clause found) is

reached. Inside this while loop there’s a first loop that stores the positions

of unit clauses in every clause, including the current unit literal. There is

a second loop that builds up a new Cnf class by skipping those clauses

whose positions were stored in the first loop. A third and final loop within

the while does an analogous job to the first two loops but in this case

makes sure the negation of the unit literal is removed from every clause in

the new Cnf obtained after the execution of the first two loops.

In Listing 2-7 we can see the code of the Pure Literal rule, which is

typically applied after the One Literal rule.

Chapter 2 Automated Theorem Proving & First-Order Logic

63

Listing 2-7.  PureLiteral() Rule and Its Auxiliary Methods

private CnfPureLiteralRule(Cnfcnf)

 {

varpureLiterals = PureLiterals(cnf);

 if (pureLiterals.Count() == 0)

 return cnf;

varnewCnf = new Cnf();

varclausesRemoved = new SortedSet<int>();

 // Checking what clauses contain pure literals

foreach (varpureLiteral in pureLiterals)

 {

 for (vari = 0; i<cnf.Clauses.Count; i++)

 {

 if (cnf.Clauses[i].Contains(pureLiteral))

clausesRemoved.Add(i);

 }

 }

 // Creating the new set of clauses

 for (vari = 0; i<cnf.Clauses.Count; i++)

 {

 if (!clausesRemoved.Contains(i))

newCnf.Clauses.Add(cnf.Clauses[i]);

 }

 return newCnf;

 }

 private IEnumerable<Formula>PureLiterals(Cnfcnf)

 {

var result = new List<Formula>();

Chapter 2 Automated Theorem Proving & First-Order Logic

64

foreach (var clause in cnf.Clauses)

foreach (var literal in clause.Literals)

 {

 if (PureLiteral(cnf, literal))

result.Add(literal);

 }

 return result;

 }

 private bool PureLiteral(Cnfcnf, Formula literal)

 {

var negation = NegateLiteral(literal);

foreach (var clause in cnf.Clauses)

 {

foreach (var l in clause.Literals)

 if (clause.LiteralEquals(l, negation))

 return false;

 }

 return true;

 }

The PureLiteralRule method takes care of executing the Pure Literal

rule over the new Cnf class returned by the One Literal rule. It relies on the

following auxiliary methods:

•	 PureLiterals(Cnf cnf): returns a list of pure literals

found in Cnf class

•	 PureLiteral(Cnf cnf, Formula literal): determines

whether a given literal is a pure literal; i.e., it return false

if its negation exists in Cnf class; true otherwise.

Chapter 2 Automated Theorem Proving & First-Order Logic

65

The PureLiteralRule() method finds all pure literals in the Cnf class

and removes them from every clause in the CNF formula; a new Cnf with

the resulting clauses is returned.

As a final point, the Split() method is shown in Listing 2-8.

Listing 2-8.  Split() Rule and Its Auxiliary Methods

 private Tuple<Cnf, Cnf> Split(Cnfcnf)

 {

var literal = Heuristics.ChooseLiteral(cnf);

var tuple = SplittingOnLiteral(cnf, literal);

 �return new Tuple<Cnf, Cnf>(RemoveLiteral(tuple.Item1,

literal), RemoveLiteral(tuple.Item2,

NegateLiteral(literal)));

 }

 private CnfRemoveLiteral(Cnfcnf, Formula literal)

 {

var result = new Cnf();

foreach (var clause in cnf.Clauses)

result.Clauses.Add(clause.RemoveLiteral(literal));

 return result;

 }

 �private Tuple<Cnf, Cnf>SplittingOnLiteral(Cnfcnf,

Formula literal)

 {

 // List of clauses containing literal

var @in = new List<Clause>();

 // List of clauses containing Not(literal)

varinNegated = new List<Clause>();

Chapter 2 Automated Theorem Proving & First-Order Logic

66

 �// List of clauses not containing literal nor

Not(literal)

var @out = new List<Clause>();

var negated = NegateLiteral(literal);

foreach (var clause in cnf.Clauses)

 {

 if (clause.Contains(literal))

 @in.Add(clause);

 else if (clause.Contains(negated))

inNegated.Add(clause);

 else

 @out.Add(clause);

 }

varinCnf = new Cnf { Clauses = @in };

varoutCnf = new Cnf { Clauses = @inNegated };

inCnf.Join(@out);

outCnf.Join(@out);

 return new Tuple<Cnf, Cnf>(inCnf, outCnf);

 }

This method uses the following auxiliary methods:

•	 RemoveLiteral(Cnf cnf, Formula literal): returns

a new Cnf class where each clause will not contain the

literal received as argument

•	 SplittingOnLiteral(Cnf cnf, Formula literal):

returns a tuple containing two CNFs according to the

Split rule previously described

Chapter 2 Automated Theorem Proving & First-Order Logic

67

In the Split() method we make a call to a static method

ChooseLiteral() from a class named Heuristics; this method outputs

the first literal from the CNF formula and takes it as the branching literal.

Heuristics and metaheuristics are topics that we’ll analyze deeply in

Chapter 7. For the time being, let us think of a heuristic as a procedure

that, drawn from experience, helps us in attaching human, empiric

knowledge to the process of solving a certain problem.

Note I n the SplittingOnLiteral() method we declared
variables @in, inNegated, and @out with the purpose of storing
clauses that contain the literal selected for splitting or branching,
its negation, and any other clause respectively. We use the @ prefix
because in and out are keywords in C#.

In DPLLs, tree construction is extremely important for efficiency

reasons in order to properly select the literal that will be used for

branching; i.e., the literal that will be used to split the current node and

create new branches of the tree. We’ll content ourselves with the naïve,

simple method that we have for branching, and later in this book we will

dive into better ways to select and branch.

�Practical Problem: Modeling the Pigeonhole
Principle in Propositional Logic
The Pigeonhole Principle, also known as Dirichlet’s Box Principle, is a

simple yet fundamental idea in mathematics. It was formulated back in the

1800s by the German mathematician Peter Gustav Lejeune Dirichlet, the

scientist who defined the concept of function as we know it today—one of

his multiple contributions in many fields.

Chapter 2 Automated Theorem Proving & First-Order Logic

https://es.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet
https://es.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet
https://es.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet

68

The principle states that if you have n pigeonholes and m pigeons

where m > n (# pigeons > # pigeonholes) then there’s at least one

pigeonhole containing two pigeons.

To formulate the principle in propositional logic, let us consider

variable p_ij, which will indicate that pigeon i is mapped to pigeonhole j.

We’ll try to create a CNF formula that models this problem and then find

out about its satisfiability.

The following constraints will determine the clauses of the resulting

CNF formula.

•	 p_i1 ∨ p_i2 ∨ ... ∨ p_in, for each i <= m

•	 ¬p_ik ∨ ¬p_jk, for each i, j <= m and k <= n, i ≠ j

The first rule guarantees that every clause (pigeonhole) contains at

least one pigeon. The second rule or constraint is applied to every distinct

pair of variables and guarantees that there are not two pigeons in the same

pigeonhole. In the following practical problem, we'll see an example of

how to test the Pigeonhole Principle in our program.

�Practical Problem: Finding Whether
a Propositional Logic Formula is SAT
In this practical problem we’ll use the hierarchy and the DPLL algorithm

previously described to determine whether a given propositional logic

formula is satisfiable. To provide better visualization of results we’ll

implement a Name property in the Variable class as well as ToString()

overrides in classes Not, And, Or, Variable, and Cnf (Listing 2-9).

Chapter 2 Automated Theorem Proving & First-Order Logic

69

Listing 2-9.  Adding Name Property to Variable Class and ToString()

Overrides for Variable, Not, And, Or, and Cnf Classes

public class Variable : Formula

 {

 public bool Value { get; set; }

 public string Name { get; set; }

 ...

 public override string ToString()

 {

 return Name;

 }

 }

public class Not : Formula

 {

 ...

 public override string ToString()

 {

 return "!" + p;

 }

 }

public class Or : BinaryGate

 {

 ...

 public override string ToString()

 {

 return "(" + P + " | " + Q + ")";

 }

 }

Chapter 2 Automated Theorem Proving & First-Order Logic

70

public class And : BinaryGate

 {

 ...

 public override string ToString()

 {

 return "(" + P + " & " + Q + ")";

 }

 }

public class Cnf : BinaryGate

 {

 ...

 public override string ToString()

 {

 if (Clauses.Count > 0)

 {

 var result = "";

 foreach (var clausule in Clauses)

 {

 var c = "";

 foreach (var literal in clausule.Literals)

 c += literal + ",";

 result += "(" + c + ")";

 }

 return result;

 }

 return "Empty CNF";

 }

 }

Chapter 2 Automated Theorem Proving & First-Order Logic

71

Let’s start by trying to input the next formula into our program:

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬r)

We’ll use the And, Or, Variable, and Not classes to create this formula,

as illustrated in Listing 2-10.

Listing 2-10.  Creating Formula (p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬r)

and Finding Out If It’s Satisfiable Using the DPLL Algorithm

var p = new Variable(true) { Name = "p" };

var q = new Variable(true) { Name = "q" };

var r = new Variable(true) { Name = "r" };

var f1 = new And(new Or(p, q), new Or(p, new Not(q)));

var f2 = new And(new Or(new Not(p), q), new Or(new Not(p),

new Not(r)));

var formula = new And(f1, f2);

varnnf = formula.ToNnf();

Console.WriteLine("NNF: " + nnf);

nnf = nnf.ToCnf();

varcnf = new Cnf(nnf as And);

cnf.SimplifyCnf();

Console.WriteLine("CNF: " + cnf);

Console.WriteLine("SAT: " + cnf.Dpll());

Chapter 2 Automated Theorem Proving & First-Order Logic

72

The result obtained after executing this code is shown in Figure 2-2.

Figure 2-3.  Results after executing the DPLL algorithm on the
previous formula

Figure 2-2.  Results after executing the previous code

Now, let’s try a different formula (Listing 2-11; Figure 2-3):

(p ∨ q ∨ ¬r) ∨ (p ∨ q ∨ r) ∧ (p ∨ ¬q) ∧ ¬p

Listing 2-11.  Creating Formula (p ∨ q ∨ ¬r) ∨ (p ∨ q ∨ r) ∨ (p ∨ ¬q) ∨ ¬p

and Finding Out If It’s Satisfiable Using the DPLL Algorithm

var f1 = new Or(p, new Or(q, new Not(r)));

var f2 = new Or(p, new Or(q, r));

var f3 = new Or(p, new Not(q));

var formula = new And(f1, new And(f2, new And(f3, new Not(p))));

Chapter 2 Automated Theorem Proving & First-Order Logic

73

We will use one final formula to test the algorithm and the Formula

hierarchy introduced in this chapter (Listing 2-12; Figure 2-4).

(p ˅ q ˅ r) ˄ (p ˅ q ˅ ¬r) ˄ (p ˅ ¬q ˅ r) ˄ (p ˅ ¬q ˅ ¬r) ˄ (¬p ˅ q
˅ r) ˄ (¬p ˅ q ˅ ¬r) ˄ (¬p ˅ ¬q ˅ r)

Listing 2-12.  Creating Formula (p ˅ q ˅ r) ˄ (p ˅ q ˅ ¬r) ˄ (p ˅ ¬q ˅ r) ˄ (p

˅ ¬q ˅ ¬r) ˄ (¬p ˅ q ˅ r) ˄ (¬p ˅ q ˅ ¬r) ˄ (¬p ˅ ¬q ˅ r) and Finding Out If It’s

Satisfiable Using the DPLL Algorithm

var f1 = new Or(p, new Or(q, r));

var f2 = new Or(p, new Or(q, new Not(r)));

var f3 = new Or(p, new Or(new Not(q), r));

var f4 = new Or(p, new Or(new Not(q), new Not(r)));

var f5 = new Or(new Not(p), new Or(q, r));

var f6 = new Or(new Not(p), new Or(q, new Not(r)));

var f7 = new Or(new Not(p), new Or(new Not(q), r));

var formula = new And(f1, new And(f2, new And(f3, new And(f4,

new And(f5, new And(f6, f7))))));

Figure 2-4.  Results after executing the DPLL algorithm on the
previous formula

Chapter 2 Automated Theorem Proving & First-Order Logic

74

Recalling now the Pigeonhole Principle (described in the last practical

problem), let’s consider the case where m = 3, n = 2. This case would be

encoded in our program as shown in Listing 2-13.

Listing 2-13.  Pigeonhole Principle Modeled in Our Program for the

Case Where m = 3, n = 2; i.e., m pigeons, n pigeonholes

// Pigeonhole Principle m = 3, n = 2

var p11 = new Variable(true) { Name = "p11" };

var p12 = new Variable(true) { Name = "p12" };

var p21 = new Variable(true) { Name = "p21" };

var p22 = new Variable(true) { Name = "p22" };

var p31 = new Variable(true) { Name = "p31" };

var p32 = new Variable(true) { Name = "p32" };

var f1 = new Or(p11, p12);

var f2 = new Or(p21, p22);

var f3 = new Or(p31, p32);

var f4 = new Or(new Not(p11), new Not(p21));

var f5 = new Or(new Not(p11), new Not(p31));

var f6 = new Or(new Not(p21), new Not(p31));

var f7 = new Or(new Not(p12), new Not(p22));

var f8 = new Or(new Not(p12), new Not(p32));

var f9 = new Or(new Not(p22), new Not(p32));

var formula = new And(f1, new And(f2, new And(f3, new And(f4,

new And(f5, new And(f6, new And(f7, new And(f8, f9))))))));

The result for this case, as expected, would be False since we cannot

occupy every pigeonhole with a single pigeon.

Chapter 2 Automated Theorem Proving & First-Order Logic

75

In the last few sections we have been studying propositional logic and

some of the algorithms and methods related to it. We also analyzed the

relationship between logic and AI and described what ATP stands for, as

well as some of its uses and advantages. Let’s remember that ATP is an area

that attempts to automate mathematicians’ work and that SAT solvers are

very useful tools in this area. In the following sections we’ll start looking at

a more complex logic than propositional logic, first-order logic, which is

an extension of propositional logic, and we’ll get a glimpse of some of the

benefits it provides over the simpler propositional logic.

�First-Order Logic
Propositions that we have studied thus far consist of a subject (object or

individual) and a predicate.

Given a set of objects or subjects, the relations and properties defined

among these objects are known as predicates.
Examples of predicates are the following:

	 1.	 x > x

	 2.	 5 + y - x = 1

	 3.	 x > 2

After considering the previous examples, we may ask ourselves, what

would be the difference between propositions and predicates?

In the latest predicate examples we have constants (1, 2, 5), relations

(>, =), and functions (+, -), and they all have a fixed interpretation,

but the same doesn’t occur with numerical variables (x, y). The

indetermination that these variables introduce in regards to the value

that they can take causes the expression to not be logically considered

as a proposition. Depending on the value that variables x, y may take,

the previous expressions could become True or False—hence, become

propositions.

Chapter 2 Automated Theorem Proving & First-Order Logic

76

In logic, expressions 1, 2, 3 are referred to as nth predicates; i.e., a

predicate with n variables. Considering examples 1, 2, and 3, we can say

that the first expression is a unary predicate and the second a binary

predicate. A property is a unary predicate, a particular type of relationship

with the subject itself; thus, it’s thought of as a special case of predicate.

Note P redicates represent relations between subjects, objects, and
individuals. They lack veritative value; i.e., they don’t have True or
False values like propositions do.

First-order logic (FOL) extends propositional logic by allowing certain

forms of reasoning about objects in logical statements.

In propositional logic we have variables that stand for facts or

statements that might be true or not, like “World War II ended in 1952”

or “Star Wars was directed by George Lucas,” but you can’t have variables

that represent things like cars, pencils, or the temperature. In FOL,

variables refer to things of the world like pencils or the temperature, and

we can quantify them, allowing us to express in one sentence what in

propositional logic would probably take several.

In general, some of the reasons why we need FOL are as follows:

•	 We need a way of saying that an individual or subject has

a certain property or that certain individuals are related

in a particular way (e.g., that Zofia is single, or that she is

married to Albert, or that Johnny is Ben’s dog).

•	 We need a way of saying that all subjects (of a certain

type) have a certain property (e.g., that all birds have

wings or there exists a man taller than 7 feet).

•	 We need a way of referring to entities that are

functionally determined by other entities (e.g., the

height of a person; the weight of an object; the sum of

two numbers).

Chapter 2 Automated Theorem Proving & First-Order Logic

77

The simplified representation that propositional logic provides makes

it very complicated to model numerous problems that typically arise in our

ordinary life. As a result, we must rely on a more complex logic like FOL.

The reasons described earlier motivate the syntax of FOL. Its syntax

allows us to form (using a formal language) formulas similar to English

sentences, such as IsDog(“Johnny”) (Is Johnny a dog?), Misses(“Katty”,

“John”) (Katty misses John) or ∀x (IsDog(x) => ¬CanFly(x)) (For all object

x, if x is a dog then x cannot fly).

The components of FOL are the connectives of propositional logic;

terms, which can be constants (a, b, John, Lucas, etc.), variables (x, y, etc.),

or functions (F, G, H, etc.) applied to other terms; propositional constants

(True, False), predicates (IsDog, CanFly, etc.), which represent the

properties of a single object or relationships among two or more objects,

and quantifiers (‘for all ...’ denoted as ∀, ‘there exists ...’ denoted as ∃ and

‘there exists only one ...’ denoted as ∃!). The big novelty in FOL is without a

doubt the appearance of quantifier operators.

A formula can be a predicate applied to one or more terms, the

equality of two terms (i.e., t1 = t2; ∀(v)F'(v), ∃(v)F'(v) if v is a variable

and F' is a formula), or anything deriving from the application of logic

connectives of propositional logic to other formulas.

In the following lines we detail a bit more the FOL syntax:

constant ::= a | A | b | B | c | C | John | Block1 | Block2 | ...

variable ::= x | y | z | x1| x2 | block1 | ...

function::= f | g | h | weight | sum | mother-of | ...

term ::= constant | variable | function (term , ..., term)

predicate::= A | B | C |IsDog| Loves |IsBrother ...

binary connective ::=˄ | ˅ | => | <=>
formula ::= predicate (term , ..., term) | (term = term)

| ¬formula | ((formula) binary connective (formula)) |

∀(variable) formula | ∃(variable) formula

Chapter 2 Automated Theorem Proving & First-Order Logic

78

In propositional logic we interpreted a formula as the assignment

of truth values to its propositional variables. In FOL the introduction of

predicates and quantifiers gives us formulas whose evaluation depends

on the interpretation given in some domain (integers, real numbers, cars,

pencils . . . anything we can think of) or universe of objects; the concept of

interpretation in this case is a bit more complicated.

Note A n interpretation of a formula is a pair (D, A) where D is the
domain and A an assignment for each constant, function, predicate,
and so on.

In order to define the interpretation I of a formula in a domain or set of

objects D we must consider the following rules of interpretation:

	 1.	 If c is a constant then c has domain D. This

mapping indicates how names (constants are

basically names) are connected to objects of the

universe. We may have a constant Johnny, and the

interpretation of Johnny in the world of dogs could

be a particular dog.

	 2.	 If P is a predicate then P has D x D x ... D domain;

i.e., there’s a mapping from predicates to relations

in D.

	 3.	 If f is a function then f has domain D, an image

also in D; i.e., there’s a mapping from functions to

functions in D.

Chapter 2 Automated Theorem Proving & First-Order Logic

79

Given an interpretation I of a formula F under domain D, I follows the

following rules of evaluation:

	 1.	 If P(v1, v2, ... ,vn) is a predicate then P is True if (v1,

v2, ... , vn) is a relation in D; i.e., (v1, v2, ... , vn)∈ D

x D x ... x D. Recall that an n-ary relation is a set of

n-tuples.

	 2.	 If F, F' are formulas of FOL then F ∧ F', F ∨ F', F => F',

F <=> F', ¬F have the same veritative value in domain

D as they would have using the same operators in

propositional logic; i.e., these operators have the

same truth tables in both logics.

	 3.	 The formula ∀(v)F(v) is True if F(v) is True for all

values of v in D.

	 4.	 The formula ∃(v)F(v) is True if F(v) is True for at

least one value of v in D.

Let’s examine an example that will clarify how interpretation and

evaluation works in FOL; consider the following interpretation I of a

formula under domain D:

∃(x)IsFriend(x, Arnaldo)∧∃(y)IsWorkingWith(y, Arnaldo)

D = {John, Arnaldo, Mark, Louis, Duke, Sting, Jordan, Miles,

Lucas, Thomas, Chuck, Floyd, Hemingway}

Constants = {Arnaldo}

Predicates = {IsFriend, IsWorkingWith}

I(Arnaldo) = Arnaldo

I(IsFriend) = {(John, Arnaldo), (Mark, Louis), (Duke, Sting),

(Jordan, Miles)}

I(IsWorkingWith) = {(Lucas, Arnaldo), (Thomas, Chuck), (Floyd,

Hemingway)}

Chapter 2 Automated Theorem Proving & First-Order Logic

80

For determining the truth value of the previous interpretation we have that

∃(x)IsFriend(x, Arnaldo)

for x = John is True because tuple or relation (John, Arnaldo) belongs to

IsFriend; therefore, ∃(x)IsFriend(x, Arnaldo) is also True.

∃(y)IsWorkingWith(y, Arnaldo)

for y = Lucas is True because tuple or relation (Lucas, Arnaldo) belongs

to IsWorkingWith; therefore, ∃(y)IsWorkingWith(y, Arnaldo) is also

True.

Since both ∃(x)IsFriend(x, Arnaldo) and ∃(y)IsWorkingWith(y,
Arnaldo) are True, their conjunction is True, and the interpretation is

also True.

�Predicates in C#
Since we are exploring the world of FOL and its most notable components

(predicates, quantifiers, and so forth) it would be worth mentioning that

in C# we can make use of the Predicate<T> delegate, a construct that

allows us to test whether an object of type T fulfills a given condition. For

example, we could have the Dog class as follows (Listing 2-14).

Listing 2-14.  Dog Class

public class Dog

 {

 public string Name { get; set; }

 public double Weight { get; set; }

 public Gender Sex { get; set; }

 public Dog(string name, double weight, Gender sex)

 {

 Name = name;

Chapter 2 Automated Theorem Proving & First-Order Logic

81

 Weight = weight;

 Sex = sex;

}

 }

 public enum Gender {

 Male, Female

 }

Then, we can use a predicate to filter and get objects that satisfy certain

properties, as illustrated in Listing 2-15, where we create a list of dogs and

then use the Find() method, which expects a predicate as argument, to

“find” all objects (dogs) satisfying the given predicates.

Listing 2-15.  Using a Predicate in C# to Filter and Get Objects (Dogs

in This Case) That Are Males and Dogs Whose Weight Exceeds 22

Pounds

varjohnny = new Dog("Johnny", 17.5, Gender.Male);

var jack = new Dog("Jack", 23.5, Gender.Male);

varjordan = new Dog("Jack", 21.2, Gender.Male);

varmelissa = new Dog("Melissa", 19.7, Gender.Female);

var dogs = new List<Dog> { johnny, jack, jordan, melissa };

Predicate<Dog>maleFinder = (Dog d) => { return d.Sex == Gender.

Male; };

Predicate<Dog>heavyDogsFinder = (Dog d) => { return d.Weight>=

22; };

varmaleDogs = dogs.Find(maleFinder);

varheavyDogs = dogs.Find(heavyDogsFinder);

At this point, we have gotten ourselves into the world of propositional

logic and FOL. In the next section we will present a practical problem

where we’ll see some FOL in action.

Chapter 2 Automated Theorem Proving & First-Order Logic

82

�Practical Problem: Cleaning Robot
In this section we’ll see many of the concepts described earlier (functions,

predicates, and so forth) being applied in the creation of a cleaning robot,

whose world is illustrated in Figure 2-5.

Figure 2-5.  Cleaning robot in the grid. Dirt is marked as orange balls
and logically represented on the grid as integers. Following this idea,
the cell on the upper-left corner (first one) has value 5.

This cleaning robot tries to get rid of the dirt in a grid of n x m (n rows,

m columns). Each cell in the grid is an integer d, where d indicates the

count of dirt in that cell. When d = 0 that cell is considered clean.

The robot will have the following features:

•	 It moves one step at a time in four possible directions

(left, up, right, down).

•	 It does not abandon a cell until is completely clean, and

it picks dirt up one step at a time; i.e., if on a dirty cell

it will clean a unit of dirt at a time (leaving -1 dirt) and

then continue to its next decision stage.

•	 It stops when everything is clean or its task has

exceeded a given time in milliseconds.

Chapter 2 Automated Theorem Proving & First-Order Logic

83

Our cleaning robot will rely on the following predicates and functions:

•	 IsDirty() is a predicate that determines if the cell

where the robot is happens to be dirty.

•	 IsTerrainClean() is a predicate that determines if

every cell on the terrain is clean.

•	 MoveAvailable(int x, int y) is a predicate that

determines whether a move to (x, y) in the terrain is

legal.

•	 SelectMove() is a function that randomly selects

a move.

•	 Clean() is a function that simply cleans (-1) a dirt

from current cell; i.e., the cell where the robot is at that

moment.

•	 Move(Direction m) is a function that moves the robot

in direction m.

•	 Print() is a function that prints the terrain.

•	 Start(intmilliseconds) is a function that commands

the robot to start cleaning up. The code of this

method matches the robot behavior explained earlier.

The integer argument milliseconds represents

the maximum time the robot will be cleaning, in

milliseconds.

The robot is encoded in a CleaningRobot C# class that goes as shown

in Listing 2-16.

Chapter 2 Automated Theorem Proving & First-Order Logic

84

Listing 2-16.  CleaningRobot Class

public class CleaningRobot

 {

 private readonlyint[,] _terrain;

 private static Stopwatch _stopwatch;

 public int X { get; set; }

 public int Y { get; set; }

 private static Random _random;

public CleaningRobot(int [,] terrain, int x, int y)

 {

 X = x;

 Y = y;

_terrain = new int[terrain.GetLength(0), terrain.GetLength(1)];

Array.Copy(terrain, _terrain, terrain.GetLength(0) * terrain.

GetLength(1));

 _stopwatch = new Stopwatch();

 _random = new Random();

 }

 public void Start(intmilliseconds)

 {

 _stopwatch.Start();

 do

 {

 if (IsDirty())

 Clean();

 else

 Move(SelectMove());

 �} while (!IsTerrainClean() && !(_stopwatch.Elapsed

Milliseconds>milliseconds));

 }

Chapter 2 Automated Theorem Proving & First-Order Logic

85

 // Function

 private Direction SelectMove()

 {

var list = new List<Direction> { Direction.Down, Direction.Up,

Direction.Right, Direction.Left };

 return list[_random.Next(0, list.Count)];

 }

 // Function

 public void Clean()

 {

 _terrain[X, Y] -= 1;

 }

 // Predicate

 public bool IsDirty()

 {

 return _terrain[X, Y] > 0;

 }

 // Function

 private void Move(Direction m)

 {

 switch (m)

 {

 case Direction.Up:

 if (MoveAvailable(X - 1, Y))

 X -= 1;

 break;

 case Direction.Down:

 if (MoveAvailable(X + 1, Y))

 X += 1;

 break;

Chapter 2 Automated Theorem Proving & First-Order Logic

86

 case Direction.Left:

 if (MoveAvailable(X, Y - 1))

 Y -= 1;

 break;

 case Direction.Right:

 if (MoveAvailable(X, Y + 1))

 Y += 1;

 break;

 }

 }

 // Predicate

 public bool MoveAvailable(int x, int y)

 {

 �return x >= 0 && y >= 0 && x < _terrain.

GetLength(0) && y < _terrain.GetLength(1);

 }

 // Predicate

 public bool IsTerrainClean()

 {

 // For all cells in terrain; cell equals 0

foreach (var c in _terrain)

 if (c > 0)

 return false;

 return true;

 }

 public void Print()

 {

var col = _terrain.GetLength(1);

vari = 0;

var line = "";

Chapter 2 Automated Theorem Proving & First-Order Logic

87

Console.WriteLine("--------------");

foreach (var c in _terrain)

 {

 line += string.Format(" {0} ", c);

i++;

 if (col == i)

 {

Console.WriteLine(line);

line = "";

i = 0;

 }

 }

 }

 }

 public enumDirection

 {

 Up, Down, Left, Right

}

The constructor of the class receives as arguments the terrain and two

integers x, y that represent the initial position of the robot on the terrain.

The print() method was included for testing purposes. Let’s suppose

we have the terrain as shown in the following code and then we execute

the robot, i.e., call the Start() method on it, as seen in Listing 2-17.

Listing 2-17.  Starting the Cleaning Robot

var terrain = new [,]

 {

 {0, 0, 0},

 {1, 1, 1},

 {2, 2, 2}

};

Chapter 2 Automated Theorem Proving & First-Order Logic

88

varcleaningRobot = new CleaningRobot(terrain, 0, 0);

cleaningRobot.Print();

cleaningRobot.Start(50000);

cleaningRobot.Print();

The terrain contains dirt on the second (1 on each column) and

third rows (2 on each column), and after the robot has finished his task,

according to one of the termination conditions (everything’s clean or

time’s up) stated before, we obtain the result seen in Figure 2-6.

Figure 2-6.  Terrain before and after the cleaning of the robot

As occurred before when developing the DPLL algorithm, we need a

heuristic for selecting the next move of the agent. We’ll get into the field of

heuristics and metaheuristics in Chapter 7.

This cleaning robot is a very naïve, simple agent; the topic of agents in

AI will be addressed in the next chapter. For the moment, we have created

the necessary basis to start diving into more complicated and interesting

subjects and branches of AI. In any case, future topics to be studied will be

related to logic as it’s the basis of many sciences and areas of knowledge.

Chapter 2 Automated Theorem Proving & First-Order Logic

89

�Summary
In the last two chapters we analyzed the relationship between AI and

logic. We introduced two fundamental types of logic: propositional

logic and first-order logic. We examined various codes that included a

hierarchy for representing formulas (variables, logical connectives, and

so on), and we complemented this hierarchy with different methods.

Among these methods we presented the negation normal form

transformation algorithm, the conjunctive normal form transformation

algorithm (relies on the distributive laws previously introduced), and

the DPLL algorithm, which is a classic algorithm for determining the

satisfiability of a formula. Additionally, we described a binary decision

tree for representing formulas and their possible evaluations and a

practical problem where a simple, naïve cleaning robot uses first-order

logic concepts to formulate its simple intelligence.

In the next chapter, we’ll begin explaining agents and many of the

concepts around these (proactive, reactive) that we may have heard of

before from video-game fans, AI fans, friends, or colleagues.

Chapter 2 Automated Theorem Proving & First-Order Logic

91© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_3

CHAPTER 3

Agents
In this chapter, we’ll begin describing a very important field of study in the

world of AI: agents. Nowadays, agents represent an area of strong interest

for many subfields of computer science and AI. They are being used in a

great number of applications, ranging from comparatively small systems

such as email filters to complex, colossal systems such as air traffic control.

In the next pages we’ll address agents as fundamental AI entities; we

will start by getting acquainted with a possible agent definition (as there’s

no global agreement regarding this concept). We’ll examine different

agents’ properties and architectures and analyze a practical problem that

will help us understand how to develop agents in C#. Practical problems

examined in this and the following chapter will set the concepts presented

throughout this chapter on firm ground, and many of them will be

connected to classical problems of AI.

We’ll give meaning and definition to many of the words that we

typically hear today from videogamers, AI hobbyists, or programmers

associated with AI—words such as reactive, proactive, perceptions, actions,

intentions, or deliberation. Typical examples of agents that we might

know are a robot (like the cleaning robot from last chapter), a web-based

shopping program, a traffic-control system, software daemons, and so on.

92

Note  Agents are colloquially known as bots, which derives from the
word robot. They could use metallic bodies similar to the ones we see
in science fiction films or just consist of computer software installed
on our phone, like Siri. They may possess human abilities like speech
and speech recognition and be able to act on their own.

�What’s an Agent?
As mentioned earlier, there’s no agreement on a global concept of the term

agent. Let’s remember that the same thing occurred with the concept of

logic (recall that we analyzed it in Chapter 2).

To provide a definition of the term agent we will consider different

definitions from various authors and take the most generic features from

all of them, attaching some self-logic to it.

Since agent is a term drawn from AI, we must bear in mind that, as

happens with everything in the field of AI, it relates to creating an artificial

entity, something that emulates and enhances, if possible, the making of a

set of human tasks in a certain way and environment.

Hence, an agent is an entity (human, computer program) that, using

a set of sensors (to sense maybe heat, pressure, and so on, kind of like

humans do), is capable of obtaining a set of percepts or inputs (warm,

high pressure, and so forth) and has the ability to act (turn on AC, move to

different location) upon that environment through actuators.

Actuators for the human case can be their legs, arms, or mouth, and in

the robot case it can be their robotic arms, wheels, or similar.

Percepts or inputs are every piece of data that the agent receives

through its sensors.

In the human case sensors can be eyes, nose, ears, or anything that

we actually have for pulling information out of the world, our daily

Chapter 3 Agents

93

environment. In the robot case, sensors can be their cameras, microphone,

or anything that they can use to obtain inputs from the environment.

In both cases the input received is transformed into percepts, which

represent pieces of information with some logic attached. For instance,

using our ears we could notice that, when entering a room, the music in it

is too loud. How does the process of noticing and receiving this perception

work? Our ears sense the loud sounds in the room, and that information is

passed on to our brain, which processes it and creates a percept labelled

“loud music,” and then we know. Optionally, we could act upon that

percept and use our arms and hands (actuators) to lower the volume on

the music. The same occurs with nonhuman agents, but at a software level

and maybe using some robotic parts (arms, wheels, and so on).

From a mathematical point of view, the definition of agent can be

viewed as a function that uses a set of tuples or relations from a set of

percepts as the domain and has a set of actions (Figure 3-1); i.e., assuming

F is the agent’s function, P the set of percepts, and A the set of actions, F: P*

→ A. Now that we have provided a definition for the very important term of

agent, it’s time to define what we will refer to as an intelligent agent.

Chapter 3 Agents

94

An intelligent agent is an autonomous agent capable of executing its

actions while considering several agent properties, such as reactivity,

proactiveness, and social ability. The main difference between an agent

and an intelligent agent are the words intelligent and autonomous, the

latter of which is associated with the independence that is expected in its

behavior, while the first relates to the properties just mentioned. These

properties and others will be the main topic of the following sections.

Note  An agent does not necessarily need to be an intelligent
agent since that feature involves a set of more human or advanced
attributes (reactivity, proactiveness, social ability, and so on) that a
simple agent such as a movement detector may not need. Thus, to
be as general as possible, we begin with the more generic agent
definition and then discuss the intelligent agent definition.

Figure 3-1.  An agent in its environment. The agent uses its sensory
components to receive inputs from the environment. It processes these
inputs and eventually outputs an action that affects the environment.
This will be a continuous interaction as long as the agent remains
active.

Chapter 3 Agents

95

�Agent Properties
Now that we have gotten acquainted with the agent and intelligent agent

concepts, it’s time to describe those properties mentioned that make an

agent intelligent.

Autonomy refers to the ability of agents to act without the direct

intervention of humans or other agents and have control over their own

actions and internal state.

Reactivity refers to the ability of agents to perceive their environment

and respond in a timely fashion (response must be useful) to the percepts

received in it so as to meet the agent’s designated goals.

Proactiveness refers to the ability of agents to exhibit goal-directed

behavior and take the initiative by creating plans or similar strategies that

would lead them to satisfy their designated goals.

Social ability refers to the capability of an agent to interact with other

agents (possible humans) in a multi-agent system to achieve its designated

goals. Since this property relates to multi-agents’ environments, we’ll

address it further in the next chapter.

Another very important property is that of rationality. We say that an

agent is rational if it acts in order to achieve its goals and will never act in

such a way as to prevent its goals from being achieved.

Purely reactive agents decide what to do without looking at their

percepts history. Their decision-making process is based solely on the

current percept without looking at their past; hence, they have no memory

or do not consider it. Mathematically speaking the agent function of a

purely reactive agent is F: P → A. As we can see, an agent that only exhibits

the reactive property will only need the current percept in order to provide

an action.

Chapter 3 Agents

96

Note  The agent’s function for a generic agent is F: P * → A. The
asterisk on top of the P denotes a relation of zero or more percepts;
i.e., a set of tuples of length n where n >= 0; this is the number that
replaces the asterisk. In the purely reactive agent case, n = 1.

The decision-making process in a reactive agent is implemented as a

direct mapping from state to action. Agents incorporating this property

react to the environment without reasoning about it. The cleaning robot

described in the last chapter is an example of a reactive agent; remember

we had rules like the ones shown in Listing 3-1.

Listing 3-1.  Simple Rule of the Cleaning Robot from Last Chapter,

a Reactive Agent

if (IsDirty())

Clean();

 else

Move(SelectMove());

These were simply rules that made our robot react to the environment

without any reasoning whatsoever. The SelectMove() method returned

a random move to be executed by the agent, so no heuristic (to be seen

in Chapter 14) or any other type of goal-directed analysis or behavior was

incorporated into this agent. As happens with the cleaning robot, every

reactive agent is basically hardwired as a set of if … then rules.

What advantages do we get from developing reactive agents?

	 1.	 It is really easy to code them, and they allow us to

obtain an elegant, legible code.

	 2.	 They are easy to track and understand.

	 3.	 They provide robustness against failures.

Chapter 3 Agents

97

What would be the disadvantages or limitations of a purely reactive agent?

	 1.	 Since they make decisions based on local

information—in other words, information about the

agent’s current state—it's difficult to see how such

decision making could take into account non-local

information; hence, they have a “short horizon” view.

	 2.	 It is difficult to make them learn from experience

and improve their performance over time.

	 3.	 It’s hard to code reactive agents that must

incorporate a large number of behaviors (too many

situations -> action rules).

	 4.	 They don’t have any proactive behavior; therefore,

they do not make plans or care about the future, just

about the present or immediate action to execute.

Reacting to an environment is quite easy, but we regularly need more

from our agents; we need them to act on our behalf and do things for us.

In order to accomplish these tasks, they must have goal-directed

behavior—they must be proactive.

Proactive agents will be looking to create and achieve secondary goals

that will eventually lead them to fulfill their primary goals. As part of their

operation, such agents should be able to anticipate needs, opportunities,

and problems, and act on their own initiative to address them. They should

also be able to recognize opportunities on the fly; for example, available

resources, pattern anomalies, chances of cooperation, and so forth.

A common example of a proactive agent is a personal assistant agent,

like those likely installed on one of our devices. This agent can be running

constantly on our phone, keeping track of our location and preferences and

proactively suggesting places to visit according to those preferences (cultural

activities in the area, restaurant offering our type of food, and so on).

Chapter 3 Agents

98

In general we’ll want our agents to be reactive; that is, respond to the

changing conditions of the environment in a timely fashion or equivalently

respond to short-term goals. We also want them to be proactive and

systematically work toward meeting long-term goals. Having an agent that

balances these two properties is an open research problem.

In this chapter, we’ll analyze a practical problem in which we’ll add

proactive features to the cleaning robot presented in Chapter 1.

Other properties of agents that, although not considered basic

properties like the ones previously mentioned, still are relevant are shown

in Table 3-1.

Table 3-1.  Other Agent Properties

Property Description

Coordination It means the agent is capable of executing some activity in a

shared environment with other agents. It answers the question,

How do you divide a task between a group of agents? Coordination

occurs through plans, workflows, or any other management tool.

Cooperation It means the agent is able to cooperate with other agents so as

to fulfill their common goal (share resources, results, distributed

problem solving). They either succeed or fail all together, as a team.

Adaptability Also referred to as learning, it means the agent is reactive,

proactive, and capable of learning from its own experiences, the

environment, and its interactions with others.

Mobility It means the agent is able to transport itself from one shell to

another and use different platforms.

Temporal

continuity

It means the agent is continuously running.

(continued)

Chapter 3 Agents

99

Property Description

Personality It means the agent has a well-defined personality and a sense of

emotional state.

Reusability It means successive agent instances can require keeping instances

of the agent class for information reuse or to check and analyze

previously generated information.

Resource

limitation

It means the agent can act only as long as it has resources at its

disposal. These resources are modified by its actions and also by

delegating.

Veracity It means the agent will not knowingly communicate false

information.

Benevolence It means the agent will run under the assumption it does not have

conflicting goals, and it will always try to do what is asked of it.

Knowledge-level

communication

It means the agent will have the ability to communicate with

human agents and maybe other nonhuman agents using a

humanlike language (English, Spanish, etc.).

Table 3-1.  (continued)

Now that we have detailed some significant agent properties, let’s

examine some of the different types of environment in which our agent can

be interacting; eventually, we’ll also introduce various agent architectures

that we could implement for our agent.

�Types of Environments
Depending on the type of environment, an agent may or may not need a set

of properties. Hence, the decision-making process of the agent is affected

by the features exposed by the environment in which it runs. These features

make up the types of environment that will be described in this section.

Chapter 3 Agents

100

In a deterministic environment every action taken by the agent will

have a single possible outcome; i.e., there is no uncertainty about the

resulting state or percept after executing an action (Figure 3-2).

Figure 3-2.  Deterministic environment; an agent is in state S and
can only move to state or percept S1 after executing an action A. Every
state is linked to just one state; i.e., there’s a single possible outcome
for every action executed by the agent.

On the other hand, a non-deterministic environment is one in

which actions executed by agents do not have a well-determined state

and rather than just being a single state it could be a set of states; for

instance, executing action A could lead to states S1, S2, or S3. This is non-

deterministic, as illustrated in Figure 3-3. Non-deterministic environments

are the most complicated environments for agent design. Board games

using dice are usually non-deterministic, as the roll of the dice could bring

the agent to any state, and it depends on the values displayed on the dice.

Chapter 3 Agents

101

In a static environment only actions executed by the agent will affect

the environment and cause it to alter. In dynamic environments there are

multiple processes operating, many of which are not related in any way to

the agent, yet they still affect the environment and change it. The physical

world is a highly dynamic environment.

A discrete environment is one in which there are a fixed, finite number

of actions and percepts. Alternatively, a continuous environment is one in

which both actions and percepts are not determined by a finite number.

Board games like Chess, Sliding Tiles Puzzle, Othello, or Backgammon

represent discrete environments. However, an environment consisting of

an actual city represents a continuous environment as there’s no way to

limit to a fixed, finite number the percepts that the agent may perceive in

such an environment.

An accessible environment is one in which the agent can obtain

accurate, complete, and updated information about the environment’s

state. An inaccessible environment is the opposite—it’s one in which the

agent cannot obtain accurate, complete, updated information. The more

accessible an environment is the easier it will be to design an agent for it.

Figure 3-3.  Non-deterministic environment; an agent is in state
S and after executing action A it could move to states S1, S2, or S3.
Every state is linked to a set of states; i.e., there are multiple possible
outcomes for every action executed by the agent.

Chapter 3 Agents

102

Finally, an episodic environment is one in which the agent’s

performance depends on a discrete number of episodes and there’s no

relation between the performance of the agent in different episodes. In this

type of environment the agent can decide what action to execute based

only on the current episode.

Note  The most complex class of environment is composed of those
that are inaccessible, non-deterministic, non-episodic, dynamic, and
continuous.

�Agents with State
Thus far we have considered agents that map a percept or sequence of

percepts to an action. Because agents (not reactive ones) are capable of

mapping from a sequence of percepts, they are aware of their history. In

this section, we’ll go further and examine agents that also maintain state.

The state of an agent will be maintained by means of an internal data

structure, which will be used to store information about the environment

while the agent is being executed. As a result, the decision-making process

could be based on the information stored in this data structure.

The agent function then slightly changes to incorporate this new feature.

F: I x P* → A

where I is the set of internal environmental states stored by the agent, P the

set of percepts, and A the actions set.

Hence, with stateless agents we just had F: P* → A; now in this case we

added the necessary consideration of the internal data structure by making

the agent function receive as arguments an internal state and a percept or

sequence of percepts; i.e.,

F(I, P1, P2 ... PN) = A.

Chapter 3 Agents

103

It is worth noting that state-based agents like the ones defined in this

section are actually vastly more powerful than an agent without state.

In the next practical problem, we’ll enhance the cleaning robot

described in Chapter 1 by adding state to it.

�Practical Problem: Modeling the Cleaning
Robot as an Agent and Adding State to It
In this practical problem, we’ll modify the CleaningRobot class that we

described in the last chapter to adapt it to the agent paradigm (percepts,

actions, and so on), specifically to the agent’s function. We’ll also add state

to this agent in the form of a List<Tuple<int, int>> that will store cells

already visited and cleaned. We’ll see the benefits of having such state and

compare it with the CleaningRobot class that is stateless.

We shall name this class CleaningAgent, and its constructor will be

very much like the constructor of the CleaningRobot, as seen in Listing 3-2.

For this new class, we’ll add the Boolean TaskFinished field, which will

indicate when the task of the agent is finished, and the List<Tuple<int,

int>> __cellsVisited, which will determine the set of cells that have

been already visited.

Listing 3-2.  Constructor and Fields of the Cleaning Agent

public class CleaningAgent

 {

 private readonly int[,] _terrain;

 private static Stopwatch _stopwatch;

 public int X { get; set; }

 public int Y { get; set; }

 public bool TaskFinished { get; set; }

 // Internal data structure for keeping state

Chapter 3 Agents

104

 private readonly List<Tuple<int, int>> __cellsVisited;

 private static Random _random;

 public CleaningAgent(int [,] terrain, int x, int y)

 {

 X = x;

 Y = y;

 �_terrain = new int[terrain.GetLength(0), terrain.

GetLength(1)];

 �Array.Copy(terrain, _terrain, terrain.GetLength(0)

* terrain.GetLength(1));

 _stopwatch = new Stopwatch();

 _cellsVisited= new List<Tuple<int, int>>();

 _random = new Random();

 }

}

The working loop of the agent is now related to the agent function;

i.e., it executes an action based on the set of perceptions it gets from the

environment. The loop ends when the task is finished or the maximum

execution time (in milliseconds) is reached, as shown in Listing 3-3.

Listing 3-3.  Loop of the Agent Matching the Agent’s Function

Definition

 public void Start(int miliseconds)

 {

 _stopwatch.Start();

 do

 {

 AgentAction(Perceived());

 }

Chapter 3 Agents

105

 �while (!TaskFinished && !(_stopwatch.

ElapsedMilliseconds > miliseconds));

 }

The methods Clean(), IsDirty(), MoveAvailable(int x, int y),

and Print() will remain as they were in the CleaningRobot class; these are

illustrated in Listing 3-4.

Listing 3-4.  Methods Clean(), IsDirty(), MoveAvailable(int x, int y),

and Print() as They Were in the CleaningRobot Class

 public void Clean()

 {

 _terrain[X, Y] -= 1;

 }

 public bool IsDirty()

 {

 return _terrain[X, Y] > 0;

}

public bool MoveAvailable(int x, int y)

 {

 �return x >= 0 && y >= 0 && x < _terrain.

GetLength(0) && y < _terrain.GetLength(1);

 }

 public void Print()

 {

 var col = _terrain.GetLength(1);

 var i = 0;

 var line = "";

 Console.WriteLine("--------------");

 foreach (var c in _terrain)

Chapter 3 Agents

106

 {

 line += string.Format(" {0} ", c);

 i++;

 if (col == i)

 {

 Console.WriteLine(line);

line = "";

 i = 0;

 }

 }

 }

The set of perceptions will be obtained by a method shown in

Listing 3-5, which returns a list of percepts that will be represented by an

enum (declared outside of the CleaningAgent class) that defines every

possible perception in the CleaningAgent environment; this enum can

also be seen in Listing 3-5.

Listing 3-5.  Percepts enum and the Perceived() Method That

Returns a List<Percepts> Containing Every Perception the Agent Has

Obtained from the Environment

public enum Percepts

 {

 �Dirty, Clean, Finished, MoveUp, MoveDown, MoveLeft,

MoveRight

}

private List<Percepts> Perceived()

 {

 var result = new List<Percepts>();

 if (IsDirty())

 result.Add(Percepts.Dirty);

Chapter 3 Agents

107

 else

 result.Add(Percepts.Clean);

 �if (_cellsVisited.Count == _terrain.GetLength(0) *

_terrain.GetLength(1))

 result.Add(Percepts.Finished);

 if (MoveAvailable(X - 1, Y))

 result.Add(Percepts.MoveUp);

 if (MoveAvailable(X + 1, Y))

 result.Add(Percepts.MoveDown);

 if (MoveAvailable(X, Y - 1))

 result.Add(Percepts.MoveLeft);

 if (MoveAvailable(X, Y + 1))

 result.Add(Percepts.MoveRight);

 return result;

 }

As mentioned before, this agent will maintain a state corresponding

to the history of cells visited. For that purpose we implement the

UpdateState() method seen in Listing 3-6.

Listing 3-6.  Method for Updating the State of the Agent; i.e.,

Cells Visited

private void UpdateState()

 {

 if (!_cellsVisited.Contains(new Tuple<int, int>(X, Y)))

 _cellsVisited.Add(new Tuple<int, int>(X, Y));

 }

Chapter 3 Agents

108

The method that puts it all together is AgentAction(List<Percepts>

percepts) shown in Listing 3-7. In this method, we go through every

percept obtained from the environment and act accordingly. For instance,

if the current cell is clean we update the state (internal data structure) of

the agent by adding that cell to the _cellsVisited list; if we perceive that

the current cell is dirty we clean it and so on for each situation or percept

and its consequence or action. Additionally, Listing 3-7 also illustrates the

methods RandomAction(List<Percepts> percepts) and Move(Percepts p).

The first selects a random movement percept (MoveUp, MoveDown, etc.) to

be executed, and the latter executes the movement percept supplied as

argument.

Note that this agent will always check its state and percept (recall I x P

is the domain of agents with state) before moving, and it will always try to

move to an adjacent cell not previously visited.

Listing 3-7.  Method for Updating the State of the Agent; i.e., Cells

Visited

 public void AgentAction(List<Percepts> percepts)

 {

 if (percepts.Contains(Percepts.Clean))

 UpdateState();

 if (percepts.Contains(Percepts.Dirty))

 Clean();

 else if (percepts.Contains(Percepts.Finished))

 TaskFinished = true;

 else if (percepts.Contains(Percepts.MoveUp) && !_

cellsVisited.Contains(new Tuple<int, int>(X - 1, Y)))

 Move(Percepts.MoveUp);

Chapter 3 Agents

109

 else if (percepts.Contains(Percepts.MoveDown) &&

!_cellsVisited.Contains(new Tuple<int, int>(X + 1, Y)))

 Move(Percepts.MoveDown);

 else if (percepts.Contains(Percepts.MoveLeft) &&

!_cellsVisited.Contains(new Tuple<int, int>(X, Y - 1)))

 Move(Percepts.MoveLeft);

 else if (percepts.Contains(Percepts.MoveRight) &&

!_cellsVisited.Contains(new Tuple<int, int>(X, Y + 1)))

 Move(Percepts.MoveRight);

 else

 RandomAction(percepts);

 }

 private void RandomAction(List<Percepts> percepts)

 {

 var p = percepts[_random.Next(1, percepts.Count)];

Move(p);

}

 private void Move(Percepts p)

 {

 switch (p)

 {

 case Percepts.MoveUp:

 X -= 1;

 break;

 case Percepts.MoveDown:

 X += 1;

 break;

 case Percepts.MoveLeft:

 Y -= 1;

 break;

Chapter 3 Agents

110

 case Percepts.MoveRight:

 Y += 1;

 break;

 }

 }

What advantages does the cleaning agent provide us over the stateless

cleaning robot? In order to answer this question, let’s first note that

the strategy (recording of its environment history by saving visited cell

coordinates) we are using with the cleaning agent is very intuitive. Imagine

you need to find some product X in a big city where there exist over 100

stores; how would you accomplish such a task? Intuitively, you would

visit a store once and then record in your mind that you already visited

that store and the product was not there, thus saving the time of having to

revisit it. You would then move from one store to the next until you found

the product, always keeping in mind that stores already visited are a waste

of time. That’s basically what our cleaning agent tries to do this with the

exception that there might be times when already-visited cells will have

to be revisited because the agent can only move to adjacent cells and they

all may have been visited at some point. In Figure 3-4 we can see a basic

comparison between the cleaning agent and the cleaning robot.

Chapter 3 Agents

111

In Listing 3-8 we have an environment of 1000 x 1 cells, i.e., 1000 rows

and one column, and dirt is located just in the last row.

Listing 3-8.  Method for Updating the State of the Agent; i.e., Cells Visited

var terrain = new int[1000, 1];

 for (int i = 0; i < terrain.GetLength(0); i++)

 {

 for (int j = 0; j < terrain.GetLength(1); j++)

{

 if (i == terrain.GetLength(0) - 1)

 terrain[i, j] = 1;

}

 }

Figure 3-4.  The cleaning agent (in blue) searches the environment,
saving coordinates of visited cells, while the cleaning robot (in red)
does not save the state of the environment or its history; therefore, it
simply makes random moves that could take it up or down and
even going in circles, thus consuming more time to clean the dirt on
the last cell.

Chapter 3 Agents

112

var cleaningEntity = new CleaningRobot(terrain, 0, 0);

cleaningEntity.Print();

cleaningEntity.Start(200);

 cleaningEntity.Print();

var cleaningEntity = new CleaningAgent(terrain, 0, 0);

cleaningEntity.Print();

cleaningEntity.Start(200);

 cleaningEntity.Print();

The cleaning agent marks every visited cell and thus moves faster

to the last cell and to the point where its task is complete. The cleaning

robot, on the other hand, does not save the state of the environment, so

it doesn’t have any internal structure that may help it decide what move

should be the correct one and can basically move up and down randomly

several times and even in circles. The cleaning agent has a data structure

with information on the environment to aid it in applying some logic and

making rational decisions, and the cleaning robot does not. As a result of

the code shown in Listing 3-8, the random robot is incapable of cleaning

the dirt on the last cell, whereas the agent is able to do it in the time given

(Figure 3-5).

Chapter 3 Agents

113

Thus far in this chapter we have examined agents’ properties and

environments and described a practical problem where we could see an agent

with state overrunning the cleaning robot presented in the last chapter. In

future sections, we’ll study some of the most popular agent architectures.

�Agent Architectures
Agent architectures represent predefined designs that consider different

agent properties, like the ones studied earlier, to provide a scheme or

blueprint for building agents.

One can think of the different concepts presented so far in an analogy

where agents are buildings; their properties are similar to building

properties (color, height, material used, etc.); their architecture is what it

would be in a building, i.e., the infrastructure supporting it and defining its

functionality; and agent types (soon to be detailed) would be as the types

of buildings that we have (commercial, governmental, military, etc.).

Figure 3-5.  On the left, the result obtained after executing
CleaningRobot; on the right, the result after executing CleaningAgent.
The first leaves dirt on the last row, while the latter is able to clean it.

Chapter 3 Agents

114

Agent architecture as the basis of the agent’s functionality indicates

how the agent will function. Up to this moment we have seen the agent’s

function as an abstract one; architecture’s being a functionality-defining

component will give us a model to implement such a function.

�Reactive Architectures: Subsumption
Architecture
In the same way we could have an illuminated property and luminous

architecture—in other words, one that is focused on offering the greatest

lightness—we could also have a reactive agent and reactive-based

architecture, one that is focused on reactivity above all. This is the case

with agent-reactive architectures.

In a reactive architecture as it occurs in a reactive agent, each behavior

is a mapping from percepts or environment states to actions. In Figure 3-6

we can see a diagram showing a reactive architecture.

Figure 3-6.  Reactive architecture diagram

Chapter 3 Agents

115

The cleaning agent developed in previous sections is a clear example

of reactive architecture. We already know from the agent’s properties

section that being purely reactive involves some setbacks: there’s no

learning in this type of architecture; it’s usually handcrafted, which makes

it very difficult to create large systems; it can be used only for its original

purpose, and so on.

One of the most popular—and arguably the best known—reactive

architectures is the Subsumption architecture, developed by Rodney

Brooks in the mid-1980s. His architecture is said to be a behavior-based

architecture; it rejected the idea of logic-based agents—i.e., those that rely

fully on logic to represent the world, its interactions, and its relations—in

an attempt to set a new approach apart from the traditional AI of his time.

Note  Behavior-based agents use biological systems as building
blocks and rely on adaptability. They tend to show more biological
features than their AI counterparts and can repeat actions, make
mistakes, demonstrate tenacity, and so forth, sort of like ants do.

The main ideas behind Brooks’ architecture are the following:

	 1.	 Intelligent behavior can be generated without

explicit representations like the ones proposed by

symbolic AI.

	 2.	 Intelligent behavior can be generated without

explicit abstract reasoning of the kind that symbolic

AI proposes.

	 3.	 Intelligence is an emergent property of certain

complex systems.

Chapter 3 Agents

116

The Subsumption architecture possesses two fundamental

characteristics:

	 1.	 An agent’s decision-making process is executed

through a set of task-accomplishing behaviors

where each behavior module can be seen as an

individual agent function. Because this is a reactive

architecture every agent function is a mapping from

a percept or state to an action.

	 2.	 Behavior modules are intended to achieve a

particular task, and each behavior “competes” with

others to exercise control over the agent.

	 3.	 Many behaviors can fire simultaneously, and the

multiple actions proposed by these behaviors are

executed according to a subsumption hierarchy, with

the behaviors arranged into layers.

	 4.	 Lower layers in the hierarchy are able to inhibit

higher layers: the lower a layer is the higher is its

priority.

The principle of the subsumption hierarchy is that higher layers will

indicate more abstract behaviors. For instance, considering our cleaning

agent, one would like to give a high priority to the “clean” behavior; thus,

it’d be encoded in the lower layers where it has a higher priority.

Note  Symbolic AI is sometimes called Old Fashioned AI or Good
Old Fashioned AI. It was popular in the 1950s and 1960s and was
based on the idea of representing knowledge through symbols (logic
formulas, graphs, rules, etc.). Hence, methods of Symbolic AI are
developed on the basis of logic, theory of formal languages, various
areas of discrete mathematics, and so forth.

Chapter 3 Agents

117

Looking again at the cleaning agent, we can see that it follows the

Subsumption architecture (Listing 3-9).

Listing 3-9.  Cleaning Agent Action Function Follows the

Subsumption Architecture

public void AgentAction(List<Percepts> percepts)

{

 if (percepts.Contains(Percepts.Clean))

 UpdateState();

 if (percepts.Contains(Percepts.Dirty))

 Clean();

 else if (percepts.Contains(Percepts.Finished))

 TaskFinished = true;

 �else if (percepts.Contains(Percepts.MoveUp) && !_

cellsVisited.Contains(new Tuple<int, int>(X - 1, Y)))

 Move(Percepts.MoveUp);

 �else if (percepts.Contains(Percepts.MoveDown) && !_

cellsVisited.Contains(new Tuple<int, int>(X + 1, Y)))

 Move(Percepts.MoveDown);

 �else if (percepts.Contains(Percepts.MoveLeft) && !_

cellsVisited.Contains(new Tuple<int, int>(X, Y - 1)))

 Move(Percepts.MoveLeft);

 �else if (percepts.Contains(Percepts.MoveRight) && !_

cellsVisited.Contains(new Tuple<int, int>(X, Y + 1)))

 Move(Percepts.MoveRight);

 else

 RandomAction(percepts);

 }

The cleaning agent establishes an order for the behaviors exhibited;

this order corresponds to the subsumption hierarchy illustrated in

Figure 3-7.

Chapter 3 Agents

118

The order of priority established by the subsumption hierarchy in the

cleaning agent is 1, 2, 3, 4, 5, 6, and 7, with 7 being the behavior with the

highest priority.

This architecture inherits the problems of reactive architectures (no

learning, hardwired rules, and so on). Beyond that, modeling complex

systems requires many behaviors to be included in the hierarchy, making

it too extensive and unfeasible. Up to this point we have described agent

properties and the reactive architecture, providing an example of one of

these (probably the best-known example), the Subsumption architecture.

In the next sections, we’ll look at other agent architectures, like the BDI

(Belief Desire Intention) and Hybrid architectures.

Figure 3-7.  Subsumption hierarchy for cleaning agent

Chapter 3 Agents

119

�Deliberative Architectures: BDI Architecture
In a purely deliberative architecture agents follow a goal-based behavior

where they are able to reason and plan ahead. Deliberative architectures

usually incorporate some sort of symbolic representation of the world

via logic, graphs, discreet math, and so forth, and decisions (for example,

about what actions to perform) are typically made via logical reasoning

using pattern matching and symbolic manipulation. Readers familiar

with logical or functional programming languages like Prolog, Haskell, or

FSharp may be able to understand the meaning of symbolic a lot easier.

Deliberative architectures usually face two problems that need to be

solved:

	 1.	 Translating the real world into an appropriate,

accurate symbolic version of it that is efficient and

useful for the purpose of the agent. This problem

is usually time-consuming, especially if the

environment is too dynamic and changing from

time to time.

	 2.	 Symbolically representing information about real-

world entities, relations, processes, and so forth

and how to reason and make decisions with this

information.

Problem number 1 guided work on face recognition, speech

recognition, learning, and so on, and Problem number 2 inspired the

work on knowledge representation, automated scheduling, automated

reasoning, automatic planning, and so forth. Regardless of the immense

volume of scientific material that these problems generated, most

researchers accepted the fact that they weren’t even near solved. Even

apparently trivial problems, such as essential reasoning, turned out to be

exceptionally difficult. The underlying problem seems to be the difficulty

of theorem proving in even very simple logics, and the complexity of

Chapter 3 Agents

120

symbol manipulation in general; recall that first-order logic (FOL) is

not even decidable, and modal extensions attached to it (including

representations of belief, desire, time, and so on) tend to be highly

undecidable.

Note  The term decidable or decidability relates to the decision
problem; i.e., the problem that can be defined as outputting Yes (1)
or No (0) to a question on the input values. The satisfiability problem
(SAT) is a particular case of decision problem. Thus, we say that a
theory (set of formulas) is decidable if there is a method or algorithm
for deciding whether a given randomly chosen formula belongs to
that theory.

The generic deliberative architecture is illustrated in Figure 3-8.

Figure 3-8.  Deliberative architecture

Chapter 3 Agents

121

Multiple deliberative architectures like BDI (soon to be detailed)

find their roots in the philosophical tradition of understanding practical

reasoning, the process of deciding moment by moment which action

to execute when seeking to fulfill our goals. Human practical reasoning

consists of two activities:

	 1.	 Deciding what state of affairs we want to achieve

(deliberation).

	 2.	 Deciding how to achieve these states of affairs

(means-end reasoning or planning).

From the preceding activities we can conclude that deliberations

output intentions and means-end reasoning outputs plans.

Note  There is a difference between practical reasoning and
theoretical reasoning. The former is directed toward actions, while
the latter is directed toward beliefs.

Means-end reasoning is the process of deciding how to achieve an

end using means available; in the AI world this is known as planning. For

the agent to generate a plan it typically requires a representation or goal

intention to achieve, a representation of actions it can perform, and a

representation of its environment (Figure 3-9).

Chapter 3 Agents

122

How does deliberation occur? In the deliberation process there’s a

first step called alternatives generation in which the agent generates a set

of alternatives (goals, desires) for consideration. In a second step called

filtering the agent chooses between available options and commits to some

of them. These chosen options or alternatives are its intentions.

The key question in deliberative architectures is “How can the agent

deliberate on its (probably conflicting) goals to decide which ones it will

pursue?” The answer to this question is provided by the goal-deliberation

strategy that is particular to every deliberative architecture; the most

popular of these is the BDI architecture created by Michael E. Bratman in

his book Intentions, Plans and Practical Reason (1987).

Note  Considering their interaction with time, a reactive architecture
exists in the present (with short duration), while a deliberative
architecture reasons about the past and projects (plans, etc.) into the
future.

Figure 3-9.  Inputs and output flow of the planning component of
an agent

Chapter 3 Agents

123

The Beliefs, Desires, and Intentions (BDI) architecture contains explicit

representations of an agent’s beliefs, desires, and intentions. Beliefs

(what it thinks) are generally regarded as the information an agent has

about its environment; we could say knowledge instead of belief, but we

would rather use the more general term belief because what the agent

believes may be false sometimes. Desires (what it wants) are those things

the agent would like to see achieved, we don’t expect an agent to act on

all its desires. Intentions (what it is doing) are those things the agent is

committed to doing, and they are basically the result of filtering desires;

the BDI architecture is illustrated in Figure 3-10.

Figure 3-10.  BDI architecture

Chapter 3 Agents

124

Beliefs are usually described by predicates outputting True or False

values (for example, IsDirty(x,y)) and represent the internal knowledge

the agent has of the world.

Desires are fulfilled when they are present in the belief base (or

manually removed by the agent). Like the belief base, the desire base

is updated during the execution of the agent. Desires can be related by

hierarchical links (sub/super desires) when a desire is created as an

intermediary goal (for example, to clean dirt on a terrain one could have

two subdesires or subgoals: move to every dirty cell and clean it). Desires

have a priority value that can change dynamically and is used to select a

new intention from among the set of desires when necessary.

Once the agent considers all its options it must commit to some of them,

in this case and as an example it will commit to just one, to its only available

option, which later becomes its intention. Intentions eventually lead to

actions, and the agent is supposed to act by trying to achieve its intentions.

The agent is supposed to make reasonable attempts to achieve its

intentions, and it may follow a sequence of actions (plan) for this purpose.

The intention chosen by the agent will constrain its practical reasoning

from that point on; once a commitment to an intention exists the agent

will not contemplate other intentions that are conflicting with the ones

already set in motion. Intentions can be put on hold (for example, when

they require a subdesire to be achieved). For this reason, there is a stack of

intentions; the last one is the current intention and the only one that is not

on hold.

Intentions should be persistent; in other words, we must devote every

available resource to fulfilling them and not drop them immediately if

they aren’t achieved in the short run, because then we will be achieving

none all the time. On the other hand, intentions can’t persist for too long,

because there might be a logical reason to drop them. For example, there

may come a time when the cleaning agent has nothing else to do (clean),

maybe because it inhabits a multi-agent environment and other agents

have finished the cleaning task.

Chapter 3 Agents

125

Intentions make up a set of important roles associated with practical

reasoning:

•	 Intentions motivate planning: Once an agent has

decided to achieve an intention it must plan a course of

action to accomplish that intention.

•	 Intentions constrain future deliberation: Once an agent

commits to an intention it will not contemplate other

intentions that are conflicting with the chosen intention.

•	 Intentions persist: The agent will not renounce

its intentions without any rational cause; it will

persist typically until either the agent believes it has

successfully achieved them or it believes it cannot

achieve them, or because the purpose for the intention

is no longer present.

•	 Intentions influence beliefs upon the future: Once the

agent adopts certain intentions, some planning for

the future under the assumption that those intentions

chosen will be achieved is necessary and logical.

From time to time it is important for the agent to stop and reconsider

its intentions, as some could have become irrational or impossible. This

reconsideration stage implies a cost at both spatial and temporal lines, and

it also presents us with a problem:

•	 A bold agent that doesn’t stop enough to reconsider its

intentions might be trying to achieve an intention that

is no longer possible.

•	 A cautious agent that stops too frequently to reconsider

its intentions might be spending too many resources on

the reconsideration stage and not enough on achieving

its intentions.

Chapter 3 Agents

126

A balance or tradeoff between the event-driven and goal-directed

behaviors of the agent is the solution for this dilemma.

Note E xperiments have demonstrated that bold agents do better
than cautious agents in environments that don’t change too often. In
the other scenario (environment changes frequently), cautious agents
outperform bold agents.

The process of practical reasoning in a BDI agent relies on the

following components. In the next points B is assumed to be the set of

beliefs, D the set of desires, and I the set of intentions:

•	 A set of current beliefs representing information the

agent has about its environment

•	 A belief revision function (brf) that receives percepts

and the agent’s beliefs as inputs and determines a new

set of beliefs:

brf: P x B -> B

•	 An option-generation function (options) that receives

beliefs about its environment and intentions (if any)

as inputs and determines the options (desires) of the

agent:

options: B x I -> D

•	 A set of current options representing probable courses

of action for the agent to follow

•	 A filter function (filter) representing the deliberation

process of the agent and using beliefs, desires, and

intentions as inputs to determine the agent’s intentions:

filter: B x D x I -> I

Chapter 3 Agents

127

•	 A set of current intentions representing the agent’s

commitments

•	 An action-selection function that uses current intentions

as inputs to determine an action to perform

It comes as no surprise that the state of a BDI agent at any moment is a

triple (B, D, I). The BDI agent’s action function seems pretty simple when

we don’t get into details; it’s shown in the next pseudocode here:

function AgentAction(P):

 B = brf(P, B)

 D = options(D, I)

 I = filter(B, D, I)

end

In the next chapter we’ll present a practical problem where we’ll

develop an AI for a Mars Rover whose architecture will be BDI; this

problem will help us set firm ground for many of the concepts introduced

during this section.

�Hybrid Architectures
Multiple researchers have argued that neither a purely deliberative

agent nor a purely reactive agent is a good strategy when we design

an agent. Hybrid architectures in which the agent possesses both a

goal-based component where they are able to reason and plan ahead and

a reactive component that allows them to react immediately to situations

of the environment are usually preferred over the alternative of a purely

deliberative or purely reactive agent.

Chapter 3 Agents

128

In general, hybrid architecture agents are composed of the following

subsystems or components:

•	 Deliberative component: contains a representation of

the world that can be at some level symbolic; it builds

plans and makes decisions as in the deliberative

architecture

•	 Reactive component: capable of reacting to certain

situations without complex reasoning (situation ->

consequence rules)

Thus, hybrid agents have reactive and proactive properties,

and the reactive component is usually given some precedence over the

deliberative one.

The divided and somewhat hierarchical structure where reactive and

deliberative components coexist has lead to the natural idea of layering

architectures, which represents the hybrid agents’ design. In this type of

architecture, an agent’s control components are arranged into a hierarchy,

with higher layers dealing with information at higher levels of abstraction.

Typically, we will have at least two layers in a layered architecture:

one to deal with the reactive behavior and one to deal with the proactive

behavior. In practice, there is no reason why there couldn’t be more layers.

Generally speaking, we can count two types of layered architectures:

•	 Horizontal layering: In horizontally layered

architectures, the agent’s layers are each directly

connected to the sensory input and action output.

As a result, each layer acts like an agent, producing

suggestions as to what action to perform.

Chapter 3 Agents

129

•	 Vertical layering: In vertically layered architectures,

sensory input and action output are each processed

through every layer in one or possibly various

directions.

Both horizontal and vertical layering are illustrated in Figure 3-11.

Figure 3-11.  Horizontally layered architecture (on the left) and
vertically layered architecture (on the right). Note that in vertically
layered architectures there could be more than just one pass through
every layer.

Horizontally layered architectures are very simple in their conceptual

design; agents exhibiting n behaviors will require n layers, one for each

behavior. Despite this positive point, the fact that each layer is actually

competing with others to suggest an action could cause the agent to show

incoherent behavior. In order to provide consistency, a mediator function

is usually required to act as “middle man” and decide which layer controls

the agent at any given moment.

Chapter 3 Agents

130

The mediator function involves high complexity, as all possible

interactions between all layers must be considered to finally output an

action. Creating such a control mechanism is extremely difficult from a

designer’s point of view.

In vertically layered architectures these problems are diminished

because there’s an order between layers, and the last layer is the one

outputting the action to be executed. Vertically layered architectures

are usually divided into two types: one-pass architectures and two-pass

architectures. In the former type, the agent’s decision-making process

flows sequentially through each layer until the last layer generates an

action. In two-pass architectures, information flows up the architecture

(the first pass) and then back down. There exist some remarkable

similarities between the principle of two-pass vertically layered

architectures and the way organizations and enterprises work in the

sense that information flows up to the highest levels and orders then flow

down. In both one-pass and two-pass vertically layered architectures

the complexity of interactions between layers is reduced. Since there

are n - 1 edges between n layers, if each layer is capable of suggesting m

actions, there are at most m2(n − 1) interactions to be considered between

layers. Clearly, this is a much simpler level of interaction than the one

a horizontally layered architecture forces us to have. This simplicity

comes at a cost, and that cost is flexibility. In order for a vertically layered

architecture to make a decision, control must pass between each different

layer. Vertically layered architectures are not flawless, and failures in

any layer can have serious consequences for an agent’s performance.

In the next section we’ll study a particular case of horizontally layered

architecture: touring machines.

Chapter 3 Agents

131

�Touring Machines
Touring machines represent horizontally layered architectures composed

of three layers (modeling layer, planning layer, and the reactive layer).

Figure 3-12 illustrates a touring machine.

Figure 3-12.  Touring machine

The reactive layer provides immediate responses to changes detected

in the environment as a set of situation action rules resembling those of the

Subsumption architecture. In the next pseudocode we illustrate a reactive

rule of an autonomous vehicle agent. This example shows the obstacle-

avoidance rule of the vehicle:

rule-1: obstacle-avoidance

if (in_front(vehicle, observer)

andspeed(observer) > 0

andseparation(vehicle, observer) <vehicleThreshHold)

then

change_orientation(vehicleAvoidanceAngle)

Chapter 3 Agents

132

The planning layer is responsible for the agent’s proactive behavior; in

other words, it’s responsible for what the agent will do in the long run. In

order to do its planning, the layer maintains a library of plans; these plans

are essentially hierarchically structured plans that the touring machines

elaborate upon at runtime to decide what to do. Therefore, in order to

achieve a goal, the planning layer tries to find a plan in the library that

matches the goal sought by the agent.

Note  One of the first benchmark scenarios for touring machines
was that of autonomous vehicle driving.

The modeling layer represents, as the name suggests, a model of

the world and its various entities (including agents). It predicts conflicts

between agents and generates new goals in order to resolve these conflicts.

Newly generated goals are then posted down to the planning layer, which

makes use of its plan library to determine a plan or set of plans that

satisfies them.

All three layers are related to a control subsystem that decides which layer

has control over the agent. This subsystem consists of a set of control rules

that can either restrain information between layers or act over the output of

layers as shown in the next pseudocode, which illustrates a control rule:

censorRule_1:

if (entity(bigObstacle) in perceptions)

then

removeSensoryRecord(layerReact, entity(bigObstacle))

This control rule prevents the reactive layer from ever knowing that

a big obstacle has been detected. The reactive layer would be, in most

scenarios, the most appropriate layer for dealing with obstacle avoidance,

but under different scenarios it might be better to pass this perception

to other layers. In this case, since the sensor detected a big obstacle that

Chapter 3 Agents

133

might be visible from a long distance away, the planning layer may need to

find a plan that considers a big obstacle and changes the agent’s route.

�InteRRaP
InteRRaP (Integration of Rational Reactive behavior and Planning)

is a vertically layered two-pass architecture composed of three layers

(cooperation layer, planning layer, and behavior layer) similar to the ones

found in touring machines. Figure 3-13 illustrates an InteRRaP.

Figure 3-13.  InteRRaP architecture

The behavior layer (lowest) deals with the reactive behavior; the

planning layer (middle) deals with regular planning to achieve the agent’s

goals; and the cooperation layer (uppermost) deals with social interactions

in multi-agent environments. A knowledge base is associated with every

layer; each knowledge base represents the world in a manner that is

convenient for its corresponding layer.

Chapter 3 Agents

134

The highest knowledge base represents the set of plans and actions of

other agents in the environment; the middle knowledge base represents

the plans and actions of the agent itself; and the lowest-level knowledge

base represents raw information about the environment.

Note  Knowledge bases distinguish InteRRaP from touring
machines.

The main difference between InteRRap and touring machines is

the way they interact with the environment. In touring machines every

layer was connected to perceptual input and action output, creating the

necessity of having a control subsystem to deal with conflicts between

layers. In InteRRap layers interact with each other as they seek to fulfill a

common goal.

There exist two main types of interactions between layers in InteRRap:

bottom-up activation and top-down execution. The first occurs when a

lower layer is forced to pass control to a higher layer because it is not

capable of dealing with the current situation. The latter occurs when a

higher layer uses the facilities provided by a lower layer to achieve its goals.

Typical flow will begin at the bottom when the reactive layer receives

perceptual input; if this layer is capable of dealing with that perceptual

input received it will do so; otherwise, it will pass control to the planning

layer. If the planning layer is capable of dealing with the situation it will

probably make use of top-down execution; otherwise, it will keep moving

control higher to the next layer. In this way control flows from the lowest

layer to a higher (if necessary) layer and back down again.

Chapter 3 Agents

135

�Summary
Throughout this chapter we introduced the concept of agents, looking at

some of their most relevant properties and examining a practical problem

where we transformed the cleaning robot from Chapter 2 into a cleaning

agent that followed the agent’s model of an action function that receives a

set of percepts and outputs an action. We also added state to this agent and

compared it to a stateless agent that executes random actions. Finally, we

presented various agent architectures: reactive, deliberative, and hybrid.

In the following chapter, we will look at a very interesting problem

(Mars Rover) that will show us how agent architectures can be

implemented in a real-life scenario.

Chapter 3 Agents

137© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_4

CHAPTER 4

Mars Rover
Following the route (agents) started during the last chapter, we will devote

Chapter 4 to the introduction of a Mars Rover AI that is based on a hybrid

architecture that includes a reactive layer for its immediate decisions and

uses the BDI (Beliefs, Desires, Intentions) paradigm for implementing

its deliberative layer. This practical problem will help us reinforce all

the knowledge acquired in Chapter 3 (agent properties, agent state,

architectures, and so on) and will aid us in understanding how we can

assemble it all in a real-world problem.

Space exploration is a fascinating topic that combines well with the

area of AI and has millions of followers worldwide. Since the conditions of

space are pretty difficult and risky for humans, the use of robots is frequent

and necessary. Therefore, the idea of using AI for machines that are

involved in space exploration is logical, and many studies of it have been

made in recent years.

The practical problem addressed throughout this chapter will include

a visual application (Windows Forms) that shows the execution of a

Mars Rover at any moment in a discrete environment of n x m (rows x

columns). This application simulates the Mars environment with various

rocks that are considered obstacles by the agent and hidden spots of

water or remnants of water. The program will also show us its planning

(sequence of actions conforming a plan will be denoted in yellow) and

how it manages beliefs, desires, and intentions. The goal of a Mars Rover

138

is basically scientific research, and in our case there is the very important

task of finding vestiges of any type of water on Mars, plus trying to remain

active and avoid obstacles.

Note  Spirit and Opportunity are two of the most popular Mars
Rovers; they both made incredible discoveries and exceeded their
life expectancies by a big margin. Spirit was launched in June 2003,
Opportunity in July 2003. Spirit remained active until 2010 (seven
years of life) when its wheels were trapped in sand, and Opportunity,
as of the writing of this book, remains active and roving Mars.

�What’s a Mars Rover?
Mars is today a desolate, dry planet that when seen from a distance

appears to resemble our home planet of Earth very little. However, when

approaching Mars’ orbit we can see on the surface what could have been

ancient, now dried out lakes and canyons, suggesting that Mars may have

harbored—three or four million years ago—not only water but also life.

Life in space is tough; it’s highly complicated for humans to survive out

there, it’s risky, dangerous and reaching some of the closest planets could

take many years, so in an effort to facilitate the research of other worlds,

multiple space agencies (NASA, CSA, ESA, and so on) have been designing

robots—or, as they are typically called, rovers—for the exploration and

research of planets.

A Mars Rover is an automated motor vehicle that is loaded up with

cameras to analyze its surroundings, research instruments to dig in and

maybe analyze interesting rocks, communication equipment with which

to send pictures and data and receive commands, solar panels to provide

energy to itself, and so on (Figure 4-1). Rovers have the task of exploring

Chapter 4 Mars Rover

139

Mars and collecting significant data that will hopefully lead to the

conclusion of the existence of water on the planet in the past—or maybe to

the discovery of ancient life.

Mars Rovers tend to move very slowly, at nearly two inches per second

(approximately 0.09 miles per hour). After all the trouble and cost that is

involved when taking a rover to Mars, engineers prefer to play it safe and

drive carefully; no one would like to see a $2.5 billion rover upside down

because it was driving too fast. Another important point: most rovers

receive a daily set of commands or instructions from the team on Earth;

these instructions tell the rover where to go or what to do. In this sense,

one could say that classic rovers are not as autonomous as we might think;

they do of course include some autonomous behavior because the team

on Earth is not on Mars and cannot watch their every step live. Therefore,

the AI of the rover takes care of deciding when a rock is too big to go over

(obstacle) or when the color and texture of a rock make it interesting to be

examined. One could say that rovers are sort of autonomous and follow

orders very well, kind of like human soldiers do. The mission of the rover

is a two-sided job; on one side we have the engineers on Earth, planning

Figure 4-1.  Mars Rover

Chapter 4 Mars Rover

140

their daily moves, their large-scale strategies, and so forth, and on the

other side we have the rovers, executing these actions, exploring, collecting

data, and sending it back to Earth.

In this chapter, we will be demonstrating how to develop an AI for a

completely autonomous Mars Rover that will consider obstacles in the

terrain and will be searching for water under a hybrid architecture that

includes a BDI (Beliefs, Desires, Intentions) deliberative mechanism and

uses statistics and probabilities for injecting itself with new beliefs that will

be drawn as conclusions from its state (past history).

Note  Mars is usually known as the Red Planet because of its reddish
tint in the night sky. In general, Mars is mostly rust colored because of
the iron in its soil. When exposed to the small amount of oxygen in the
Martian atmosphere, the iron oxidizes, or rusts. That “rusty dust” can
also blow into the air, turning the sky into a peach color.

�Mars Rover Architecture
Let’s take a brief moment to examine the hybrid architecture that we will

be proposing for our Mars Rover AI (Figure 4-2).

Figure 4-2.  Mars Rover architecture

Chapter 4 Mars Rover

141

The architecture is composed of three layers (reactive, BDI, and

planning); different percepts or events (denoted in the smaller font in

Figure 4-2) can cause a layer to execute. For instance, if there’s water at

the rover’s current position then the reactive layer will act and conduct

the rover to dig in that spot immediately. If there’s a percept related to

water in nearby areas the reactive layer will also be triggered. The rover

will incorporate a variable or field named SenseRadius that will determine

the circle surrounding it and represent its field of view; the rover will be

capable of perceiving everything in that circle. Since we are dealing with a

discrete environment this circle will be an approximation of a real circle; in

other words, it will be the discrete version of a circle.

Note  Mars Rovers like Spirit or Opportunity, both made by NASA,
have fish-eye cameras or wide-angle cameras that allow them to
catch a general view of the terrain in front of them. The photos these
cameras take are analyzed to decide whether a certain rock on the
path is too big to go over, and so on.

If the rover has some initial beliefs and there are no percepts of

significant interest then control passes from the reactive layer to the BDI

layer, where a process starts at the beliefs set; in this process the beliefs

set is updated. A belief that we may have today could be proven wrong

tomorrow. As for the rover, a location on the terrain where it believes there

may be water could be incorrect, and as a result this database of beliefs

must be constantly updated as new percepts arrive. In a second stage,

desires are generated from beliefs. For the rover, its beliefs will consist

of possible water locations and its desires will be these possible water

locations ordered by proximity using the Manhattan distance (also known

as Block distance) as measure. Thus, going to the closest water location

will become the current intention of the rover.

Chapter 4 Mars Rover

142

In order to accomplish its current intention the rover uses its plan

library (in the planning layer) and selects a plan fitting the selected

intention. Since we are considering, in this example, only intentions

associated with possible water locations our plan library will merely

consist of one type of plan: path finding.

Path-finding algorithms solve the problem of finding the shortest path

between two given points; these algorithms not only consider obstacles

on the grid/terrain but also the cost of each possible path. Some of its

representatives are Breadth First Search (BFS), Djistkra’s algorithm, and

A* search. For our rover, we developed BFS, the most inefficient of them

all but also the simplest. The others perform better by using heuristics,

dynamic programming, and so forth and avoid considering costly paths.

Once the rover has explored all of its beliefs it will wander around

(making random moves) until it reaches a certain number of actions. At this

point, we will inject beliefs into the rover by using a data structure (dictionary)

that maintains its state, or past history, as a set of visited cells along with

their visit frequency (number of times it has visited a cell), and a deliberation

process that consists of applying simple concepts of probability and statistics.

In this deliberation process the terrain known by the rover is divided

into four equal (or almost equal) sectors (could be divided into 2n

sectors for further precision), and for each sector and each (location,

frequency_visits) pair in that sector we calculate the relative frequency

and sum up the results obtained in each individual sector, having as the

final result four Total Relative Frequency values (one for each sector). The

Relative Frequency (RF) calculation is made with the following formula:

RF c
freq c

N
() = ()

where freq(c) represents the number of times cell c has been visited and N

is the total number of elements in the set (sector) to which c belongs. Then,

for each sector S its Total Relative Frequency would be:

Chapter 4 Mars Rover

143

TRF S RF c
i

N

i() = ()
=
å

0

In the end, the rover will choose to “inject” the belief of water location

in a corner of the sector with the lowest Total Relative Frequency, which

should be the one least visited in the past. We could say that this approach

is pretty much a heuristic; i.e., we have specific knowledge about this

problem and we are embedding it, trying to achieve a better behavior from

the rover in its task. This heuristic and others associated with this problem

will be very simple and even naïve; the purpose right now is to illustrate

how to create a hybrid agent architecture. Therefore, heuristics will not be

at the core of this chapter. As a quick note, the strategy or heuristic where

we always choose a corner of the selected sector for injecting a belief can

be greatly improved in the same way the sector division and selection

processes can be greatly improved.

Now that we have gotten a glimpse of our rover’s architecture and

how it will actually make decisions every step of the way, it’s time to

present its code.

�Mars Rover Code
The Mars Rover is coded in a C# class containing the following fields,

properties, and constructor (Listing 4-1).

Listing 4-1.  Mars Rover Fields, Variables, and Constructor

public class MarsRover

 {

 public Mars Mars { get; set; }

 public List<Belief> Beliefs { get; set; }

 public Queue<Desire> Desires { get; set; }

Chapter 4 Mars Rover

144

 public Stack<Intention> Intentions { get; set; }

 public List<Plan> PlanLibrary { get; set; }

 public int X { get; set; }

 public int Y { get; set; }

 public int SenseRadius { get; set; }

 public double RunningOverThreshold { get; set; }

 �// Identifies the last part of the terrain seen by the

Rover

 public List<Tuple<int, int>> CurrentTerrain { get; set; }

 public Plan CurrentPlan { get; set; }

 public List<Tuple<int, int>> WaterFound { get; set; }

 private double[,] _terrain;

 private static Random _random;

 private Dictionary<Tuple<int, int>, int> _perceivedCells;

 private int _wanderTimes;

private const int WanderThreshold = 10;

 �public MarsRover(Mars mars, double [,] terrain, int

x, int y, IEnumerable<Belief> initialBeliefs, double

runningOver, int senseRadious)

{

 Mars = mars;

 X = x;

 Y = y;

_terrain = new double[terrain.GetLength(0), terrain.GetLength(1)];

 �Array.Copy(terrain, _terrain, terrain.GetLength(0)

* terrain.GetLength(1));

 Beliefs = new List<Belief>(initialBeliefs);

 Desires = new Queue<Desire>();

 Intentions = new Stack<Intention>();

 PlanLibrary = new List<Plan>

Chapter 4 Mars Rover

145

 {

 �new Plan(TypesPlan.

PathFinding, this),

 };

 WaterFound = new List<Tuple<int, int>>();

 RunningOverThreshold = runningOver;

 SenseRadius = senseRadious;

 CurrentTerrain = new List<Tuple<int, int>>();

 _random = new Random();

 �_perceivedCells = new Dictionary<Tuple<int,

int>, int>();

 }

}

The MarsRover class contains the following fields and variables:

•	 Mars: an object-oriented representation of the world

or environment of Mars. The agent will use this object

to inquire about water locations and obstacles on the

actual terrain of Mars.

•	 X, Y: are both integers that represent the current

position of the rover in the grid/Mars terrain.

•	 _terrain: matrix representing the Mars world or

terrain as the rover has it conceived initially, before

landing there and before it can be updated by means of

perceptions. It is like a preconception of Mars given by

engineers; it’s their map and could have mistakes, so it

must be updated.

Chapter 4 Mars Rover

146

•	 Beliefs: list representing the set of beliefs the rover

has; these could have come from a set of initial beliefs

coded by engineers before the rover landed on Mars,

like for instance, WaterAt(2,3), etc., or the beliefs that

the rover injects itself later through some deliberative

logic process

•	 Desires: queue representing the set of desires the

rover has; desires are born from beliefs and updated

considering current intentions (if any). In the case

of the rover, desires will consist of probable water

locations, always ordered or prioritized by proximity.

•	 Intentions: stack of intentions the rover has; the one at

the top represents the current intention and the one for

which there’s a plan in motion

•	 PlanLibrary: represents a list of plans the rover can

execute depending on the intention taken

•	 WaterFound: list of water locations found on Mars (if any)

•	 RunningOverThreshold: double value that indicates the

threshold by which rocks on the terrain are considered

obstacles for the rover

•	 SenseRadius: integer value that represents the radius

of vision of the rover; i.e., the radius of the circle

whose center is the current position of the rover and

determines its “sight” around

•	 CurrentTerrain: represents the current terrain of

the rover; i.e., the one defined by the circle of radius

SenseRadius. This data structure is updated as the

rover moves.

Chapter 4 Mars Rover

147

•	 CurrentPlan: represents the current plan being

executed by the rover

•	 _random: variable for obtaining random values (for

when the rover wanders around)

•	 _perceivedCells: data structure storing the number

of times a cell has been visited. It’s used for the

Statistics-Probability component of the rover in

deciding where to inject a belief of water when it has

wandered around long enough.

•	 _wanderTimes: integer value conveying the number of

times the rover has wandered around

•	 WanderThreshold: integer value that determines the

number of actions the rover can take as “wandering

around.” Once the rover executes WanderThreshold

actions it will stop wandering and will auto inject a

belief.

The Mars object (representation of Mars world) uses the class shown in

Listing 4-2 as a blueprint.

Listing 4-2.  Mars Class

 public class Mars

 {

 private readonly double[,] _terrain;

 public Mars(double[,] terrain)

 {

 �_terrain = new double[terrain.GetLength(0),

terrain.GetLength(1)];

Chapter 4 Mars Rover

148

 �Array.Copy(terrain, _terrain, terrain.GetLength(0)

* terrain.GetLength(1));

 }

 public double TerrainAt(int x, int y)

 {

 return _terrain[x, y];

 }

 public bool WaterAt(int x, int y)

 {

 return _terrain[x, y] < 0;

 }

 }

The Mars class is pretty straightforward; it incorporates a matrix

describing the terrain (elevations) and two methods that allow the rover

to inquire about the situation of the environment at a given location. This

terrain represents the real Martian terrain; the rover also incorporates a

representation of Mars’ environment, but this is a representation based on

engineers’ maps and so forth. It’s not going to be as accurate as the actual

terrain. Thus, the rover will have to deal with this object to make sure its

data on the Martian environment is accurate and, if not, update it.

In order to work with beliefs, desires, and intentions we code them all

as classes. The Intention class inherits from the Desire class (Listing 4-3).

Listing 4-3.  Belief, Desire, and Intention Classes

public class Belief

 {

 public TypesBelief Name { get; set; }

 public dynamic Predicate;

Chapter 4 Mars Rover

149

 public Belief(TypesBelief name, dynamic predicate)

 {

 Name = name;

 Predicate = predicate;

 }

 public override string ToString()

 {

 var result = "";

 var coord = Predicate as List<Tuple<int, int>>;

 foreach (var c in coord)

 �result += Name + " (" + c.Item1 + "," + c.Item2

+ ")" + "\n";

 return result;

 }

 }

 public class Desire

 {

 public TypesDesire Name { get; set; }

 public dynamic Predicate;

 public List<Desire> SubDesires { get; set; }

 public Desire() { SubDesires = new List<Desire>(); }

 public Desire(TypesDesire name)

 {

 Name = name;

 SubDesires = new List<Desire>();

 }

Chapter 4 Mars Rover

150

 public Desire(TypesDesire name, dynamic predicate)

 {

 Name = name;

 Predicate = predicate;

 SubDesires = new List<Desire>();

 }

 �public Desire(TypesDesire name, IEnumerable<Desire>

subDesires)

 {

 Name = name;

 SubDesires = new List<Desire>(subDesires);

 }

 �public Desire(TypesDesire name, params Desire[]

subDesires)

 {

 Name = name;

 SubDesires = new List<Desire>(subDesires);

 }

 public List<Desire> GetSubDesires()

 {

 if (SubDesires.Count == 0)

 return new List<Desire>() { this };

 var result = new List<Desire>();

 foreach (var desire in SubDesires)

 result.AddRange(desire.GetSubDesires());

 return result;

 }

Chapter 4 Mars Rover

151

 public override string ToString()

 {

 return Name.ToString() + "\n";

 }

 }

 public class Intention: Desire

 {

 public static Intention FromDesire(Desire desire)

 {

 var result = new Intention

 {

 Name = desire.Name,

 �SubDesires = new List<Desire>

(desire.SubDesires),

 Predicate = desire.Predicate

 };

 return result;

 }

 }

Beliefs are usually encoded as predicates, so we included a dynamic

(could be anything) Predicate property to represent them. In this case, the

rover will have as predicate a List<Tuple<int, int>> indicating beliefs

of water locations. To adapt the class to hold different types of predicates,

only the override ToString() method would need to change.

Desires not only include predicates but also subdesires, as explained in

Chapter 3. The GetSubDesires() method will be in charge of getting leaves

from the desires tree. Recall from Chapter 3 that a given desire may have

subdesires that must be satisfied before the actual desire can be fulfilled, and

these leaves or primary desires are the ones the agent must execute before

any other (as the others depend on or are a consequence of the leaf desires).

Chapter 4 Mars Rover

152

Finally, intentions inherit from desires. Remember: Intentions are a

subset of desires, and we may have multiple desires, but not all of them

need to be realistic at a given time; therefore, intentions are those desires

to which we decide to commit at some point. To be able to convert a desire

into an intention we included the FromDesire() method.

To define and easily work with a finite set of beliefs, desires, percepts,

actions, and so on we declared the following (Listing 4-4) enums.

Listing 4-4.  Enum for Beliefs, Desires, Percepts, Plans, and Actions

 public enum TypePercept

 {

 WaterSpot, Obstacle, MoveUp, MoveDown, MoveLeft, MoveRight

 }

 public enum TypesBelief

 {

 PotentialWaterSpots, ObstaclesOnTerrain

 }

 public enum TypesDesire

 {

 FindWater, GotoLocation, Dig

 }

 public enum TypesPlan

 {

 PathFinding

 }

 public enum TypesAction

 {

 MoveUp, MoveDown, MoveLeft, MoveRight, Dig,

 None

 }

Chapter 4 Mars Rover

153

To be able to handle percepts and plans a lot better we will incorporate

into our program Percept and Plan classes as illustrated in Listing 4-5.

Listing 4-5.  Percept and Plan Classes

public class Percept

 {

 public TypePercept Type { get; set; }

 public Tuple<int, int> Position { get; set; }

public Percept(Tuple<int, int> position, TypePercept percept)

 {

 Position = position;

Type = percept;

 }

 }

public class Plan

 {

 public TypesPlan Name { get; set; }

 public List<Tuple<int, int>> Path { get; set; }

 private MarsRover _rover;

 public Plan(TypesPlan name, MarsRover rover)

 {

 Name = name;

 Path = new List<Tuple<int, int>>();

 _rover = rover;

 }

Chapter 4 Mars Rover

154

 public TypesAction NextAction()

 {

 if (Path.Count == 0)

 return TypesAction.None;

 var next = Path.First();

 Path.RemoveAt(0);

 if (_rover.X > next.Item1)

 return TypesAction.MoveUp;

 if (_rover.X < next.Item1)

 return TypesAction.MoveDown;

 if (_rover.Y < next.Item2)

 return TypesAction.MoveRight;

 if(_rover.Y > next.Item2)

 return TypesAction.MoveLeft;

 return TypesAction.None;

 }

 �public void BuildPlan(Tuple<int, int> source,

Tuple<int, int> dest)

 {

 switch (Name)

 {

 case TypesPlan.PathFinding:

 �Path = PathFinding(source.Item1,

source.Item2, dest.Item1, dest.Item2).

Item2;

 break;

 }

 }

Chapter 4 Mars Rover

155

 �private Tuple<Tuple<int, int>, List<Tuple<int, int>>>

PathFinding(int x1, int y1, int x2, int y2)

 {

 �var queue = new Queue<Tuple<Tuple<int, int>,

List<Tuple<int, int>>>>();

 �queue.Enqueue(new Tuple<Tuple<int, int>,

List<Tuple<int, int>>>(new Tuple<int, int>(x1, y1),

new List<Tuple<int, int>>()));

 �var hashSetVisitedCells = new HashSet<Tuple

<int, int>>();

 while(queue.Count > 0)

 {

 var currentCell = queue.Dequeue();

 var currentPath = currentCell.Item2;

 hashSetVisitedCells.Add(currentCell.Item1);

 var x = currentCell.Item1.Item1;

 var y = currentCell.Item1.Item2;

 if (x == x2 && y == y2)

 return currentCell;

 // Up

 �if (_rover.MoveAvailable(x - 1, y) &&

!hashSetVisitedCells.Contains(new Tuple<int,

int>(x - 1, y)))

 {

 �var pathUp = new List<Tuple<int,

int>>(currentPath);

 pathUp.Add(new Tuple<int, int>(x - 1, y));

 �queue.Enqueue(new Tuple<Tuple<int, int>,

List<Tuple<int, int>>>(new Tuple<int,

int>(x - 1, y), pathUp));

 }

Chapter 4 Mars Rover

156

 // Down

 �if (_rover.MoveAvailable(x + 1, y) &&

!hashSetVisitedCells.Contains(new Tuple<int,

int>(x + 1, y)))

 {

 �var pathDown = new List<Tuple<int,

int>>(currentPath);

 pathDown.Add(new Tuple<int, int>(x + 1, y));

 �queue.Enqueue(new Tuple<Tuple<int, int>,

List<Tuple<int, int>>>(new Tuple<int,

int>(x + 1, y), pathDown));

 }

 // Left

 �if (_rover.MoveAvailable(x, y - 1) &&

!hashSetVisitedCells.Contains(new Tuple<int,

int>(x, y - 1)))

 {

 �var pathLeft = new List<Tuple<int,

int>>(currentPath);

 pathLeft.Add(new Tuple<int, int>(x, y - 1));

 �queue.Enqueue(new Tuple<Tuple<int, int>,

List<Tuple<int, int>>>(new Tuple<int,

int>(x, y - 1), pathLeft));

 }

 // Right

 �if (_rover.MoveAvailable(x, y + 1) &&

!hashSetVisitedCells.Contains(new Tuple<int,

int>(x, y + 1)))

 {

 �var pathRight = new List<Tuple<int,

int>>(currentPath);

 pathRight.Add(new Tuple<int, int>(x, y + 1));

Chapter 4 Mars Rover

157

 �queue.Enqueue(new Tuple<Tuple<int, int>,

List<Tuple<int, int>>>(new Tuple<int,

int>(x, y + 1), pathRight));

 }

 }

 return null;

 }

 public bool FulFill()

 {

 return Path.Count == 0;

 }

 }

The Percept class is very simple; we are merely using it to make it

easier for us to know where a percept has occurred. By using this class we

can save the percept location. The Plan class, on the other hand, is a bit

more complicated.

The Plan class contains a property List<Tuple<int, int>> Path,

which defines the Path the agent created as a result of executing a plan;

in this case, a path-finding plan. The BuildPlan() method will allow us

to build different types of plans. It’s supposed to act as a plan-selection

mechanism. The NextAction() method updates the Path property by

returning and deleting the next action to execute in the present plan.

Finally, the PathFinding() method implements the Breadth First Search

(BFS) algorithm for finding the optimal route from a given source to

a given destination or location in the terrain. We’ll see more of this

algorithm in a future chapter; for now let us consider it an essential

algorithm for different graph-related tasks and remember that it starts at

the source, discovering new steps of the path from source to destination

and escalating by levels (Figure 4-3). For this purpose it uses a queue for

enqueuing all non-visited neighbors of the cell being examined at the time.

Chapter 4 Mars Rover

158

The FulFill() method determines when a plan has been completely

executed.

Now that we have gotten acquainted with all the classes that our Mars

Rover will be using, let’s dive into the Mars Rover AI code.

Resembling the method implemented for the agent from Chapter 3,

our Mars Rover includes a GetPercepts() method (Listing 4-6) that

provides a list of percepts perceived by the agent at the current time and in

its radius of sight.

Listing 4-6.  GetPercepts() Method

public List<Percept> GetPercepts()

 {

 var result = new List<Percept>();

 if (MoveAvailable(X - 1, Y))

 �result.Add(new Percept(new Tuple<int,int>

(X - 1, Y), TypePercept.MoveUp));

Figure 4-3.  BFS is capable of discovering paths by levels; S is the
source and D the destination. Each numbered cell determines a level
in the search; i.e., level 1, 2, etc.

Chapter 4 Mars Rover

159

 if (MoveAvailable(X + 1, Y))

 �result.Add(new Percept(new Tuple<int, int>

(X + 1, Y), TypePercept.MoveDown));

 if (MoveAvailable(X, Y - 1))

 �result.Add(new Percept(new Tuple<int, int>

(X, Y - 1), TypePercept.MoveLeft));

 if (MoveAvailable(X, Y + 1))

 �result.Add(new Percept(new Tuple<int,

int>(X, Y + 1), TypePercept.MoveRight));

 result.AddRange(LookAround());

 return result;

 }

The GetPercepts() method makes use of the MoveAvailable() and

LookAround() methods, both illustrated in Listing 4-7.

Listing 4-7.  MoveAvailable() and LookAround() Methods

 public bool MoveAvailable(int x, int y)

 {

 �return x >= 0 && y >= 0 && x < _terrain.

GetLength(0) && y < _terrain.GetLength(1)

&& _terrain[x, y] < RunningOverThreshold;

 }

private IEnumerable<Percept> LookAround()

 {

 return GetCurrentTerrain();

 }

Chapter 4 Mars Rover

160

Since we want to code our Mars Rover to be as generic as possible in

the way it “looks around” (one may have a different definition of what it is

to look around), the final implementation of this functionality is given by

the GetCurrentTerrain() method shown in Listing 4-8.

Listing 4-8.  GetCurrentTerrain() Method

public IEnumerable<Percept> GetCurrentTerrain()

 {

 var R = SenseRadius;

 CurrentTerrain.Clear();

 var result = new List<Percept>();

 for (var i = X - R > 0 ? X - R : 0; i <= X + R; i++)

 {

 �for (var j = Y; Math.Pow((j - Y), 2) + Math.

Pow((i - X), 2) <= Math.Pow(R, 2); j--)

 {

 �if (j < 0 || i >= _terrain.GetLength(0))

break;

 // In the circle

 �result.AddRange(CheckTerrain(Mars.

TerrainAt(i, j), new Tuple<int, int>(i,

j)));

 CurrentTerrain.Add(new Tuple<int, int>(i, j));

 �UpdatePerceivedCellsDicc(new Tuple<int,

int>(i, j));

 }

Chapter 4 Mars Rover

161

 �for (var j = Y + 1; (j - Y) * (j - Y) + (i - X)

* (i - X) <= R * R; j++)

 {

 �if (j >= _terrain.GetLength(1) || i >=

_terrain.GetLength(0)) break;

 // In the circle

 �result.AddRange(CheckTerrain(Mars.

TerrainAt(i, j), new Tuple<int, int>(i, j)));

 CurrentTerrain.Add(new Tuple<int, int>(i, j));

 �UpdatePerceivedCellsDicc(new Tuple<int,

int>(i, j));

 }

 }

 return result;

 }

The method from Listing 4-8 includes several loops that depend on the

circle circumference formula:

x h y k r-() + -() =2 2 2

where (h, k) represent the center of the circle, in this case the agent’s

location; r represents the radius of the circle, or in this case the

SenseRadius. These loops allow the rover to track every cell at distance

SenseRadius of its current location. Within these loops we make calls to the

UpdatePerceivedCellsDicc() and CheckTerrain() methods (Listing 4-9).

The first simply updates the visited cells dictionary that we use in the Statistics

and Probability component to inject new beliefs to the rover.

The latter checks a given cell from the terrain to see if it’s an obstacle

or a water location. It also updates the internal _terrain data structure

the rover has initially and maintains later by updating the value that

corresponds to the perceived coordinate.

Chapter 4 Mars Rover

162

Listing 4-9.  UpdatePerceivedCellsDicc() and CheckTerrain()

Methods

 �private void UpdatePerceivedCellsDicc(Tuple<int,

int> position)

 {

 if (!_perceivedCells.ContainsKey(position))

 _perceivedCells.Add(position, 0);

 _perceivedCells[position]++;

}

 �private IEnumerable<Percept> CheckTerrain

(double cell, Tuple<int, int> position)

{

 var result = new List<Percept>();

 if (cell > RunningOverThreshold)

 �result.Add(new Percept(position,

TypePercept.Obstacle));

 else if (cell < 0)

 �result.Add(new Percept(position,

TypePercept.WaterSpot));

 // Update the rover's internal terrain

 _terrain[position.Item1, position.Item2] = cell;

 return result;

 }

The method responsible for generating the next action to be executed

by the rover is the Action() method shown in Listing 4-10.

Chapter 4 Mars Rover

163

Listing 4-10.  Action() Method

 public TypesAction Action(List<Percept> percepts)

 {

 // Reactive Layer

 �if (Mars.WaterAt(X, Y) && !WaterFound.Contains

(new Tuple<int, int>(X, Y)))

 return TypesAction.Dig;

 �var waterPercepts = percepts.FindAll(p =>

p.Type == TypePercept.WaterSpot);

 if (waterPercepts.Count > 0)

 {

 foreach (var waterPercept in waterPercepts)

 {

 �var belief = Beliefs.FirstOrDefault(b =>

b.Name == TypesBelief.PotentialWaterSpots);

 List<Tuple<int, int>> pred;

 if (belief != null)

 �pred = belief.Predicate as List<Tuple

<int, int>>;

 else

 {

 �pred = new List<Tuple<int, int>>

{waterPercept.Position};

 �Beliefs.Add(new Belief(TypesBelief.

PotentialWaterSpots, pred));

 }

 �if (!WaterFound.Contains

(waterPercept.Position))

 pred.Add(waterPercept.Position);

Chapter 4 Mars Rover

164

 else

 {

 pred.RemoveAll(

 �t => t.Item1 == waterPercept.

Position.Item1 && t.Item2 ==

waterPercept.Position.Item2);

 if (pred.Count == 0)

 �Beliefs.RemoveAll(b => (b.Predicate as

List<Tuple<int, int>>).Count == 0);

 }

 }

 �if (waterPercepts.Any(p => !WaterFound.

Contains(p.Position)))

 CurrentPlan = null;

 }

 if (Beliefs.Count == 0)

 {

 if (_wanderTimes == WanderThreshold)

 {

_wanderTimes = 0;

 InjectBelief();

 }

_wanderTimes++;

 return RandomMove(percepts);

 }

 if (CurrentPlan == null || CurrentPlan.FullFill())

 {

 // Deliberative Layer

 Brf(percepts);

Chapter 4 Mars Rover

165

 Options();

 Filter();

 }

 return CurrentPlan.NextAction();

 }

In this method we incorporate the reactive and deliberative layers of

the agent. The first lines correspond to the reactive layer, and different

scenarios are considered that demand an Fimmediate response:

	 1.	 There’s water at the current location of the rover,

and that spot has not been discovered before.

	 2.	 There’s a percept of a possible water location in the

surrounding areas (defined by the circle with radius

SenseRadius) of the rover. In this case, and always

checking that the possible water location has not

been already found, we add a water belief to the

rover.

	 3.	 If the water location perceived at step 2 has not been

previously found then the current plan is deleted.

A new one considering the new belief will be built.

	 4.	 If the rover has no beliefs it will execute a random

action (Listing 4-11); i.e., wanders around. Once this

“wandering around” reaches a certain number of

actions (ten, in this case) then a belief is injected.

The four previous steps make up the reactive layer of our agent;

the last part of the method composed of the Brf(), Options(), and

Filter() methods represent the deliberative layer (BDI architecture). The

InjectBelief() method is also part of this deliberative layer as it involves

a “deliberative” process where the agent decides its next course of action.

Chapter 4 Mars Rover

166

Listing 4-11.  RandomMove() Method

private TypesAction RandomMove(List<Percept> percepts)

 {

 �var moves = percepts.FindAll(p => p.Type.

ToString().Contains("Move"));

 var selectedMove = moves[_random.Next(0, moves.Count)];

 switch (selectedMove.Type)

 {

 case TypePercept.MoveUp:

 return TypesAction.MoveUp;

 case TypePercept.MoveDown:

 return TypesAction.MoveDown;

 case TypePercept.MoveRight:

 return TypesAction.MoveRight;

 case TypePercept.MoveLeft:

 return TypesAction.MoveLeft;

 }

 return TypesAction.None;

 }

The Statistics and Probability component of the rover, and the one that

allows it to inject beliefs based on its past history, is represented by the

InjectBelief() method, which can be seen in Listing 4-12 along with its

helper methods.

Chapter 4 Mars Rover

167

Listing 4-12.  InjectBelief(), SetRelativeFreq(), and RelativeFreq()

Methods

private void InjectBelief()

 {

 var halfC = _terrain.GetLength(1) / 2;

 var halfR = _terrain.GetLength(0) / 2;

 �var firstSector = _perceivedCells.Where(k => k.Key.

Item1 < halfR && k.Key.Item2 < halfC).ToList();

 �var secondSector = _perceivedCells.Where(k => k.Key.

Item1 < halfR && k.Key.Item2 >= halfC).ToList();

 �var thirdSector = _perceivedCells.Where(k => k.Key.

Item1 >= halfR && k.Key.Item2 < halfC).ToList();

 �var fourthSector = _perceivedCells.Where(k => k.Key.

Item1 >= halfR && k.Key.Item2 >= halfC).ToList();

 var freq1stSector = SetRelativeFreq(firstSector);

 var freq2ndSector = SetRelativeFreq(secondSector);

 var freq3rdSector = SetRelativeFreq(thirdSector);

 var freq4thSector = SetRelativeFreq(fourthSector);

 �var min = Math.Min(freq1stSector, Math.

Min(freq2ndSector, Math.Min(freq3rdSector,

freq4thSector)));

 if (min == freq1stSector)

 �Beliefs.Add(new Belief(TypesBelief.

PotentialWaterSpots, new List<Tuple<int, int>>

{ new Tuple<int, int>(0, 0) }));

Chapter 4 Mars Rover

168

 else if (min == freq2ndSector)

 �Beliefs.Add(new Belief(TypesBelief.Potential

WaterSpots, new List<Tuple<int, int>> { new

Tuple<int, int>(0, _terrain.GetLength(1) - 1) }));

 else if (min == freq3rdSector)

 �Beliefs.Add(new Belief(TypesBelief.Potential

WaterSpots, new List<Tuple<int, int>> { new

Tuple<int, int>(_terrain.GetLength(0) - 1, 0)

}));

 else

 �Beliefs.Add(new Belief(TypesBelief.Potential

WaterSpots, new List<Tuple<int, int>> { new

Tuple<int, int>(_terrain.GetLength(0) - 1,

_terrain.GetLength(1) - 1) }));

 }

 �private double SetRelativeFreq(List<KeyValuePair<Tuple

<int, int>, int>> cells)

 {

 var result = 0.0;

 foreach (var cell in cells)

 �result += RelativeFrequency(cell.Value,

cells.Count);

 return result;

 }

 private double RelativeFrequency(int absFreq, int n)

 {

 return (double) absFreq/n;

 }

Chapter 4 Mars Rover

169

As it was detailed in the last section, the relative frequency is

calculated for every cell of a given sector and then summed up in the

SetRelativeFreq() method to obtain the total frequency of the group

of cells. Note that in this case we decided to divide the terrain into four

equal sectors, but you may decide to do it in as many sectors as you deem

necessary or to the level of detail you believe necessary, like you would

do in a QuadTree. One could even decide to divide the terrain into a

certain number of sectors considering the SenseRadius of the rover and

the time it wanders around. These values are all related, and most of them

are considered in the heuristics attached to the rover. In this case—and

seeking simplicity in the example proposed—we choose to attach truly

naïve heuristics for the rover; for instance, always injecting a water belief

at a corner of the selected sector could be a bad idea in different scenarios,

as it’s not going to work well every time. Thus, the sector selection and

cell-within-sector selection mechanisms need to be more generic for the

rover to perform well in multiple environments. Let’s keep in mind that the

heuristics presented here can be greatly improved, and as a result the rover

will improve its performance.

Note A QuadTree is a tree data structure where each internal node
has exactly four children. They are often used to partition a two-
dimensional space or region by recursively subdividing it into four
quadrants or regions.

Lastly, let’s examine the deliberative layer and all its methods, starting

with the Beliefs Revision Function (Listing 4-13).

Chapter 4 Mars Rover

170

Listing 4-13.  Brf() Method

 public void Brf(List<Percept> percepts)
 {
 var newBeliefs = new List<Belief>();

 foreach (var b in Beliefs)
 {
 switch (b.Name)
 {
 case TypesBelief.PotentialWaterSpots:
 �var waterSpots = new List<Tuple<int,

int>>(b.Predicate);
 �waterSpots = UpdateBelief(TypesBelief.

PotentialWaterSpots, waterSpots);
 if (waterSpots.Count > 0)
 �newBeliefs.Add(new Belief(TypesBelief.

PotentialWaterSpots, waterSpots));
 break;
 case TypesBelief.ObstaclesOnTerrain:
 �var obstacleSpots = new List<Tuple<int,

int>>(b.Predicate);
 �obstacleSpots = UpdateBelief

(TypesBelief.ObstaclesOnTerrain,
obstacleSpots);

 if (obstacleSpots.Count > 0)
 �newBeliefs.Add(new Belief

(TypesBelief.ObstaclesOnTerrain,
obstacleSpots));

 break;
 }
 }

 Beliefs = new List<Belief>(newBeliefs);
 }

Chapter 4 Mars Rover

171

In the Brf() method we examine every belief (possible water locations,

possible obstacle locations) and update them, creating a new set of beliefs.

The UpdateBelief() method is illustrated in Listing 4-14.

Listing 4-14.  UpdateBelief() Method

private List<Tuple<int, int>> UpdateBelief(TypesBelief belief,
IEnumerable<Tuple<int, int>> beliefPos)
 {
 var result = new List<Tuple<int, int>>();

 foreach (var spot in beliefPos)
 {
 �if (CurrentTerrain.Contains(new Tuple<int,

int>(spot.Item1, spot.Item2)))
 {
 switch (belief)
 {
 case TypesBelief.PotentialWaterSpots:
 �if (_terrain[spot.Item1, spot.

Item2] >= 0)
 continue;
 break;
 case TypesBelief.ObstaclesOnTerrain:
 �if (_terrain[spot.Item1, spot.

Item2] < RunningOverThreshold)
 continue;
 break;
 }
 }
 result.Add(spot);
 }

 return result;
 }

Chapter 4 Mars Rover

172

In the UpdateBelief() method we check every belief against the

currently perceived terrain. If there’s a wrong belief—like, for instance, we

thought or believed we would find water at location (x, y) and it happens

that we were just there and there’s nothing—then that belief must be

deleted.

The Options() method, which is responsible for generating desires, is

shown in Listing 4-15.

Listing 4-15.  Options() Method

 public void Options()

 {

 Desires.Clear();

 foreach (var b in Beliefs)

 {

 if (b.Name == TypesBelief.PotentialWaterSpots)

 {

 �var waterPos = b.Predicate as List<Tuple

<int, int>>;

 �waterPos.Sort(delegate(Tuple<int, int>

tupleA, Tuple<int, int> tupleB)

 {

 �var distA = Manhattan

Distance(tupleA,

new Tuple<int,

int>(X, Y));

 �var distB = Manhattan

Distance(tupleB,

new Tuple<int,

int>(X, Y));

 if (distA < distB)

 return 1;

Chapter 4 Mars Rover

173

 if (distA > distB)

 return -1;

 return 0;

 });

 foreach (var wPos in waterPos)

 �Desires.Enqueue(new Desire

(TypesDesire.FindWater, new Desire

(TypesDesire.GotoLocation, new Desire

(TypesDesire.Dig, wPos))));

}

 }

 }

We will consider only one type of desire—the desire to find water at

specific locations. Thus, using the set of beliefs as a base, we generate

desires and sort them by proximity using the distance (Listing 4-16) as the

proximity measure.

Listing 4-16.  Manhattan Distance

 �public int ManhattanDistance(Tuple<int, int> x, Tuple<int,

int> y)

 {

return Math.Abs(x.Item1 - y.Item1) + Math.Abs(x.Item2 - y.Item2);

 }

Using the set of desires, we push new intentions into our Intentions

set in the Filter() method; if there’s no plan in motion for the current

intention then we choose one using the ChoosePlan() method

(Listing 4-17).

Chapter 4 Mars Rover

174

Listing 4-17.  Filter() and ChoosePlan() Methods

 private void Filter()

{

 Intentions.Clear();

 foreach (var desire in Desires)

 {

 if (desire.SubDesires.Count > 0)

 {

 �var primaryDesires = desire.

GetSubDesires();

 primaryDesires.Reverse();

 foreach (var d in primaryDesires)

 �Intentions.Push(Intention.

FromDesire(d));

 }

 else

 �Intentions.Push(Intention.

FromDesire(desire));

 }

 if (Intentions.Any() && !ExistsPlan())

 ChoosePlan();

 }

 private void ChoosePlan()

 {

 var primaryIntention = Intentions.Pop();

 �var location = primaryIntention.Predicate as

Tuple<int, int>;

Chapter 4 Mars Rover

175

 switch (primaryIntention.Name)

 {

 case TypesDesire.Dig:

 �CurrentPlan = PlanLibrary.First(p =>

p.Name == TypesPlan.PathFinding);

 �CurrentPlan.BuildPlan(new Tuple<int,

int>(X, Y), location);

 break;

 }

 }

To conclude, the ExistsPlan() method determines if there’s a plan in

motion, and the ExecuteAction() method executes the action selected by

the agent (Listing 4-18). The latter method is also responsible for updating

the WaterFound data structure with the locations where water has been

found.

Listing 4-18.  ExistsPlan() and ExecuteAction() Methods

 public bool ExistsPlan()

 {

 �return CurrentPlan != null && CurrentPlan.Path.

Count > 0;

 }

public void ExecuteAction(TypesAction action, List<Percept>

percepts)

 {

 switch (action)

 {

 case TypesAction.MoveUp:

 X -= 1;

 break;

Chapter 4 Mars Rover

176

 case TypesAction.MoveDown:

 X += 1;

 break;

 case TypesAction.MoveLeft:

 Y -= 1;

 break;

 case TypesAction.MoveRight:

 Y += 1;

 break;

 case TypesAction.Dig:

 WaterFound.Add(new Tuple<int, int>(X, Y));

 break;

 }

 }

In the next section, we’ll take a look at our Mars Rover in action

as it is executed in a Windows Forms Application that we created for

experimenting and seeing how its AI works on a test world.

�Mars Rover Visual Application
As mentioned at the beginning of this chapter, we created a Windows

Forms application with which to test our Mars Rover and see how it would

do on a test Mars world with hidden water locations and obstacles along

the way. This example will not only help us to understand how to set up

the MarsRover and Mars classes, but it will also demonstrate how the AI

presented during this chapter will perform its decision-making process

under different scenarios. The complete details of the Windows Form

application (Listing 4-19) are beyond the scope of this book; we will simply

present a fragment of it to illustrate to readers where the graphics are

coming from. For further reference, the source code associated with this

book can be consulted.

Chapter 4 Mars Rover

177

Listing 4-19.  Fragment of Windows Forms Visual Application Code

public partial class MarsWorld : Form

 {

 private MarsRover _marsRover;

 private Mars _mars;

 private int _n;

 private int _m;

 public MarsWorld(MarsRover rover, Mars mars, int n, int m)

 {

 InitializeComponent();

 _marsRover = rover;

 _mars = mars;

 _n = n;

 _m = m;

 }

 private void TerrainPaint(object sender, PaintEventArgs e)

 {

 var pen = new Pen(Color.Wheat);

 var waterColor = new SolidBrush(Color.Aqua);

 var rockColor = new SolidBrush(Color.Chocolate);

 var cellWidth = terrain.Width/_n;

 var cellHeight = terrain.Height/_m;

 for (var i = 0; i < _n; i++)

 �e.Graphics.DrawLine(pen, new Point(i *

cellWidth, 0), new Point(i * cellWidth, i *

cellWidth + terrain.Height));

 for (var i = 0; i < _m; i++)

 �e.Graphics.DrawLine(pen, new Point(0, i *

cellHeight), new Point(i * cellHeight +

terrain.Width, i * cellHeight));

Chapter 4 Mars Rover

178

 if (_marsRover.ExistsPlan())

 {

 foreach (var cell in _marsRover.CurrentPlan.Path)

 {

 �e.Graphics.FillRectangle(new SolidBrush

(Color.Yellow), cell.Item2 * cellWidth,

cell.Item1 * cellHeight,

 cellWidth, cellHeight);

 }

 }

 for (var i = 0; i < _n; i++)

 {

 for (var j = 0; j < _m; j++)

 {

 �if (_mars.TerrainAt(i, j) > _marsRover.

RunningOverThreshold)

 �e.Graphics.DrawImage(new

Bitmap("obstacle-transparency.png"),

j*cellWidth, i*cellHeight,

 �cellWidth, cellHeight);

 if (_mars.WaterAt(i, j))

 �e.Graphics.DrawImage(new Bitmap("water-

transparency.png"), j * cellWidth,

i * cellHeight, cellWidth, cellHeight);

 // Draw every belief in white

 foreach (var belief in _marsRover.Beliefs)

 {

 �var pred = belief.Predicate as

List<Tuple<int, int>>;

 �if (pred != null && !pred.Contains(new

Tuple<int, int>(i, j)))

 continue;

Chapter 4 Mars Rover

179

 �if (belief.Name == TypesBelief.

ObstaclesOnTerrain)

 {

 �e.Graphics.DrawImage(new

Bitmap("obstacle-transparency.

png"), j * cellWidth, i *

cellHeight, cellWidth, cellHeight);

 �e.Graphics.DrawRectangle(new

Pen(Color.Gold, 6), j * cellWidth, i

* cellHeight, cellWidth, cellHeight);

 }

 �if (belief.Name == TypesBelief.

PotentialWaterSpots)

 {

 �e.Graphics.DrawImage(new

Bitmap("water-transparency.png"),

j * cellWidth, i * cellHeight,

 �cellWidth, cellHeight);

 �e.Graphics.DrawRectangle(new

Pen(Color.Gold, 6), j * cellWidth, i

* cellHeight, cellWidth, cellHeight);

 }

 }

 }

 }

 �e.Graphics.DrawImage(new Bitmap("rover-

transparency.png"), _marsRover.Y * cellWidth,

_marsRover.X * cellHeight, cellWidth, cellHeight);

Chapter 4 Mars Rover

180

var sightColor = Color.FromArgb(80, Color.Lavender);

_marsRover.GetCurrentTerrain();

 foreach (var cell in _marsRover.CurrentTerrain)

 �e.Graphics.FillRectangle(new SolidBrush

(sightColor), cell.Item2 * cellWidth, cell.

Item1 * cellHeight, cellWidth, cellHeight);

 }

 private void TimerAgentTick(object sender, EventArgs e)

 {

 var percepts = _marsRover.GetPercepts();

 agentState.Text = "State: Thinking ...";

 agentState.Refresh();

 var action = _marsRover.Action(percepts);

 _marsRover.ExecuteAction(action, percepts);

 �var beliefs = UpdateText(beliefsList, _marsRover.

Beliefs);

 �var desires = UpdateText(beliefsList, _marsRover.

Desires);

 �var intentions = UpdateText(beliefsList,

_marsRover.Intentions);

 if (beliefs != beliefsList.Text)

 beliefsList.Text = beliefs;

 if (desires != desiresList.Text)

 desiresList.Text = desires;

 if (intentions != intentionsList.Text)

 intentionsList.Text = intentions;

 foreach (var wSpot in _marsRover.WaterFound)

Chapter 4 Mars Rover

181

 {

 if (!waterFoundList.Items.Contains(wSpot))

 waterFoundList.Items.Add(wSpot);

 }

 Refresh();

 }

 �private string UpdateText(RichTextBox list, IEnumerable

<object> elems)

 {

 var result = "";

 foreach (var elem in elems)

 result += elem;

 return result;

 }

 private void PauseBtnClick(object sender, EventArgs e)

 {

 if (timerAgent.Enabled)

 {

 timerAgent.Stop();

 pauseBtn.Text = "Play";

 }

 else

 {

 timerAgent.Start();

 pauseBtn.Text = "Pause";

 }

 }

 }

Chapter 4 Mars Rover

182

From this code we may notice that the visual application consists of

a grid where we have included Play/Pause buttons and used a timer to

control rover actions and execute them every second.

In order to set up our Mars Rover and world we would need to define

a set of initial beliefs, a terrain for the rover, and a real terrain of Mars

(Listing 4-20).

Listing 4-20.  Setting Up the Mars Rover and World

var water = new List<Tuple<int, int>>

 {

 new Tuple<int, int> (1, 2),

 new Tuple<int, int> (3, 5),

 };

 var obstacles = new List<Tuple<int, int>>

 {

 new Tuple<int, int> (2, 2),

 new Tuple<int, int> (4, 5),

 };

 var beliefs = new List<Belief> {

 new Belief(TypesBelief.PotentialWaterSpots, water),

 �new Belief(TypesBelief.ObstaclesOnTerrain,

obstacles),

 };

 var marsTerrain = new [,]

 {

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0.8, -1, 0, 0, 0, 0, 0, 0},

 {0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0},

Chapter 4 Mars Rover

183

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

 };

var roverTerrain = new [,]

 {

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0.8, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

 };

 var mars = new Mars(marsTerrain);

 �var rover = new MarsRover(mars, roverTerrain, 7, 8,

beliefs, 0.75, 2);

 Application.EnableVisualStyles();

 �Application.SetCompatibleTextRenderingDefault(false);

 �Application.Run(new MarsWorld(rover, mars, 10, 10));

Once we run the application, a GUI like the one illustrated in Figure 4-4

will show up. In this program, one can easily differentiate water locations

(water drops images) from obstacle locations (rocks images).

Chapter 4 Mars Rover

184

Notice the light-color cells surrounding the rover at all times; these are

the cells that the rover can “see” or perceive at any given moment and are

defined by the SenseRadius parameter (defined as a [Manhattan distance]

value of 2 in the setup code) and the “discrete” circle whose radius is

precisely the SenseRadius and whose center is the rover’s current location.

On the right side of the application we have a panel with various

information sections, such as Beliefs, Desires, Intentions, WaterFoundAt.

All of these are Windows Forms controls and ultimately use the

ToString() overrides presented in the last section.

The time to see our Mars Rover agent in action has come. Let’s see

what happens when we run the application (Figure 4-5).

Figure 4-4.  Windows Forms application showing the rover, its
SenseRadius, beliefs of water locations and obstacles marked as
yellow squares, and actual water and obstacle locations without any
yellow square surrounding them

Chapter 4 Mars Rover

185

Notice that the plan (sequence of actions) or path returned by our

path-finding algorithm is denoted in yellow with the purpose of making

it easier for us to comprehend where the rover is going and why. In this

case, the rover is going after its closest water-location belief. Once it gets

there (Figure 4-6), it discovers that its belief was wrong and there was no

water in the pursued location as there was no obstacle in a cell adjacent to

that water-location belief. The good news is that while exploring that area

the rover perceived a water location nearby (in its sensing circle) and so it

adventures to go there to find out more.

Figure 4-5.  The rover creates a plan to go to location (3, 5), its closest
probable water location, and so it creates a plan or sequence of
actions (denoted in yellow cells) to get there and dig in.

Chapter 4 Mars Rover

186

The previous location sought by the agent is a water location, so the

WaterFound data structure is updated, and the rover has found water on Mars!

Afterward, it continues pursuing its next belief (Figure 4-7): water at (1, 2).

Once again when approaching (entering its perception or sense

radius), the next water-location belief is discarded by the agent as well as

another obstacle-location belief, and so the beliefs set is updated.

Figure 4-6.  The rover perceives a water location while exploring a
belief and finds the first water location on Mars

Chapter 4 Mars Rover

187

Now that the rover has exhausted its beliefs set it will wander around

(during ten actions; it was hardwired like that in the code, see Figure 4-8)

until our Statistics and Probability deliberative component is activated

and causes the rover to inject itself with a new belief that is drawn from

logical conclusions. In this case—and imitating what our human mind

would do, because we are merely trying to mimic what a human would do

in this situation—we would think that it’s more likely, or that our chances

of finding water are far greater, in an unexplored area. In the “Heuristics

and Metaheuristics” chapter 14 we will see that this concept is known

as diversification and is very common in metaheuristics such as Genetic

Algorithm, Tabu Search, and so on.

Figure 4-7.  The rover discards both a water-location belief and an
obstacle-location belief

Chapter 4 Mars Rover

188

In the same way we can have a diversification stage to explore

poorly visited or unexplored areas of the terrain we can also have an

intensification stage to better explore areas where water has been

previously found; that is, promising areas of the terrain. In our case the

intensification phase could involve having the rover wander around in

some sector of the terrain.

As we shall see in future chapters, finding a balance between the

intensification and diversification stages (sometimes called the explore–

exploit tradeoff) in search-related problems is essential, and most

problems we face in our daily lives are search problems or optimization

problems that in the end are search problems, as we search in the space

of all possible solutions for one that is the best or optimal. Thus, many

problems can be reduced to merely searching, and this is a complicated

task that typically requires cleverness.

Figure 4-8.  The rover wanders around after having exhausted its
beliefs set

Chapter 4 Mars Rover

189

Figure 4-9.  The rover injects itself with a belief of a possible water
location on the lower-left corner of the third sector

Continuing with our Mars Rover example, Figure 4-9 shows the rover

after it finishes its wandering-around stage and injects itself with a belief of

water at the lower-left corner cell of the third sector, and so it sets course to

reach that cell.

The injection of this belief allows the rover to find an actual water

location that was in the vicinity of the injected water-location belief. Thus,

by diversifying the search to unexplored areas we found an actual water

location (Figure 4-10). This process is repeated again; the rover wanders

around (random moves), eventually injects a new belief, and moves to that

location (Figure 4-11).

Chapter 4 Mars Rover

190

Figure 4-10.  The rover follows the injected belief and in the process
finds an actual water location

Chapter 4 Mars Rover

191

Figure 4-11.  The rover repeats the process, wanders around, and
then injects a new water-location belief

The Mars Rover presented in this chapter has multiple features

that can be refined to improve its performance. For instance, the

WanderThreshold may be adjusted since the rover spends more and

more time on Mars, looking to prolong the time it stays wandering in a

certain area; this decision may be dependent on the square area of the

sector where it’s wandering. The strategy of always choosing a corner of

the less-frequently visited sector to inject the water-location belief can

also change and be made dependent on various conditions related to the

rover’s history or state. The choice can also be made randomly; i.e., choose

a random cell in the selected sector to inject the water-location belief

or maybe choose the least-visited cell in that sector. The division of the

terrain may also change; we could use a set of division patterns collected

Chapter 4 Mars Rover

192

in a database to divide the terrain in different ways (not always with 2n

subdivisions) and give the rover the opportunity to explore different areas

of diverse shapes. The possibilities are endless, and it’s up to the reader

to use the skeleton provided in this chapter and create their perfect Mars

Rover.

Now that we have examined a complete practical problem of an agent

and an agent’s architecture, we can move forward and explore multi-agent

systems in which various agents coexist and maybe collaborate or compete

to achieve certain goals that could be common to them all. This will be the

main focus of the next chapter.

�Summary
Throughout this chapter we presented the practical problem of designing

a Mars Rover AI using a hybrid architecture composed of a reactive

layer and a deliberative layer that implements the BDI (Beliefs, Desires,

and Intentions) paradigm. The Mars Rover example included a visual

application (Windows Forms) that demonstrated how the rover reacts

to different scenarios, how it’s able to plan via a path-finding algorithm,

and how it’s able to provide timely responses to immediately perceived

situations. We also presented a Statistics and Probability component in

the agent that acts as a deliberative component and allows it to explore

unexplored or poorly visited areas of the terrain.

Chapter 4 Mars Rover

193© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_5

CHAPTER 5

Multi-Agent Systems
Thus far we have studied agents as single entities interacting with the

environment; in real life many problems can be solved much more quickly

and efficiently when multiple agents collaborate to achieve a common goal.

Recall the cleaning agent from Chapters 2 and 3; this agent was dealing

with the problem of cleaning an entire terrain on its own. Undoubtedly,

this task could be completed much quicker if various cleaning robots were

on the terrain communicating and helping each other to complete, in a

shorter time, the task that for a single agent would take much longer and at

higher resource consumption.

Nowadays, multi-agent systems (MAS) are applied in real-world

applications such as computer games, military defense systems, air traffic

control, transportation, graphic information systems (GIS), logistics,

medical diagnosis, and so on. Other uses involve mobile technologies,

where they are applied to achieve automatic, dynamic load balancing

and high scalability.

Throughout this chapter we will examine multi-agent systems in

which multiple agents may collaborate, coordinate, communicate, or

compete to achieve a certain goal. MAS fall into an area where distributed

systems and AI join to form what is known as distributed artificial

intelligence. At the end of this part, which will take the next three chapters,

we will present a practical problem where various cleaning robots will

collaborate to clean a room.

194

Note  Multi-agent systems represent distributed computing systems.
As with any distributed system, they are composed of a number of
interacting computational entities. However, unlike classical distributed
systems, their constituent entities are intelligent and have the capacity
to have intelligent interactions with one another.

�What’s a Multi-Agent System?
As occurred with the logic and agent terms previously presented, there’s no

global agreement on a definition for multi-agent system. In this book, we’ll

provide a personal definition that we regard as logical and that considers

other MAS definitions taken from the scientific literature.

A multi-agent system (MAS) is a set S of agents that interact with

each other in either a competitive manner—looking to achieve the

goals defined by the subset S' of agents to which they belong (S' belongs

to a partition of S)—or a collaborative manner—seeking to achieve a

common goal defined in S. Additionally, it can happen that every agent

in S is acting to achieve its own goals; in such cases we say that we are

dealing with an independent MAS.

In Table 5-1 we can see a first and very frequent scenario of an MAS

being applied to air traffic control; in this scenario, Agent Controller 1 (A1)

deals directly with pilots and collaborates with Agent Controller 2 (A2)

in finding them a runway available for landing. Refer to Table 5-1 for a

complete dialogue between the two collaborative agents.

Chapter 5 Multi-Agent Systems

195

Now that we have introduced a self-definition for the MAS term we’ll

continue presenting other relevant, related concepts.

A coalition is said to be a subset of the set of agents; for an MAS such as

basketball, baseball, or soccer games there are always two coalitions—the

two teams competing.

A strategy is a function that receives the current state of the

environment and outputs the action to be executed by a coalition. The

strategy for Team A usually depends on the actions executed by each agent

in Team B at the current moment.

A platform, also known as a multi-agent infrastructure, is a framework,

base, or support that describes the agent architecture, the multi-agent

organization, and their relations or dependencies. It allows agents to

interact without taking into consideration the properties of such a platform

(centralized or not, embedded into the agents or not, and so on), and it

usually provides agents with a set of services (agent location and so forth)

depending on the system needs, with the aim of enhancing MAS activity

and organization; it is considered a tool for agents.

Table 5-1.  MAS Example in Air Traffic Control Scenario

Pilot Agent Controller 1 (A1) Agent Controller 2 (A2)

To A1: Can I land?

To A2: Any runway available?

To A1: Runway P.

To Pilot: Clear for P.

To A1: OK

To A2: Runway P is busy now.

Chapter 5 Multi-Agent Systems

196

Agent architecture describes the layers or modules constituting a single

agent as well as the relations and interactions among them. For instance,

agents (in the context of MAS) regularly have a communication module

to augment communication with users and other agents. As we know

(from Chapters 3 and 4), some types of agents also have a planning layer.

Normally, incoming messages arriving at the communication module will

affect the planning layer by some connection, and the planning layer may

create outgoing messages to be handled by the communication module.

A multi-agent organization describes the manner in which multiple

agents are organized to form an MAS. Relations, interactions between

agents, and their specific roles within the organization constitute a multi-

agent organization. Agent architecture is not part of the multi-agent

organization even though interrelations among them are common.

An agent is said to be autonomous in an MAS if it’s autonomous with

respect to every other agent in the set of agents making up the MAS; in

other words, if it’s beyond the control or power of any other agent.

An MAS is discrete if it is independent and the goals of the agents bear

no relation to one another. Thus, discrete MAS involve no cooperation as

each agent will be going its own way trying to achieve its own goals.

Modularity is one of the benefits of MAS; sometimes solving a complex

problem is subdivided into easier subproblems of the original problem,

and each agent can be specialized in the solution of one of these particular

types of problem, therefore leading to reusability. Imagine an MAS dealing

with a city disaster like an earthquake. Such an MAS would be composed

of different agents (policemen, firemen, and so forth) where each agent

would be devoted to a single task and all of them would have the global

assignment of establishing order and saving lives.

Problem solving through MAS leads to efficiency; the solution to

a problem can often be achieved much quicker if various concurrent,

parallel agents are working at the same time to solve the problem.

Chapter 5 Multi-Agent Systems

197

An MAS also provides improved reliability because we may have

multiple agents taking care of a single task, and if one of them fails then the

others can continue its work by distributing among the rest.

One last important benefit that MAS provides us is flexibility; we can

add or delete agents from an MAS at will, and different agents that have

complementary skills may form coalitions to work together and solve

problems.

In the following sections we’ll be exploring some key concepts in the

area of distributed AI and especially on the topic of MAS: communication,

cooperation, negotiation, and coordination. We’ll also take a deeper look

at some of the concepts previously presented.

Note  One of the services a platform can offer is agent location; in
other words, the facility by which an agent or a third party is able to
locate another agent in an MAS environment.

�Multi-Agent Organization
Earlier in the chapter we provided a definition for the term multi-agent

organization. In this section, we will detail some of the most common

multi-agent organizations one can find:

•	 Hierarchical: organization in which agents can only

communicate by following a hierarchical structure.

Because of this restriction there’s no need to have an

agent-location mechanism. Instead a set of facilitators

act as middle men and receive and send all messaging

between agents. These facilitators are usually at the

upper levels of the hierarchy. Consequently, lower

levels usually depend on higher levels. Communication

is really reduced in this type of organization.

Chapter 5 Multi-Agent Systems

198

•	 Flat or Democracy: organization in which agents

can communicate directly with one another. There’s

no fixed structure in this type of organization, but

agents can form their own structures if they judge it is

necessary to solve some specific task. Furthermore, no

control of one agent over another is assumed. Agent

location must be provided as part of the infrastructure

or platform or the system must be closed; in other

words, every agent must know about the others

at all times. This type of organization can lead to

communication overhead.

•	 Subsumption: organization in which agents

(subsumed) can be components of other agents

(container). This type of organization resembles

that of the hierarchical model except that in this

case subsumed agents surrender all control to their

container agents. As occurs with the hierarchical

organization, it involves low communication overhead.

•	 Modular: organization in which the MAS is composed

of various modules, and each of these can be conceived

of as a stand-alone MAS. The partition of the system

into modules is usually done by considering measures

such as geographical vicinity or a necessity for extreme

interaction among agents and services within the same

module. Modularity increases the efficiency of task

execution and reduces communication overhead.

Hybrids of these organization types and dynamic changes from one style

to another are possible. From the multi-agent organizations detailed in the

previous points we can easily see that communication plays a vital role in

defining the architecture and way of functioning of agents. We’ll devote the

next section to explaining some key aspects of this very important topic.

Chapter 5 Multi-Agent Systems

199

Note I n recent years, a large variety of agent architectures have
been proposed. In the case of MAS architectures, this number greatly
decreases because for an agent to be incorporated in an MAS it must
be equipped with vital components (communication, coordination,
and so on) that would allow it to properly interact with other agents.

�Communication
Agents in an MAS must coordinate their actions to solve problems. In this

scenario, coordination is achieved by means of communication, which

plays a vital role in providing agent interaction and facilitating not only

coordination but also information sharing and cooperation.

In the last section we discussed MAS organizations and how they can

affect agent communication depending on the type of organization they

are in. Now, we’ll look at some detailed aspects of this topic.

The communication link established between agents can be classified as:

•	 Point to Point: agents communicate directly with each

other

•	 Broadcast/Multicast: agents are capable of sending

information to a subset of the set of agents. If this

subset equals the set of agents then the agent is

broadcasting; otherwise, it is multicasting.

•	 Mediated: communication between agents is mediated

by a third party (facilitators; see Figure 5-1).

Chapter 5 Multi-Agent Systems

200

Considering the nature of the medium by which messages travel from

one agent to another, communication can be classified as:

•	 Direct routing: Messages are sent directly to other

agents with no loss of signal.

•	 Signal-propagation routing: Agents send a signal whose

intensity decreases as distance increases.

•	 Public-notice routing: using blackboard systems

Blackboard systems and direct message passing are two options for

establishing agent communication.

A blackboard system (Figure 5-2) represents a common, shared space

for every agent to place their data, information, and knowledge. Each

agent can write and read from the blackboard at any given time, and in this

centralized system there’s no direct communication between agents. The

blackboard also acts as a dispatcher, handling agent requests, data of the

common problem, current state of the solution, current task of each agent,

and so on. Since the blackboard system consists of a shared resource, one

must be aware of all the concurrent issues that can arise in such a model

(various agents trying to access the same info, agents using partial, not

updated data written by other agents, and so on).

Figure 5-1.  Agent 1 and Agent 2 communicate via a facilitator acting
as middle man

Chapter 5 Multi-Agent Systems

201

In the other variant (message passing), information is passed from

one agent (sender) to another (receiver). Communication among agents

means more than communication in distributed systems; therefore, it is

more appropriate to speak about interaction instead of communication.

When we communicate we perform more than an exchange of messages

with a specified syntax and a given protocol, as in distributed systems.

Therefore, a more elaborate type of communication that tends to be

specific to MAS is communication based on the Speech Act Theory (Searle,

1969; Vanderveken, 1994), which is the one that best describes the

message-passing alternative for establishing agent communication.

�Speech Act Theory
The origin of the Speech Act Theory (also called Communicative Act

Theory) can be traced back to John Austin’s book How to Do Things with

Words (1962); most treatments of communication in MAS are inspired in

this theory. The main point behind this theory is that we should consider

communication as a form of action. Furthermore, Austin noticed that

some utterances are like physical actions and appear to change the state

of the world. Examples of this could be a declaration of war or simply “I

declare you man and wife.”

Figure 5-2.  The blackboard system is a centralized, common space
for all agents to place and share their information

Chapter 5 Multi-Agent Systems

202

Austin argued that all communications could be phrased via

declarative forms using the appropriate performative verbs. Therefore,

a simple informative phrase such as “the jazz concert will take place on

October 10th” can be treated as “I inform you that the jazz concert will take

place on October 10th.” Directives—as, for example, “give me that bottle of

rum”—can be treated as “I request (demand) that you give me that bottle

of rum.” A commissive such as “I’ll give you $100 for your furniture” can be

treated as “I promise I’ll give you $100 for your furniture.”

Everything we utter is said with the intention of satisfying some goal;

a theory of how utterances are used to achieve intentions is Speech Act

Theory, and by using the different types of speech acts agents can interact

effectively.

Note  Communicative act theories are theories of language use;
they try to explain how language is used by people every day to
achieve their goals and intentions.

Examples of some speech-act constructs are presented here:

•	 Inform other agents about some data.

•	 Query others about their state or current situation.

•	 Answer questions.

•	 Request others to act.

•	 Promise to do something.

•	 Offer deals.

•	 Acknowledge offers and requests.

Chapter 5 Multi-Agent Systems

203

Searle (1969) classified speech acts into the following categories:

•	 Representatives: when we are informing, asserting,

claiming, describing; for example, it’s cloudy

•	 Directives: an attempt to make the hearer do

something; in other words, requesting, commanding,

advising, forbidding; for example, bring me that bottle

of rum

•	 Commissives: when we commit the speaker to do

something, such as when promising, agreeing, offering,

threatening, inviting; for example, I promise I'll bring

you tea

•	 Expressives: when the speaker expresses a mental

state; in other words, congratulating, thanking,

apologizing; for example, I’m sorry you did not make it

to Harvard

•	 Declarations: when the speaker brings about a state of

affairs; in other words, declaring, marrying, arresting;

or example, I declare (pronounce) you man and wife

A speech act has two components: a performative verb (for example,

inform, declare, request, and so on) and a propositional content (for

example, the bottle is open). Constructing speech acts involves combining a

performative verb with a propositional content. See the following examples:

Performative = inform

Content = the bottle is open

Speech act = the bottle is open.

Performative = request

Content = the bottle is open

Speech Act = please open the bottle.

Chapter 5 Multi-Agent Systems

204

Performative = inquiry

Content = the bottle is open

Speech Act = is the bottle open?

Performative = refuse

Content = the bottle is open

Speech Act = I refuse to open the bottle

Performative = agree

Content = the bottle is open

Speech Act = I agree to open the bottle

In the same way we typically create a language for communication

among co-workers at work, an MAS containing different agents that might

be running in different machines, under different operating systems

requires an agent communication language standardized to allow the

exchange of messages in a standard format.

�Agent Communication Languages (ACL)
Agent communication languages began to emerge in the 1980s; at first,

they were dependent on the projects for which they were created and also

on the internal representation of the agents that used them; there were no

standard languages at that time.

Around the same time, but more generic than its predecessors,

appeared the Knowledge Query and Manipulation Language, commonly

known as KQML. It was created by the DARPA Knowledge Sharing Effort

and was supposed to be a complement to the studies being made on

knowledge-representation technologies, specifically on ontologies.

KQML is comprised of two parts: the language itself acts as an “outer”

language, and the Knowledge Interchange Format (KIF) acts as an “inner”

language; the first describes performatives, while the latter describes

propositional content and is largely based on first-order predicate

calculus. KQML represents knowledge that relies on the construct of a

Chapter 5 Multi-Agent Systems

205

knowledge base; thus, instead of using a specific internal representation, it

assumes that each agent maintains a knowledge base described in terms

of knowledge assertions. KQML proposed a number of performatives

such as query and tell. The idea was that each performative could be

given semantics based on the effect it had on the knowledge bases of the

communicating agents. Moreover, an agent would send a tell performative

for some content only if it believed in the content sent; in other words, if it

thought the content belonged in its knowledge base. An agent that receives

a tell performative for some content would insert that content into its

knowledge base; in other words, it would begin believing what it was told.

Note  An ontology is an explicit description of a domain (concepts,
properties, restrictions, individuals, and so on). It defines a vocabulary
and is used to share an understanding of the structure of information
among computer agents or humans. In the Blocks World, Block
represents a concept and OnTop represents a relationship.

The elegance of KQML is that all information for understanding the

content of the message is included in the communication itself. Its generic

syntax is described in Figure 5-3; notice it resembles the Lisp programming

language:

Figure 5-3.  Basic structure of a KQML message

Chapter 5 Multi-Agent Systems

206

In the following lines we show an example of a KQML dialogue

between AgentX and AgentY:

 (stream-about

:sender AgentX

:receiver AgentY

:language KIF

:ontology CleaningTerrains

 :query

:reply-for query_from_AgentY

:content cell_i cell_j

)

(query

:sender AgentX

:receiver AgentY

:content(> (dirt cell_i) (0))

)

(tell

:sender AgentX

:receiver AgentY

:content(= (cell_j) (1))

)

(eos

:sender AgentX

:receiver AgentY

:query

:reply-for query_from_AgentY

)

Chapter 5 Multi-Agent Systems

207

In this little fragment of a KQML message, AgentX asks AgentY if

there’s dirt at cell i; it also replies to a previous query received from AgentY

and tells it that cell j has 1 of dirt; eos stands for End of Signal. Note that

the value of the content field is written in the language defined by the

language tag, in this case KIF.

Note  KIF, a particular logic language, has been proposed as a
standard to describe things within expert systems, databases,
intelligent agents, and so on. One could say that KIF is a mediator
used in the translation of other languages. Even though KQML is
usually combined with KIF as content language, it can also be used in
combination with other languages like Prolog, Lisp, Scheme, and so on.

In 1996, the Foundation for Intelligent Physical Agents (FIPA), a stand-

alone non-profit organization now part of IEEE Computer Society, started

working on several specifications for agent-based applications; one of

these specifications was for an ACL of the same name as the organization;

i.e., FIPA-ACL.

The basic structure of FIPA is quite similar to that of KQML, as

illustrated in Figure 5-4.

Figure 5-4.  Components of a FIPA message

Chapter 5 Multi-Agent Systems

208

The parameters admitted by the FIPA language specification are the

following:

•	 :sender — who sends the message

•	 :receiver — who is the recipient of the message

•	 :content — content of the message

•	 :reply-with — identifier of the message

•	 :reply-by — deadline for replying to the message

•	 :in-reply-to — identifier of the message being

replied to

•	 :language — language in which the content is written

•	 :ontology — ontology used to represent the domain

•	 :protocol — communication protocol to be followed

•	 :conversation-id — identifier of the conversation

Table 5-2 details some FIPA performatives and the purpose for which

they were created.

Chapter 5 Multi-Agent Systems

209

Table 5-2.  Some FIPA Performatives

Performative Passing
Info

Requesting
Info

Negotiation Perform
Actions

Error
Handling

accept-proposal x

agree x

cancel x x

cfp x

confirm x

disconfirm

failure

x x

inform x

inform-if x

inform-ref x

not-understood x

propose x

query-if x

query-ref x

refuse x

reject-proposal x

request x

request-when x

request-whenever x

subscribe x

Chapter 5 Multi-Agent Systems

210

Inform and Request represent two basic performatives, while the

others are defined in terms of these. Their meaning is composed of two

parts: a precondition list that states what must be true for the speech act to

succeed and a rational effect—i.e., what the sender of the message hopes

to achieve.

In the FIPA inform performative, content is a statement, and sender

informs the receiver that a given proposition is true; sender states the

following:

•	 Some proposition is true.

•	 The receiving agent must also believe that the

proposition is true.

•	 The receiver has no knowledge whatsoever of the truth

of the proposition.

The next lines show an example of a FIPA inform performative:

(inform

:sender(agent-identifier :x)

:receiver(agent-identifier :y)

:content dirt(cell_i, 0)

 :language Prolog

)

On the other hand, content in the request performative consists of

an action; in this case, the sender requests the receiver to perform some

action; sender states the following:

•	 The action content is to be performed.

•	 Recipient is capable of performing this action.

•	 Does not believe that receiver already intends to

perform the action.

Chapter 5 Multi-Agent Systems

211

In this section, we analyzed a critical topic in MAS design:

communication. Even though this is an essential aspect of every MAS,

there are other components that are also relevant, one of which is

coordination. We need our agents to coordinate and avoid problems like

having two of them executing the same action at the same time (both

trying to go through the same door at the same time) when it might be

impossible. Coordination will be the focus point of the next section.

�Coordination & Cooperation
An agent that is part of an MAS exists and performs its decision making

in an environment where other agents exist as well. To avoid chaos and

to ensure rational behavior in this environment we need our agents to

coordinate and achieve their goals in a concise, logical manner. There are

two main criteria points for assessing MAS: coherence and coordination.

Coherence refers to how well the MAS behaves considering some

criteria of evaluation (solution quality, efficiency in applying resources,

logical decision making, and so forth). A common problem for an MAS

is how it can maintain overall coherence while lacking explicit global

control. In such cases, agents must be able on their own to determine goals

they share with other agents; they must also determine common tasks,

avoid unnecessary conflicts, and collect knowledge. Having some form of

organization among the agents is useful in this scenario.

Coordination refers to the ability of agents to avoid, by means of

synchronization, irrational activities in which two or more agents could be

involved. It implies the consideration of the actions of other agents when

planning and executing one agent’s actions. It is also a means to achieve

the coherent behavior of the MAS, and it may imply cooperation. When

agents in an MAS cooperate, they work toward achieving common goals.

When they are competing, they have opposite goals. Coordination in both

cases is essential because the agent must take into account the actions

Chapter 5 Multi-Agent Systems

212

of others when competing or asking for a given resource or offering a

service. Examples of coordination include ensuring the actions of agents

are synchronized, providing opportune information to other agents, and

avoiding redundant problem solving.

Cooperation is coordination among non-antagonistic agents. Typically,

to cooperate successfully, each agent must maintain a model of the

other agents and also develop a model of future interactions; this implies

sociability.

For agents in an MAS to work together they must be able to share

tasks and information. If we had an MAS where agents were designed by

different individuals then we could end up having an MAS with various

goals, all derived from different agents. Alternatively, if we are responsible

for designing the entire system then we can have agents helping each

other whenever we deem necessary; our best interest is going to be their

best interest. In this cooperative model we say that agents are benevolent

because they are working all together to achieve a common goal. A

benevolent MAS, or those in which all agents are benevolent, simplifies the

design task of the system significantly.

When agents represent the interests of individuals, organizations,

companies, and so on, we say that they are self-interested. These agents will

have their own set of goals, apart from the goals of other agents in the MAS,

and will act to achieve them even at the expense of other agents’ welfare;

this could potentially lead to conflict between some of them.

Note  Self-interested agents complicate the design task of an MAS
seriously. For an MAS with self-interested agents, we typically have to
incorporate mechanisms for intelligent behavior, such as those based
on game theory or rule-based algorithms.

Figure 5-5 illustrates a tree with some of the possible approaches for

achieving coordination.

Chapter 5 Multi-Agent Systems

213

Figure 5-5.  Taxonomy for agent coordination possibilities

A basic strategy for cooperation in an MAS is to decompose and then

distribute tasks among agents. This divide-and-conquer approach can

certainly reduce the complexity of the global task because by dividing it

into smaller subtasks the global solution can be obtained in a shorter time

and using fewer resources. In general, task sharing can be divided into

three stages:

•	 Problem decomposition (Divide)

•	 Sub-problem solution

•	 Solution synthesis (Conquer)

In the problem decomposition stage the global problem is divided into

subproblems, typically by a recursive or hierarchical procedure. Deciding

how to do the division is a design choice and is problem dependent.

Deciding who makes the problem decomposition and how it’s made can

Chapter 5 Multi-Agent Systems

214

be left to an agent that we appoint as task distributor. This agent may not

take care of anything other than distributing tasks among other agents in

what would be a centralized design. Alternatively, it could be part of the

subproblem solution team and act as any other agent but with the special

attribute of being a work organizer.

Once the problem decomposition stage has provided us with a division

of the global problem, each agent contributes to the subproblem assigned.

During this process agents may need to share some information and update

others on their current situation. Finally, in the solution synthesis stage all

solutions to subproblems are joined (recursively or hierarchically).

In this cooperative model we can distinguish two main activities that

will most likely be present during MAS execution: task sharing and results

sharing. In the first, components of the task are distributed to agents, while

in the latter partial or complete results are also distributed.

We can use a Subscribe/Notify (Publisher/Subscriber) pattern for

results sharing; in such a pattern an object (subscriber) subscribes to

another object (informant), requesting a notification for when event evt

occurs. Once evt has occurred the informant notifies the subscriber of its

occurrence, and they proactively exchange information in this manner.

At this point we have some unanswered questions. How is the process

of allocating or matching tasks to agents done? How do we assemble a

solution from the solved parts? In order to answer the first question we will

look at a task-sharing protocol known as Contract Net.

Note  Some of the commonly used mechanisms for task sharing
include the Market mechanism, where tasks are assigned to agents
by generalized agreement or mutual selection; multi-agent planning,
where planning agents have the responsibility of task assignment;
and Contract Net protocol, one of several task-sharing mechanisms.

Chapter 5 Multi-Agent Systems

215

�Negotiation Using Contract Net
The Contract Net mechanism is an interaction mechanism for task

sharing among agents. It follows the model used by entities (governments,

corporations, and so forth) to regulate the exchange of goods and services.

Contract Net offers a solution to the problem of finding an appropriate

agent to work on a task.

The agent who wants a task done is called manager. The candidate

agents who can fulfill the task are known as contractors. The Contract Net

process can be summarized in the next stages (Figure 5-6):

	 1.	 Announcement: The manager sends out an

announcement of the task, which includes a

specification of the task to be achieved. This

specification must include a description of the task,

any constraints (deadlines, etc.), and meta task info

(bids must be submitted prior to deadline, due date, etc.).

The announcement is broadcast.

	 2.	 Bidding: Agents receive the broadcast

corresponding to the manager’s announcement and

decide for themselves whether they want to bid for

the task. In this process they must take into account

various factors like capacity to carry out the task

and being able to meet all constraints. If they finally

decide to bid then they submit a tender.

	 3.	 Awarding: The manager must choose between bids

and decide on an agent to award the contract to.

The result of this process is communicated to every

agent that submitted a bid.

	 4.	 Expediting: The winner or successful contractor

expedites the task.

Chapter 5 Multi-Agent Systems

216

Figure 5-6.  Contract Net process

Chapter 5 Multi-Agent Systems

217

Generally, any agent can act as manager and any agent can act as

contractor by replying to task announcements. Because of this flexibility,

task decomposition can be taken further to different depth levels.

Furthermore, if a contractor is unable to complete or provide a suitable

solution for a task then the manager can look for other contractor

candidates, and as long as there are agents in the MAS the manager can

seek a candidate contractor that at some point in time will be available to

execute a task according to the manager’s requirements.

From the contractor’s perspective, he receives various offers

(announcements) from various managers and decides upon what he thinks

is the best offer. This decision is made based on some criteria (proximity,

reward, etc.), and he sends a bid to the corresponding manager.

From the manager’s perspective, he receives and evaluates bids for

each task announcement. Any bid for a given task that is considered

satisfactory will be accepted and always before the expiration time of the

task announcement is met. Afterward, the manager notifies the winning

contractor and possibly all other candidates who sent a bid with an “award

notice” announcement that the task has been awarded.

Perhaps one could say that a negative point of the Contract Net

mechanism is that the awarded agent does not have to be the best or most

suitable agent for the task, as the most suitable agent for the task could be

busy at award time.

Note T here exist several reasons why a manager may not receive
bids on an announcement. All agents might be busy at the time of
receiving the announcement, a candidate contractor (agent) ranks
the task announced below other offered tasks, or no contractor is
capable of working on the announced task.

Chapter 5 Multi-Agent Systems

218

The FIPA-ACL specification was projected to support the Contract Net

negotiation mechanism. The cfp (call for proposals) performative is used

to announce the task; the propose and refuse performatives are used to

propose or refuse a proposal; accept and reject are used to accept or

decline a proposal, and inform and failure are used to communicate

completion of the task with its corresponding result.

�Social Norms & Societies
Classical AI has been concerned with designing single agents that

incorporate reasoning and control logics implemented using a von

Neumann architecture. However, agents are not always in isolation; they

exist in an environment where they might find other agents and be in need

of some type of interaction to complete their task in an optimal manner.

Thus, it’s logical to see agents as a society where well-known rules govern

their behavior and actions. Sociability is vital in cooperative MAS and aims

to aid true peer-to-peer distributed and flexible paradigms that recent

applications require and where agents can find their utmost contribution.

A social commitment in an MAS is an obligation created between an

agent and another agent or group of agents, constraining the behavior

of the first to follow a given prearranged commitment or rule. Imagine

an MAS where agents must stay together at the same line of work in a 2D

space, but AgentX moves faster than the remaining agents and always

tends to go ahead and leave the team behind. A social commitment from

this agent to the others could be to always stay in the same line and not

move ahead and leave someone behind.

To establish rules for an MAS, we can design social norms or laws to

rule agents’ behavior (Figure 5-7). A social law is a set of constraints, and

a constraint comes in the form of a pair (S, A) stating that an agent cannot

execute an action A while being in state S.

Chapter 5 Multi-Agent Systems

219

The set of focal states is the set of states we want our agent to have

access to; thus, from any focal state there must exist a path to the

remaining focal states. A useful law is one that does not stop agents from

getting to one state from another; the law from Figure 5-5 is a useful law.

Now that we have set the grounds for MAS terminology, concepts,

and ideas we will introduce in the following chapter a complete

practical application consisting of multi-agent communication

software that allows various agents to exchange messages using a WCF

Publisher/Subscriber pattern in a two-sided (service, client) program.

This communication program will be used later (in Chapter 7) to create

a complete example of a multi-agent system where a set of cleaning

robots will communicate, coordinate, and cooperate to clean an n x m

room of its dirt.

Figure 5-7.  Social law determining agent movement in a grid of 3 × 3.
This law prevents collisions.

Chapter 5 Multi-Agent Systems

220

�Summary
In this chapter, we introduced the field of multi-agent systems. We

presented various definitions and concepts that set us on the right path to

getting acquainted with some MAS terminology necessary for diving into

the scientific literature associated with this topic. We examined multi-

agent organizations, agent communication, and its subfields (Speech

Act Theory and Agent Communication Languages), and we concluded

the chapter by detailing the vital topics of coordination and cooperation

among agents. We also included in this final part the topics of negotiation

and social norms. In the next chapter, we’ll present a very interesting

practical problem where we’ll have a set of N agents exchanging messages

in a WCF application created under the Publisher/Subscriber pattern.

Chapter 5 Multi-Agent Systems

221© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_6

CHAPTER 6

Communication
in a Multi-Agent
System Using WCF
In the previous chapter, we examined the basics of multi-agent systems

(MAS) and got acquainted with concepts like MAS platform, coordination,

cooperation, and communication. In this chapter, we will describe an

application that uses Windows Communication Foundation (WCF)

to create a network of agents capable of interacting with and

passing messages among each other. This application will use the

Publisher/Subscriber design pattern to set up the communication

component that every agent in the MAS will incorporate. We will use the

application described throughout this chapter again in the next chapter,

adapting it as the communication module of every agent in an MAS

consisting of cleaning agents whose task is cleaning a room of its dirt.

WCF emerged in 2006 as a development kit and eventually became

part of the .NET Framework; it’s an application programming interface

(API) for developing connected systems where both security and reliability

in any communication between internal systems of an organization or

systems over the internet is possible and provided. It is designed to offer

a manageable approach to distributed computing, broad interoperability,

222

and direct support for service orientation. WCF represents Microsoft’s

alternative to a platform that collects a set of industry standards that define

different protocols, service interactions, type conversion, marshalling, and

so forth. It provides developers with the fundamental predesigned tools

that every network application might require, and its first release included

many useful facilities for creating services (hosting, service-instance

management, asynchronous calls, reliability, transaction management,

disconnected queued calls, security, and so on).

Applications built using WCF as the runtime environment will allow

us to use Common Language Runtime (CLR) types as services and will

allow us to consume other services as CLR types. Concepts such as service,

contract, binding, endpoint, and others will be explained throughout this

chapter as we develop our MAS communication example.

Note  Windows Communication Foundation (WCF) is a framework
for developing and deploying services on Windows. Using WCF, we
can build service-oriented applications (SOAs). WCF replaced the
older ASMX web services technologies.

�Services
A service is a functional component made accessible to its consumers via a

network that could be the internet or a local internal network. A calculator

could very well be a service offered to different clients in a network so they

can connect to the service and request any operation between any given

numbers. In a service-oriented application (SOA) we aggregate services

the same way we aggregate objects when developing an object-oriented

application; the service becomes the first-class citizen in this type of

application.

Chapter 6 Communication in a Multi-Agent System Using WCF

223

Services communicate using any communication protocol previously

agreed on, and they can use any language, platform, versioning, or

framework without needing to have any agreement on those. Thus, one

can say that services are dependent on the communication protocol

applied but independent in any other area.

The client of a service is the part making use of the service’s

functionality. In the calculator service example the client would be the

program requesting that the calculator solve mathematical expressions.

The client can be any type of program, from a console application to

a Windows Forms, an ASP.NET MVC site, a WPF program, or another

service. In WCF, the client never interacts with the service directly, not

even with a local service. Instead, the client always uses a proxy to forward

calls to the service. The proxy acts as a middle man, presenting the same

operations as the service in addition to some proxy-related methods.

Note T here has been an evolution from applications where
functions were the first-class citizen to applications where objects
were the first-class citizen (object-oriented programming), passing
through component-oriented applications (component-object
model, COM) and leading to the most recent step in this evolution,
service-oriented applications (SOAs).

WCF most often uses Simple Object Access Protocol (SOAP) messages

to communicate; SOAP is a protocol for data exchange. It can be seen as a

set of components that can be invoked, published, and discovered. These

messages are independent of transport protocols, and, contrasting with

web services, WCF services can communicate over a variety of transports,

not just HTTP. WCF clients are capable of interoperating with non-WCF

services, and WCF services can interact with non-WCF clients.

Chapter 6 Communication in a Multi-Agent System Using WCF

224

�Contracts
We deal with contracts often in our daily life, especially in business-related

affairs, to make sure parts engaging in a relationship agree on various

points. In WCF, a contract is a standard way of describing what a service

does; it’s a way for service consumers and providers to correlate correctly.

In an SOA application, having a properly defined contract can give its

consumers a pretty good idea of how to work with the service even though

they might not know how it’s implemented.

WCF defines various types of contracts:

•	 Service Contract, Operation Contract: used to represent

a service and describe the operations that the client can

perform on the service

•	 Data Contract: used to represent an agreement on the

data that will be exchanged between the service and

the client. WCF defines implicit contracts for built-in

types such as int and string and gives you the option

of defining explicit data contracts for custom types.

•	 Fault Contract: used to define which errors are raised

by the service by associating custom exception types

with certain service operations and describing how the

service handles and propagates errors to its clients

•	 Message Contract: used by the service to interact

directly with messages, altering its format or

manipulating the service messages to modify other

features like the SOAP header and so forth

There are different ways or patterns for defining contracts in WCF;

we could define them using the One-Way pattern, the Request–Response

pattern, or the Duplex pattern. These are all message-exchange patterns.

Chapter 6 Communication in a Multi-Agent System Using WCF

225

•	 One-Way: When an operation has no returned values

and the client application is not interested in the

success or failure of the invocation, we may have this

“fire & forget” invocation called One-Way. After the

client issues the call, WCF generates a request message,

but no reply message will ever head back to the client.

Consequently, One-Way operations can’t return values,

and any exception thrown on the service side will not

make its way back to the client.

•	 Request–Response: In this pattern, a service operation

call consists of a message sent and a reply expected

from the service. Operations using this pattern have

an input parameter and an associated return value.

The client is always the one to initiate communication

between the parties.

•	 Duplex: This exchange pattern allows for a random

number of messages to be sent by a client and received

in any order. It resembles a conversation where each

word spoken is seen as a message. Any part can initiate

communication.

Chapter 6 Communication in a Multi-Agent System Using WCF

226

In order to implement a service in WCF you typically go through the

following steps:

	 1.	 Define the service contract. A service contract

specifies the signature of a service, the data it

exchanges, and other contractually required data.

The following code shows the service version of the

very classic Hello World program:

[ServiceContract]

 interface IHelloWorld

{

[OperationContract(IsOneWay = true)]

 void HelloMessage();

}

	 2.	 Implement the contract by inheriting from the

service contract definition (prearrangement

interface) and create the class that implements the

contract:

public class Hello: IHelloWorld

{

 public void HelloMessage()

 {

 �Console.WriteLine("Hello World");

 �}

}

	 3.	 Configure the service by specifying endpoint

information and other behavior information. We’ll

see more about this in the next section.

Chapter 6 Communication in a Multi-Agent System Using WCF

227

	 4.	 Host the service in IIS or in an application; it could

be a console application, Windows Forms, WPF, ASP

.NET, etc.

	 5.	 Create a client application; it could be a console

application, Windows Forms, WPF, ASP .NET, etc.

Note that methods declared on the IHelloWorld service contract

that do not have the OperationContract attribute will not be considered

as WCF methods; in other words, they won’t be invokable over WCF

applications. You can mix non-WCF methods with WCF methods with the

intention of having some subliminal processing, but only for that purpose.

�Bindings
WCF allows us to send messages using different transport protocols,

such as HTTP, HTTPS, TCP, MSMQ, and so on, and using different XML

representations, such as text, binary, or MTOM (Message Transport

Optimization Mechanism); this last one is known as the message

encoding in WCF. Furthermore, we can improve specific messaging

interactions using a suite of SOAP protocols, such as the multiple WS-X

(WSHttpBinding, WSDualHttpBinding, etc.) specifications. Improvements

could be related to security, reliable messaging, and transactions. These

communication concepts (transport, message encoding, and protocol) are

vital to understanding what happens on the wire at runtime.

In WCF, bindings are represented by the System.ServiceModel.

Channels.Binding class, and all binding classes must derive from this base

class; Table 6-1 illustrates some of the built-in bindings that WCF provides.

Chapter 6 Communication in a Multi-Agent System Using WCF

228

Bindings like BasicHttpBinding and WSHttpBinding were created for

scenarios where interoperability is essential. Thus, they both use HTTP

as the transport protocol and simple text for message encoding. On the

other hand, bindings that have the Net prefix are optimized to function

with the .NET Framework on both ends (service, client). As a result, these

bindings are not designed for interoperability and perform better in

Windows environments. A binding is part of another component of a WCF

application known as an endpoint; endpoints will be the topic of the next

section.

Note  As of .NET Framework 4.5 the NetPeerTcpBinding binding
has been marked as obsolete and may disappear in the future.

Table 6-1.  WCF Built-in Bindings

Binding Class Transport Message
Encoding

Message Version

BasicHttpBinding HTTP Text SOAP 1.1

WSHttpBinding HTTP Text SOAP 1.2 WS-Addressing 1.0

WSDualHttpBinding HTTP Text SOAP 1.2 WS-Addressing 1.0

NetTcpBinding TCP Binary SOAP 1.2

NetPeerTcpBinding P2P Binary SOAP 1.2

NetMsmqBinding MSMQ Binary SOAP 1.2

CustomBinding Up to you Up to you Up to you

Chapter 6 Communication in a Multi-Agent System Using WCF

229

�Endpoints
WCF services are exposed through service endpoints that provide access

points for clients to exploit the functionality provided by the WCF service.

Service endpoints consist of what is known as the ABC of a service.

A stands for Address, which defines where the service is (for example,

http://localhost:9090/mas/). B stands for Binding, which defines how

to communicate with the service, and C stands for Contract, which defines

what the service can do. Hence, an endpoint can be seen as a tuple

<A, B, C>: an address, a binding, and a contract.

We must define endpoints in both our service and client applications;

this can be done programmatically or through the app.config file, as

shown in the next example (Listing 6-1).

Listing 6-1.  Defining Two Endpoints in the app.config File

<service name = "HelloWorld">

<endpoint

 address = "net.tcp://localhost:8001/service/"

 binding = "netTcpBinding"

 contract = "IHelloWorld"

 />

<endpoint

 address = "http://localhost:8002/otherService/"

 binding = "wsHttpBinding"

 contract = "IHelloWorld"

 />

</service>

There’s no significant technical difference in the programmatic way

and the configuration setting of the app.config file way for defining

endpoints in WCF. Eventually .NET will parse the app.config file and

execute its defined configuration in a programmatic manner. Now that we

Chapter 6 Communication in a Multi-Agent System Using WCF

230

have been over the basics of WCF, we will look at the Publisher/Subscriber

pattern that WCF supports and that we will be using in communicating

with various agents.

�Publisher/Subscriber Pattern
Real-time applications are those that provide a live feed or update

(basketball game, baseball game, and so on) of a particular event

occurring at a short, prior time from the time the feed is provided.

Real-time apps implement one of two possible mechanisms for giving

updated information to clients: pushing and pulling.

To understand how these mechanisms work, let’s imagine a scenario

where we would like to be updated on the results of a baseball game.

We are part of a network that consists of a server, which has the updated

information (live updates), and several other computers. Assuming we

get the live feed in our browser (client) via HTTP, and considering the

use of a pulling mechanism, our computer would be constantly sending

update requests and pulling new information (if any) from the server. It

would basically be like asking the server from time to time “Do you have

anything new for me?” On the other hand, if we were to follow a pushing

mechanism our client would tell the server, “Keep me updated on the

score of this game,” and the server would automatically “push” updates to

the client whenever they were available. The Publisher/Subscriber model

follows the latter approach, the pushing mechanism; the server plays the

role of publisher and the client the role of subscriber, and it requires a

duplex service to be established between both parts.

A duplex service consists of two contracts, one at the server and

another at the client. The contract implemented at the server will be

used by the subscriber (client) to subscribe for a particular data feed. The

contract implemented at the client will be used by the server to make a

call whenever new data needs to be “pushed.” The contract implemented

Chapter 6 Communication in a Multi-Agent System Using WCF

231

at the client side is known as a callback contract. We’ll see more of the

Publisher/Subscriber pattern, as well as callback contracts and duplex

services, in the following sections when we look at a practical problem that

puts all these pieces together in a complete, functional example.

�Practical Problem: Communicating
Among Multiple Agents Using WCF
In this section, we will create a WCF application where several agents

contribute to a shared message list and each agent is aware of the current

message list; in other words, everyone has an updated copy of the

actual list. The service in this scenario acts as a message broker, sending

new messages coming from a given agent to all other agents. This is an

application that clearly follows the Publisher/Subscriber pattern; in

Figure 6-1 we can see its architecture.

Figure 6-1.  An agent adds a message to the list and the service
communicates the updated list to all other agents

Beginning with the implementation process, we first need to define

our service contract. Since we are going to create a duplex application,

the service contract definition will need to be accompanied by a callback

contract. The callback contract specifies the operations that the service

Chapter 6 Communication in a Multi-Agent System Using WCF

232

can invoke on the client. To create a WCF service in Visual Studio, go to the

Solution Explorer and right-click in the project or folder you wish to be the

container of the project; select “Add a New Item,” then look for the “WCF

Service” option (Figure 6-2).

Figure 6-2.  Adding a WCF service to our project

Once you add the service you will see two files have been added to

your project—a class (contract implementation) and an interface (service

contract). You’ll also notice the addition of references to namespaces

System.ServiceModel and System.ServiceModel.Description, which

are the namespaces containing the binding classes, the ServiceHost class,

and so forth.

Note  Operations on a duplex service are usually marked as OneWay
= true to prevent deadlocks. A deadlock occurs when various units
are waiting on the others to finish and as a consequence neither ever
does.

The implementations of both the service and callback contracts are

illustrated in Listing 6-2.

Chapter 6 Communication in a Multi-Agent System Using WCF

233

Listing 6-2.  Service and Callback Contracts

[ServiceContract(CallbackContract = typeof(IAgentCommunication

Callback))]

 public interface IAgentCommunicationService

 {

 [OperationContract(IsOneWay = true)]

 void Subscribe();

 [OperationContract(IsOneWay = true)]

 void Send(string from, string to, string message);

}

public interface IAgentCommunicationCallback

{

 [OperationContract(IsOneWay = true)]

 void SendUpdatedList(List<string> messages);

}

Notice that in the previous code we are defining a relationship

by specifically telling the service contract that its callback contract is

IAgentCommunicationCallback. Thus, we are telling the service to use

that callback contract to notify the client (notification will be achieved

by calling the SendUpdateList() method on the callback) whenever

new updates are available. The service contract contains two operations:

Subscribe(), which subscribes the agent to the service, and Send(), which

sends a new message to the message list. The callback contract has an

operation named SendUpdatedList(), which is used to send the latest

message list to all agents.

Chapter 6 Communication in a Multi-Agent System Using WCF

234

Note  All operations in IAgentCommunicationService and
IAgentCommunicationCallback return void because that’s a
requirement of the attribute setting IsOneWay = true. One-Way
operations will block until the outbound data has been written to the
network connection.

Now that we know the agreement on operations established by the

service and callback, let’s look at their concrete implementations.

Listing 6-3 shows the service implementation.

Listing 6-3.  Service Implementation

[ServiceBehavior(InstanceContextMode = InstanceContextMode.

Single, ConcurrencyMode = ConcurrencyMode.Multiple)]

 �public class AgentCommunicationService :

IAgentCommunicationService

 {

 �private static List<IAgentCommunicationCallback> _callback

Channels = new List<IAgentCommunicationCallback>();

 private static List<string> _messages = new List<string>();

 private static readonly object _sycnRoot = new object();

 public void Subscribe()

 {

 try

 {

 var callbackChannel =

 �OperationContext.Current.GetCallbackChannel

<IAgentCommunicationCallback>();

 lock (_sycnRoot)

 {

Chapter 6 Communication in a Multi-Agent System Using WCF

235

 if (!_callbackChannels.Contains(callbackChannel))

 {

 _callbackChannels.Add(callbackChannel);

 �Console.WriteLine("Added Callback

Channel: {0}", callbackChannel.GetHash

Code());

 callbackChannel.SendUpdatedList(_messages);

 }

 }

 }

 catch

 {

 }

 }

 public void Send(string from, string to, string message)

 {

 lock (_sycnRoot)

 {

 _messages.Add(message);

 Console.WriteLine("-- Message List --");

 �_messages.ForEach(listItem => Console.

WriteLine(listItem));

 Console.WriteLine("------------------");

 �for (int i = _callbackChannels.Count - 1;

i >= 0; i--)

 {

 �if (((ICommunicationObject)_callback

Channels[i]).State != CommunicationState.

Opened)

 {

Chapter 6 Communication in a Multi-Agent System Using WCF

236

 �Console.WriteLine("Detected Non-Open

Callback Channel: {0}", _callback

Channels[i].GetHashCode());

 _callbackChannels.RemoveAt(i);

 continue;

 }

 try

 {

 �_callbackChannels[i].SendUpdatedList

(_messages);

 �Console.WriteLine("Pushed Updated List

on Callback Channel: {0}", _callback

Channels[i].GetHashCode());

 }

 catch (Exception ex)

 {

 �Console.WriteLine("Service threw

exception while communicating on

Callback Channel: {0}", _callback

Channels[i].GetHashCode());

 �Console.WriteLine("Exception Type:

{0} Description: {1}", ex.GetType(),

ex.Message);

 _callbackChannels.RemoveAt(i);

 }

 }

 }

 }

 }

Chapter 6 Communication in a Multi-Agent System Using WCF

237

Notice the AgentCommunicationService class has the

attributes InstanceContextMode = InstanceContextMode.Single,

ConcurrencyMode = ConcurrencyMode.Multiple defined by the

ServiceBehavior class; as its name suggests, this class allows us to define

various behaviors for the service. The first sets it as a Singleton class;

thus, all service calls will be handled by the same service instance, and

all agents will refer to the same message and client callback channel list,

as those fields were declared static. The latter allows for concurrency to

occur and for you to have a multi-thread service, thus permitting each call

to be handled in parallel. The synchronization of the service object will be

handled using the SyncRoot pattern and the lock statement in C#.

Note L ocking public objects is not a good practice. A public object
can be locked by anyone, creating unexpected deadlocks. As a result,
you should use caution when locking an object that is exposed to the
outside world. The SyncRoot pattern guarantees that this scenario
does not occur by using a private, internal object to do the locking.

The lock statement acts as a key for objects. Imagine a man who wants

to enter a room and obtains a key from the owner, and while he is in the

room no one else can access it. When he leaves he gives the key back to the

owner so the next person in the line can obtain the key and enter the room.

The code that prevents multiple threads from accessing and modifying

data simultaneously is called thread-safe code.

The Subscriber() method (operation) gets the callback channel of the

client and checks whether it has been added in the callback channel list,

adding it in case it has not been. If the client has not accessed the service

before it sends it the latestMessage list.

In the Send() method we must ensure that only one thread at a time

obtains access to the list, as that’s the reason for the lock statement. Once

we have added the message we loop through every callback channel and

Chapter 6 Communication in a Multi-Agent System Using WCF

238

inform the rest of the agents (clients) of the new addition by calling their

SendUpdatedList() method. This iteration process is done backward

because we will need to remove any channel that may have changed its

state to close or throw an exception.

As mentioned before, we need to create a Proxy class to interact with the

service. To create a duplex proxy we need to design a class that inherits from

DuplexClientBase<T> and then create the service contract (Listing 6-4).

Listing 6-4.  Proxy Implementation

public class AgentCommunicationServiceClient : DuplexClientBase

<IAgentCommunicationService>, IAgentCommunicationService

 {

 �public AgentCommunicationServiceClient(Instance

Context callbackInstance, WSDualHttpBinding binding,

EndpointAddress endpointAddress)

 : base(callbackInstance, binding, endpointAddress)

{ }

 public void Subscribe()

 {

 Channel.Subscribe();

 }

 public void Send(string from, string to, string message)

 {

 Channel.Send(from, to, message);

 }

 }

As we can see from Listing 6-4, the implementation of the proxy class is

pretty straightforward—simply forward every call to the Channel property

(of type IAgentCommunicationService) provided by the parent class

Chapter 6 Communication in a Multi-Agent System Using WCF

239

DuplexClientBase<IAgentCommunicationService>. In the Send method,

we included arguments string from, string to. We’ll use these

arguments in the next chapter to filter messages from and to agents.

The concrete implementation of the callback contract class is shown in

Listing 6-5.

Listing 6-5.  Callback Contract Implementation

[CallbackBehavior(UseSynchronizationContext = false)]

 �public class AgentCommunicationCallback : IAgent

CommunicationCallback

 {

public event EventHandler<UpdatedListEventArgs>

ServiceCallbackEvent;

 �privateSynchronizationContext _syncContext = AsyncOperation

Manager.SynchronizationContext;

 public void SendUpdatedList(List<string> items)

 {

 �_syncContext.Post(new SendOrPostCallback(OnService

CallbackEvent), new UpdatedListEventArgs(items));

 }

 private void OnServiceCallbackEvent(object state)

 {

 �EventHandler<UpdatedListEventArgs> handler =

ServiceCallbackEvent;

 var e = state as UpdatedListEventArgs;

 if (handler != null)

 {

 handler(this, e);

 }

 }

 }

Chapter 6 Communication in a Multi-Agent System Using WCF

240

Let’s remember that the callback contract is the one handling the

“push updates” received from the service contract. By default, the callback

contract synchronizes all calls on the current synchronization context.

If your client is a Windows Forms application this behavior would result

in the code’s being executed on the user-interface thread, which is not a

good idea.

In order to communicate the results obtained on the operation

thread to the UI thread we will use AsyncOperationManager, a class that

.NET incorporates for concurrency management. This class contains a

SynchronizationContext property, which returns the synchronization

context for the application calling it. The purpose, in the end, for using these

classes is sharing data between the UI thread and the operation thread.

Note  A synchronization context provides a way to queue a unit
of work to a particular context. It could allow worker threads to
dispatch messages to the UI synchronization context. Only the UI
synchronization context is allowed to manipulate the UI controls;
therefore, if we attempted to update the UI from another context
it would result in an illegal operation, causing an exception to be
thrown.

We’ll use the Post method of the SynchronizationContext class to

asynchronously queue messages to the UI synchronization context. The

Post method takes two arguments: a delegate called SendOrPostCallback

representing the callback method we need to execute after the message

is dispatched to the UI synchronization context, and an object that is

submitted to the delegate. We create the SendOrPostCallback delegate

by passing in the OnServiceCallbackEvent method that has been

implemented in the Callback class. We also create an instance of the

UpdatedListEventArgs (Listing 6-6) class and submit the new list of

messages in the constructor. The delegate and the event arguments class

Chapter 6 Communication in a Multi-Agent System Using WCF

241

instance are used as arguments to the Post method. In this manner, our

event-invocation method is capable of obtaining the event arguments

when it is being marshalled from the worker thread to the UI thread.

Subscribers (clients such as Windows Forms, console application, and so

on) to our ServiceCallbackEvent can then handle the event when it is

triggered.

Setting the UseSynchronizationContext attribute to false allows the

callback operations to be distributed among different threads.

Listing 6-6.  Class Used as Event Argument to Update the Message

List on the Client Application (Windows Forms)

public class UpdatedListEventArgs : EventArgs

 {

 public List<string> MessageList { get; set; }

 public UpdatedListEventArgs(List<string> messages)

 {

 MessageList = messages;

 }

 }

Now that we have presented concrete implementations for all

contracts, let’s present the application acting as host for the service

(Listing 6-7).

Listing 6-7.  Service Being Hosted in a Console Application

 static void Main(string[] args)

 {

 // Step 1 Create a URI to serve as the base address.

 var baseAddress = new Uri("http://localhost:9090/");

Chapter 6 Communication in a Multi-Agent System Using WCF

242

 // Step 2 Create a ServiceHost instance

 �var selfHost = new ServiceHost(typeof(Agent

CommunicationService), baseAddress);

 try

 {

 // Step 3 Add a service endpoint.

 �selfHost.AddServiceEndpoint(typeof(IAgent

CommunicationService),

 �new WSDualHttpBinding(WSDualHttpSecurity

Mode.None), "AgentCommunicationService");

 �// Step 4 Enable Metadata Exchange and Add MEX

endpoint

 �var smb = new ServiceMetadataBehavior {

HttpGetEnabled = true };

 selfHost.Description.Behaviors.Add(smb);

 �selfHost.AddServiceEndpoint(ServiceMetadata

Behavior.MexContractName,

 �MetadataExchangeBindings.

CreateMexHttpBinding(), baseAddress + "mex");

 // Step 5 Start the service.

 selfHost.Open();

 Console.WriteLine("The service is ready.");

 �Console.WriteLine("Listening at: {0}",

baseAddress);

 �Console.WriteLine("Press <ENTER> to terminate

service.");

 Console.WriteLine();

 Console.ReadLine();

 �// Close the ServiceHostBase to shut down the

service.

Chapter 6 Communication in a Multi-Agent System Using WCF

243

 selfHost.Close();

 }

 catch (CommunicationException ce)

 {

 �Console.WriteLine("An exception occurred: {0}",

ce.Message);

 selfHost.Abort();

 }

 }

The steps for creating the service are clearly presented in Listing 6-7.

In this case, we are hosting our service in a console application. Notice

that we will not be using or editing the app.config file; on the contrary, all

binding, address, and contract configuration is made programmatically.

Note T he WCF bindings supporting duplex services are WSDualHttp
Binding, NetTcpBinding, and NetNamedPipeBinding.

The client application will be a Windows Forms application that has

the code shown in Listing 6-8.

Listing 6-8.  Client Application

public partial class AgentClient : Form

 {

 �private const string ServiceEndpointUri = "http://

localhost:9090/AgentCommunicationService";

 public AgentCommunicationServiceClient Proxy { get; set; }

 public AgentClient()

 {

Chapter 6 Communication in a Multi-Agent System Using WCF

244

 InitializeComponent();

 InitializeClient();

 }

 private void InitializeClient()

 {

 if (Proxy != null)

 {

 try

 {

 Proxy.Close();

 }

 catch

 {

 Proxy.Abort();

 }

 }

 var callback = new AgentCommunicationCallback();

 �callback.ServiceCallbackEvent +=

HandleServiceCallbackEvent;

 var instanceContext = new InstanceContext(callback);

 �var dualHttpBinding = new WSDualHttpBinding(WSDual

HttpSecurityMode.None);

 �var endpointAddress = new EndpointAddress(Service

EndpointUri);

 �Proxy = new AgentCommunicationServiceClient(instance

Context, dualHttpBinding, endpointAddress);

 Proxy.Open();

 Proxy.Subscribe();

 }

Chapter 6 Communication in a Multi-Agent System Using WCF

245

 �private void HandleServiceCallbackEvent(object sender,

UpdatedListEventArgs e)

 {

 List<string> list = e.MessageList;

 if (list != null && list.Count > 0)

 messageList.DataSource = list;

 }

 private void SendBtnClick(object sender, EventArgs e)

 {

 Proxy.Send("", "", wordBox.Text.Trim());

 wordBox.Clear();

 }

 }

As expected, the client application (Figure 6-3) contains a field of

type AgentCommunicationServiceClient, which represents the proxy it

will be using for subscribing and communicating with the service. The

HandleServiceCallbackEvent is the event that will be triggered when

a new message is added to the list; this is directly related to the callback

contract and the OnServiceCallbackEvent event we recently described.

The SendBtnClick event is fired when a user clicks the Send button of the

client’s UI and sends a new message.

Figure 6-3.  Client UI in Windows Forms

Chapter 6 Communication in a Multi-Agent System Using WCF

246

Now that we have all the pieces together, let’s test the application and

see how different agents communicate and receive messages.

First, let’s run the console application that is hosting the service.

Note Y ou would typically need administrator rights to launch the
service application. If you are experiencing any issues running the
application, try running it as administrator.

Then, let’s run as many clients as we want. In this case, we would be

satisfied by just executing three clients. The scenario described would be

the one illustrated in Figure 6-4.

Figure 6-4.  Executing the service and three clients

Chapter 6 Communication in a Multi-Agent System Using WCF

247

Now we can play with the application and send messages from any

of the clients. The result will be a shared list of all messages as seen in

Figure 6-5.

Figure 6-5.  Agents exchanging messages in a WCF Publisher/
Subscriber application

In the next chapter, we will slightly modify the WCF communication

application introduced in the last few sections to adjust it to our multi-

agent system of cleaning agents example. In the cleaning agents MAS

program, clients will be agents that will be communicating through a WCF

service that is acting as a message broker (publisher). Concepts examined

in Chapter 5, such as cooperation, coordination, Contract Net, and social

laws will be covered again in the cited example and in a practical manner

will be implemented via classes and methods in C#.

Chapter 6 Communication in a Multi-Agent System Using WCF

248

�Summary
In this chapter, we explained some of the basics of WCF (services,

contracts, addresses, bindings, and endpoints) and also a common

pattern in network applications, the Publisher/Subscriber model. We

introduced and described duplex services and some of their features, like

the callback contract. We implemented a WCF program that simulated

the communication of several agents, using a service hosted on a console

application as message broker and a Windows Forms application for

clients. In the following chapter, we will insert this application into a much

bigger program that simulates the process of a multi-agent system whose

task is getting rid of all the dirt in an n x m room.

Chapter 6 Communication in a Multi-Agent System Using WCF

249© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_7

CHAPTER 7

Cleaning Agents:
A Multi-Agent System
Problem
Throughout Chapters 5 and 6 we studied multi-agent systems (MAS)

and multi-agent communication. We introduced concepts such as agent

platform, agent architecture, coordination, cooperation, social laws, and

much more; we also detailed a practical problem where we created a

multi-agent communication module using Windows Communication

Foundation (WCF).

In this chapter, we’ll analyze a complete practical problem where we

will put all the pieces together and develop an MAS where n cleaning

agents will be dealing with the task of cleaning an n x m room of its dirt.

This problem will allow us to include many of the concepts and definitions

studied before and also attach the WCF communication module created

in Chapter 6 as the MAS communication module that every agent in the

system will integrate.

The cleaning problem is a great benchmark or scenario by which to

understand how we can use an MAS to solve a task, such as cleaning, in a

much shorter time and using fewer resources than with just a single agent.

250

Note  Every robot in the cleaning problem will be using WCF at the
core of their communication module and Windows Forms to display
messages received.

�Program Structure
The application will have a structure like the one depicted in Figure 7-1.

The program comprises Communication, GUI (Graphical User Interface),

Negotiation, Planning, and Platform modules. The Communication and

Planning modules will not be analyzed in this chapter (except for the

communication language, FipaAcl C# class) as they were previously

studied. For further reference please download the source code associated

with this book.

Figure 7-1.  Program structure

The GUI module will contain two Windows Forms applications—one

for graphically representing the room with every agent on it and their

interactions, the other for representing the agent message board.

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

251

The Negotiation module will contain an implementation of the

Contract Net task-sharing method, with every stage implemented as a

static C# method within a ContractNet class.

The Platform module will contain an implementation of an agent

platform and some of its functionalities (agent location via dictionary,

Decide Roles service for task sharing, references to manager and

contractors, and so forth). It will serve as support for other classes.

Within the Communication module we’ll include the Agent

Communication Language (ACL) module, which contains a tiny,

simplified version of a FIPA-ACL, including a few performatives.

Note I n order to simplify the planning task in this MAS example, we
will assume that the number of columns (M ) is always divisible by
the number of agents (S ) in the MAS, i.e., M % S == 0. This will allow
us to simply assign M / S columns to each agent for cleaning.

�Cleaning Task
To represent and encode the cleaning task we have created the class

illustrated in Listing 7-1.

Listing 7-1.  CleaningTask Class

public class CleaningTask

{

 public int Count { get; set; }

 public int M { get; set; }

 public List<Tuple<int, int>> SubDivide { get; set; }

 public IEnumerable<string> SubTasks { get; set; }

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

252

 public CleaningTask(int m, int agents)

 {

 M = m;

 Count = agents;

 SubDivide = new List<Tuple<int, int>>();

 Divide();

 SubTasks = BuildTasks();

 }

 /// <summary>

 /// For the division we assume that M % Count = 0, i.e.

 /// �the number of columns is always divisible by the

number of agents.

 /// </summary>

 private void Divide()

 {

 var div = M / Count;

 for (var i = 0; i < M; i += div)

 SubDivide.Add(new Tuple<int, int>(i, i + div - 1));

 }

 private IEnumerable<string> BuildTasks()

 {

 var result = new string[SubDivide.Count];

 for (var i = 0; i < SubDivide.Count; i++)

 �result[i] = "clean(" + SubDivide[i].Item1 + ","

+ SubDivide[i].Item2 + ")";

 return result;

 }

 }

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

253

The class contains the following fields or properties:

•	 Count: integer representing the number of agents

participating in the cleaning task

•	 M: integer representing the number of columns in the

room

•	 SubDivide: List<Tuple<int, int>> representing

the equitable column division made considering the

number of agents and columns

•	 SubTasks: IEnumerable<string> representing the set

of tasks that need to be executed in order to complete

the global task (cleaning the entire room). Each task is

defined in a self-created inner language that our mini

FipaAcl will be using.

On the other hand, the CleaningTask class exposes these methods:

•	 Divide(): divides the global task of cleaning a room

into smaller subtasks. Each subtask will consist of a

subset of contiguous columns to be cleaned. It stores in

the SubDivide property a set of tuples, each defining a

range of columns to be cleaned; e.g., (0, 2) will indicate

the subtask of cleaning columns 0 up to 2.

•	 BuildTasks(): returns an IEnumerable<string>

containing every subtask in a self-created language that

will be used later for transmitting information via the

communication module and using FIPA as ACL.

In trying to maintain a well-modularized application, the

CleaningTask class merely deals with operations related to cleaning

issues. In the next section, we’ll take a look at the Cleaning Agent platform.

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

254

�Cleaning Agent Platform
The Cleaning Agent platform is represented by the CleaningAgentPlatform

class, whose code can be seen in Listing 7-2.

Listing 7-2.  CleaningAgentPlatform Class

public class CleaningAgentPlatform

{

 �public Dictionary<Guid, MasCleaningAgent> Directory {

get; set; }

 public IEnumerable<MasCleaningAgent> Agents { get; set; }

 �public IEnumerable<MasCleaningAgent> Contractors { get;

set; }

 public MasCleaningAgent Manager { get; set; }

 public CleaningTask Task { get; set; }

 �public CleaningAgentPlatform(IEnumerable<MasCleaning

Agent> agents, CleaningTask task)

 {

 Agents = new List<MasCleaningAgent>(agents);

 Directory = new Dictionary<Guid, MasCleaningAgent>();

 Task = task;

 foreach (var cleaningAgent in Agents)

 {

 Directory.Add(cleaningAgent.Id, cleaningAgent);

 cleaningAgent.Platform = this;

 }

 DecideRoles();

 }

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

255

 public void DecideRoles()

 {

 // Manager Role

 �Manager = Agents.First(a => a.CleanedCells.Count ==

Agents.Max(p => p.CleanedCells.Count));

 Manager.Role = ContractRole.Manager;

 // Contract Roles

 �Contractors = new List<MasCleaningAgent>(Agents.

Where(a => a.Id != Manager.Id));

 foreach (var cleaningAgent in Contractors)

 cleaningAgent.Role = ContractRole.Contractor;

 (Contractors as List<MasCleaningAgent>).Add(Manager);

 }

 }

This class contains the following properties or fields:

•	 Directory: dictionary containing the ID of the agent

and a reference to it as key–value pairs

•	 Agents: IEnumerable containing the set of agents

•	 Contractors: IEnumerable containing the set of

contractors in a Contract Net

•	 Manager: reference to the manager in a Contract Net

•	 Task: cleaning task to be executed

This class contains two functions: a constructor and the

DecideRoles() method. In the constructor, we initialize every property

and then add every agent to the directory, referencing the Platform

property of agents to point to this platform. The DecideRoles() method

decides which agent is selected as manager, while the rest are regarded as

contractors. In this case, the criteria for manager selection is to select the

agent with the highest number of cells cleaned; this is equivalent to saying

“Pick the most experienced agent, the one who has worked the most.”

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

256

Note I n this case, we also add the manager to the list of contractors
because we would like him not only to direct the operation but also to
take part in it and clean a range of columns of the room as any other
contractor would do.

�Contract Net
The Contract Net task-sharing mechanism is represented by the ContractNet

class; the role assumed by each agent is defined in the ContractRole enum.

Both are described in Listing 7-3.

Listing 7-3.  ContractNet Class

public class ContractNet

{

 �public static IEnumerable<string>

Announcement(CleaningTask cleaningTask,

MasCleaningAgent manager, IEnumerable<MasCleaningAgent>

contractors, FipaAcl language)

 {

 var tasks = cleaningTask.SubTasks;

 foreach (var contractor in contractors)

 {

 foreach (var task in tasks)

 �language.Message(Performative.Cfp,

manager.Id.ToString(),

contractor.Id.ToString(), task);

 }

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

257

 return tasks;

 }

 �public static void Bidding(IEnumerable<string> tasks,

IEnumerable<MasCleaningAgent> contractors)

 {

 foreach (var contractor in contractors)

 contractor.Bid(tasks);

 }

 �public static void Awarding(List<string> messages,

MasCleaningAgent manager, IEnumerable<MasCleaningAgent>

contractors, CleaningTask task, FipaAcl language)

 {

 �var agentsAssigned = new

List<Tuple<MasCleaningAgent, Tuple<int, int>>>();

 �var messagesToDict = messages.ConvertAll(FipaAcl.

MessagesToDict);

 // Processing bids

 foreach (var colRange in task.SubDivide)

 {

 var firstCol = colRange.Item1;

 var secondCol = colRange.Item2;

 // Bids for first column

 �var bidsFirstCol = new List<KeyValuePair

<MasCleaningAgent, List<Tuple<double,

Tuple<int, int>>>>>();

// Bids for second column

 var bidsSecondCol = �new List<KeyValuePair<MasCleaningAgent,

List<Tuple<double, Tuple<int, int>>>>>();

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

258

 foreach (var contractor in contractors)

 {

// Skip agents that have been already assigned

 �if (agentsAssigned.Exists(tuple => tuple.

Item1.Id == contractor.Id))

 continue;

 var c = contractor;

// Get messages from current contractor

 �var messagesFromContractor = messagesToDict.

FindAll(m => m.ContainsKey("from") &&

m["from"] == c.Id.ToString());

 �var bids = FipaAcl.GetContent(messagesFrom

Contractor);

// Bids to first column in the range column

var bidsContractorFirstCol = �bids.FindAll(b => b.Item2.Item2 ==

firstCol);

// Bids to second column in the range column

var bidsContractorSecondCol = �bids.FindAll(b => b.Item2.Item2

== secondCol);

 if (bidsContractorFirstCol.Count > 0)

 {

 bidsFirstCol.Add(

 �new KeyValuePair<MasCleaningAgent,

List<Tuple<double, Tuple<int,

int>>>>(contractor,

 bidsContractorFirstCol));

 }

 if (bidsContractorSecondCol.Count > 0)

 {

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

259

 bidsSecondCol.Add(

 �new KeyValuePair<MasCleaningAgent,

List<Tuple<double, Tuple<int,

int>>>>(contractor,

 bidsContractorSecondCol));

 }

 }

 �// Sorts to have at the beginning of the list

the best bidders (closest agents)

 bidsFirstCol.Sort(Comparison);

 bidsSecondCol.Sort(Comparison);

 �var closestAgentFirst = bidsFirstCol.

FirstOrDefault();

 �var closestAgentSecond = bidsSecondCol.

FirstOrDefault();

 // Sorts again to find closest end

 if (closestAgentFirst.Value != null)

 closestAgentFirst.Value.Sort(Comparison);

 if (closestAgentSecond.Value != null)

 closestAgentSecond.Value.Sort(Comparison);

 // Assigns agent to column range

 �if (closestAgentFirst.Value != null &&

closestAgentSecond.Value != null)

 {

 �if (closestAgentFirst.Value.First().Item1 >=

closestAgentSecond.Value.First().Item1)

 �agentsAssigned.Add(new

Tuple<MasCleaningAgent, Tuple<int,

int>>(closestAgentSecond.Key,

 closestAgentSecond.Value.First().Item2));

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

260

 else

 �agentsAssigned.Add(new

Tuple<MasCleaningAgent, Tuple<int,

int>>(closestAgentFirst.Key,

 closestAgentFirst.Value.First().Item2));

 }

 else if (closestAgentFirst.Value == null)

 �agentsAssigned.Add(new

Tuple<MasCleaningAgent, Tuple<int,

int>>(closestAgentSecond.Key,

 closestAgentSecond.Value.First().Item2));

 else

 �agentsAssigned.Add(new

Tuple<MasCleaningAgent, Tuple<int,

int>>(closestAgentFirst.Key,

 closestAgentFirst.Value.First().Item2));

 }

 �// Transmits the accepted proposal for

each agent.

 foreach (var assignment in agentsAssigned)

 �language.Message(Performative.Accept, manager.

Id.ToString(),

 �assignment.Item1.Id.ToString(), "clean(" +

assignment.Item2.Item1 + "," + assignment.

Item2.Item2 + ")");

 }

 �private static int Comparison(Tuple<double, Tuple<int,

int>> tupleA, Tuple<double, Tuple<int, int>> tupleB)

 {

 if (tupleA.Item1 > tupleB.Item1)

 return 1;

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

261

 if (tupleA.Item1 < tupleB.Item1)

 return -1;

 return 0;

 }

 �private static int Comparison(KeyValuePair<MasCleaning

Agent, List<Tuple<double, Tuple<int, int>>>>

bidsAgentA, KeyValuePair<MasCleaningAgent,

List<Tuple<double, Tuple<int, int>>>> bidsAgentB)

 {

 �if (bidsAgentA.Value.Min(p => p.Item1) >

bidsAgentB.Value.Min(p => p.Item1))

 return 1;

 �if (bidsAgentA.Value.Min(p => p.Item1) <

bidsAgentB.Value.Min(p => p.Item1))

 return -1;

 return 0;

 }

 }

 public enum ContractRole

 {

 Contractor, Manager, None

 }

This class contains the following static methods:

•	 Announcement(): a message is sent from the manager

to every contractor, announcing every task to be

completed

•	 Bidding(): each agent is asked for a bid that considers

the set of tasks to be completed. Bidding on the

agent side is executed in the Bid() method of the

MasCleaningAgent class.

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

262

•	 Awarding(): method executing the final stage of the

task-sharing mechanism. To award a range of columns

x - x' to a contractor (agent), it calculates the distance of

every agent to the four ends of that column range—i.e.,

cells(0, x), (n - 1, x) at the first column and cells(0, x'),

(n - 1, x') at the second column—and then awards that

column range to the agent that is the closest (minimum

Block or Manhattan distance) to any of the four ends.

The bid of the agent contains a tuple<int, int>

defining the closest end and a double representing the

distance to that end. Refer to the code comments for

more details.

•	 Comparison(): Both methods relate to sorting a list of

elements by considering a double value that indicates

its distance to a column.

Every method was created as a service of the class; in other words, as a

static method that requires no instance of the class to be called.

�FIPA-ACL
In order to communicate cleaning-related issues among agents, we created

a tiny language for processing these types of commands. This mini-language

resembles the FIPA language and contains an inner language that merely

includes the clean(x, y) statement telling agents to clean all columns from

x to y. The FipaAcl class and the Performative enum are both illustrated in

Listing 7-4.

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

263

Listing 7-4.  FipaACL Class

public class FipaAcl

{

 �public AgentCommunicationServiceClient Communication {

get; set; }

 �public FipaAcl(AgentCommunicationServiceClient

communication)

 {

 Communication = communication;

 }

 �public void Message(Performative p, string senderId,

string receiverId, string content)

 {

 switch (p)

 {

 case Performative.Accept:

 �ThreadPool.QueueUserWorkItem(delegate {

Communication.Send(senderId, receiverId,

"accept[content:" + content + ";]"); });

 break;

 case Performative.Cfp:

 �ThreadPool.QueueUserWorkItem(delegate {

Communication.Send(senderId, receiverId,

"cfp[content:" + content + ";]"); });

 break;

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

264

 case Performative.Proposal:

 �ThreadPool.QueueUserWorkItem(delegate {

Communication.Send(senderId, receiverId,

"proposal[from:" + senderId + ";content:" +

content + "]"); });

 break;

 }

 }

 public static string GetPerformative(string task)

 {

 return task.Substring(0, task.IndexOf('['));

 }

 public static string GetInnerMessage(string task)

 {

 �return task.Substring(task.IndexOf('[') + 1,

task.LastIndexOf(']') - task.IndexOf('[') - 1);

 }

 �public static Dictionary<string, string>

MessageToDict(string innerMessage)

 {

 var result = new Dictionary<string, string>();

 var items = innerMessage.Split(';');

 var contentItems = new List<string>();

 foreach (var item in items)

 if (!string.IsNullOrEmpty(item))

 contentItems.AddRange(item.Split(':'));

 for (int i = 0; i < contentItems.Count; i += 2)

 result.Add(contentItems[i], contentItems[i + 1]);

 return result;

 }

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

265

 �public static Dictionary<string, string>

MessagesToDict(string message)

 {

 return MessageToDict(GetInnerMessage(message));

 }

 �public static List<Tuple<double, Tuple<int, int>>>

GetContent(List<Dictionary<string, string>>

messagesFromContractor)

 {

 �var result = new List<Tuple<double, Tuple<int,

int>>>();

 foreach (var msg in messagesFromContractor)

{

 var content = msg["content"];

 var values = content.Split(',');

 �result.Add(new Tuple<double, Tuple<int,

int>>(double.Parse(values[0]),

 �new Tuple<int, int>(int.Parse(values[1]),

int.Parse(values[2]))));

}

 return result;

 }

 }

 public enum Performative

 {

 Accept, Cfp, Inform, Proposal

 }

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

266

Notice that every agent communication is executed using the

QueueUserWorkItem method of the ThreadPool class. Starting a new

thread can be a very expensive operation; therefore, we use the thread-

pool facilities to reuse threads and reduce cost. In this manner, we queue

methods for execution under different threads that are drawn from the

thread pool.

The FipaACL class includes an AgentCommunicationServiceClient

communication property (recall from Chapter 6 that

AgentCommunicationServiceClient is the proxy that establishes

communication between client and service) that is used to transmit

messages to other agents. FipaACL incorporates the following methods:

•	 Message(): depending on the type of performative,

creates and sends a new message using the senderId,

receiverId, and content strings provided as

arguments.

•	 GetPerformative(): gets the performative of the

message provided as argument; e.g., for a message such

as cfp[content: clean(0,2)] the performative would

be cfp

•	 GetInnerMessage(): gets the inner message; e.g., if

the entire message is something like cfp[from: 2312;

content: clean(0,2)] then from: 2312; content:

clean(0,2) represents the inner message

•	 MessageToDict(): assuming an inner message is

supplied as argument, it translates that inner message

into a dictionary; e.g., from an inner message such

as from: 2312; content: clean(0,2) the resulting

dictionary would be { 'from': 2312, 'content':

'clean(0,2)' }

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

267

•	 MessagesToDict(): gets the inner message of a

message submitted as an argument and returns the

dictionary resulting from the MessageToDict() method

•	 GetContent(): gets the set of values contained within

the content label of the inner message. It assumes each

message corresponds to a contractor’s bid; therefore, it

contains three elements: a distance double and a pair

of integers matching a column range; e.g., 2.0, 1, 1

will add the tuple <2.0, <0, 2>>

The only components of the MAS cleaning example presented

in this chapter that use the FipaAcl class are the ContractNet and

MasCleaningAgent classes; the latter will be the topic of the next section.

�MAS Cleaning Agent
Agents in the cleaning MAS example are objects of the MasCleaningAgent

class, which contains the set of properties, fields, and constructor shown in

Listing 7-5.

Listing 7-5.  MasCleaningAgent Class, Including Fields, Properties,

and Constructor

public class MasCleaningAgent

 {

 public Guid Id { get; set; }

 public int X { get; set; }

 public int Y { get; set; }

 public bool TaskFinished { get; set; }

 public Timer ReactionTime { get; set; }

 public FipaAcl Language { get; set; }

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

268

 public CleaningAgentPlatform Platform { get; set; }

 public List<Tuple<int, int>> CleanedCells;

 public ContractRole Role { get; set; }

 public Color Color;

 public bool AwaitingBids { get; set; }

 public bool AwaitingTaskAssignment { get; set; }

 public bool AnnouncementMade { get; set; }

 public bool TaskDistributed { get; set; }

 public Plan Plan { get; set; }

 public bool InCleaningArea { get; set; }

 public List<Tuple<int, int>> AreaTobeCleaned;

 private readonly int[,] _room;

 private readonly Form _gui;

 private Messaging _messageBoardWin;

 �private readonly List<Tuple<double, Tuple<int,

int>>> _wishList;

 �public MasCleaningAgent(Guid id, int[,] room, Form gui,

int x, int y, Color color)

 {

Id = id;

 X = x;

Y = y;

 _room = room;

CleanedCells = new List<Tuple<int, int>>();

Role = ContractRole.None;

_wishList = new List<Tuple<double, Tuple<int, int>>>();

Color = color;

 _gui = gui;

Run();

 }

}

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

269

This class exposes the following properties and fields:

•	 Id: represents a unique identifier for the agent

•	 X: integer representing the x-coordinate of the agent in

the room

•	 Y: integer representing the y-coordinate of the agent in

the room

•	 TaskFinished: Boolean value indicating whether the

task has been completed

•	 ReactionTime: timer defining the reaction time of the

agent; i.e., the frequency by which it executes an action

•	 Language: mini-Fipa language represented by the

FipaAcl class that will be used for parsing and

transmitting messages

•	 Platform: agent platform used for different services

(agent location) and for deciding the role (manager

or contractor) of each agent. It’s represented by the

CleaningAgentPlatform class.

•	 CleanedCells: list of Tuple<int, int> indicating the

cells on the terrain that have already been cleaned by

the agent

•	 Role: role assumed by the agent (contractor, manager,

none)

•	 Color: color used by the agent on the room; i.e., on the

Windows Forms picture box representing the room

•	 AwaitingBids: Boolean value indicating whether the

agent is awaiting a bid (for the manager role)

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

270

•	 AwaitingTaskAssignment: Boolean value indicating

whether the agent is awaiting a task assignment (for the

contractor role)

•	 AnnouncementMade: Boolean value indicating whether an

announcement has been made (for the manager role)

•	 TaskDistributed: Boolean value indicating whether

tasks have been distributed (for the manager role)

•	 Plan: instance of the Plan class used for executing

path-finding algorithms. This is the Plan class

presented in Chapter 4, “Mars Rover.”

•	 InCleaningArea: Boolean value indicating whether the

agent is in the cleaning area assigned by the manager

after a Contract Net task-sharing mechanism has been

executed

•	 AreaTobeCleaned: list of cells the agent must clean

•	 _room: reference to the integer matrix representing the

room to be cleaned. A value greater than 0 in any cell

represents dirt; a value of 0 indicates the cell is clean.

•	 _gui: reference to the Windows Forms object that

represents the room

•	 _messageBoardWin: reference to the Windows Forms

representing the message board where all messages

received by the agent will be displayed

•	 _wishList: list of Tuple<double, Tuple<int, int>>

representing the wish list or bid list (for the contractor

role) of the agent. The second item indicates a cell of

the room, and the first item indicates the distance to

that cell. This field is used in the bidding process to find

the closest column end.

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

271

In the constructor, we initialize various fields and properties and

eventually call the Run() method (Listing 7-6), which will set up everything

to start running the agent.

Listing 7-6.  Run() Method Starts the Agent by Enabling the Timer

and Connecting the Tick Event to the ReactionTimeOnTick() Method

private void Run()

 {

_messageBoardWin = new Messaging (Id.ToString())

 {

 �StartPosition =

FormStartPosition.

WindowsDefaultLocation,

 BackColor = Color,

 �Size = new Size

(300, 300),

 Text = Id.ToString(),

 Enabled = true

 };

 Language = new FipaAcl(_messageBoardWin.Proxy);

 _messageBoardWin.Show();

 �ReactionTime = new Timer { Enabled = true,

Interval = 1000 };

 ReactionTime.Tick += ReactionTimeOnTick;

 }

In the Run() method we initialize the _messageBoardWin variable as an

instance of the Messaging class (Form class that will contain all messages

received by the agent). We also initialize the Language property, passing as

an argument the proxy created in the Messaging class. Finally, the Timer

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

272

of the agent is enabled and subscribed to the ReactionTimeOnTick

(Listing 7-7). This method, which will be executed every second, causes

the agent to take action.

Listing 7-7.  ReactionTimeOnTick() Method Executed

private void ReactionTimeOnTick(object sender, EventArgs

eventArgs)

{

 // There's no area assigned for cleaning

 if (AreaTobeCleaned == null)

 {

 �if (Role == ContractRole.Manager &&

AnnouncementMade && !TaskDistributed)

 {

 �ContractNet.Awarding(_messageBoardWin.

Messages, Platform.Manager, Platform.

Contractors, Platform.Task, Language);

 TaskDistributed = true;

 }

 �if (Role == ContractRole.Manager &&

!AnnouncementMade)

 {

 �ContractNet.Announcement(Platform.Task,

Platform.Manager, Platform.Contractors,

 Language);

 AnnouncementMade = true;

 Thread.Sleep(2000);

 }

 �if (Role == ContractRole.Contractor &&

AwaitingTaskAssignment || Role == ContractRole.

Manager && TaskDistributed)

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

273

 {

 �AreaTobeCleaned = SetSocialLaw

(_messageBoardWin.Messages);

 }

 �if (Role == ContractRole.Contractor &&

!AwaitingTaskAssignment)

 {

 Thread.Sleep(2000);

 �ContractNet.Bidding(_messageBoardWin.

Messages, Platform.Contractors);

 AwaitingTaskAssignment = true;

 }

 }

 else

 {

 if (!InCleaningArea)

 {

 if (Plan == null)

 {

 �Plan = new Plan(TypesPlan.PathFinding,

this);

 �Plan.BuildPlan(new Tuple<int, int>(X, Y),

AreaTobeCleaned.First());

 }

 else if (Plan.Path.Count == 0)

 InCleaningArea = true;

 }

 Action(Perceived());

 }

 _gui.Refresh();

}

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

274

Notice that we put the thread to sleep for 2000 milliseconds to wait for

certain operations of other agents to complete. This time may need to be

increased as the cardinality of the set of agents increases.

The ReactionTimeOnTick() method uses a logic that depends on two

scenarios: the agent has a cleaning area assigned or no area has been

assigned. If no area has been assigned, that indicates no task sharing has

been accomplished among agents, and so a Contract Net mechanism must

be started. The different scenarios for when no cleaning area has been

defined for the agent are the following:

•	 If the agent is a manager and an announcement has

been made and tasks have not been distributed yet

then the agent must enter an awarding phase.

•	 If the agent is a manager and no announcement

has been made then the agent must enter an

announcement phase.

•	 If the agent is a contractor and is awaiting a task

assignment or the agent is a manager and tasks have been

distributed then it should assign an area to be cleaned by

setting a social law; we will detail this social law soon.

•	 If the agent is a contractor and is awaiting a task

assignment then it must enter a bidding phase.

The bidding process of the agent follows the logic described by the

code shown in Listing 7-8.

Listing 7-8.  Bid Method of the Agent

public void Bid(IEnumerable<string> tasks)

 {

 var n = _room.GetLength(0);

 _wishList.Clear();

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

275

 foreach (var task in tasks)

 {

 var innerMessage = FipaAcl.GetInnerMessage(task);

 �var messageDict = FipaAcl.

MessageToDict(innerMessage);

 var content = messageDict["content"];

 �var subtask = content.Substring(0, content.

IndexOf('('));

 var cols = new string[2];

 switch (subtask)

 {

 case "clean":

 �var temp = content.Substring(content.

IndexOf('(') + 1, content.Length -

content.IndexOf('(') - 2);

 cols = temp.Split(',');

 break;

 }

 �var colRange = new Tuple<int, int>(int.

Parse(cols[0]), int.Parse(cols[1]));

 �for (var i = colRange.Item1; i < colRange.

Item2; i++)

 {

 // Distance to extreme points for each column

 var end1 = new Tuple<int, int>(0, i);

 var end2 = new Tuple<int, int>(n - 1, i);

 �var dist1 = ManhattanDistance(end1, new

Tuple<int, int>(X, Y));

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

276

 �var dist2 = ManhattanDistance(end2, new

Tuple<int, int>(X, Y));

 �_wishList.Add(new Tuple<double, Tuple<int,

int>>(dist1, end1));

 �_wishList.Add(new Tuple<double, Tuple<int,

int>>(dist2, end2));

 }

 }

 _wishList.Sort(Comparison);

 foreach (var bid in _wishList)

 �Language.Message(Performative.Proposal,

Id.ToString(), Platform.Manager.Id.ToString(),

bid.Item1 + "," + bid.Item2.Item1 + "," + bid.

Item2.Item2);

 }

The Bid() method receives the list of tasks as input, parses every task

message contained in the list, and then, having the column range detailed

in each incoming message task, finds the distance to the four possible

column ends. Finally, it sorts the _wishList of all possible distances to

column ends and transmits them (as proposals) to the manager ordered

from lowest to highest.

When a cleaning area has been assigned, the agent must design a plan

(path-finding technique from Chapter 4) to reach its cleaning area. Once in

its cleaning area, the agent will follow a social law defined by the method

illustrated in Listing 7-9.

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

277

Listing 7-9.  SetSocialLaw() Method

private List<Tuple<int, int>> SetSocialLaw(List<string> messages)

{

 �if (!messages.Exists(m => FipaAcl.

GetPerformative(m) == "accept"))

 return null;

 �var informMsg = messages.First(m => FipaAcl.

GetPerformative(m) == "accept");

var content = FipaAcl.MessageToDict(FipaAcl.

GetInnerMessage(informMsg));

 var directive = content["content"];

var temp = directive.Substring(directive.IndexOf('(') + 1,

directive.Length - directive.IndexOf('(') - 2);

var pos = temp.Split(',');

var posTuple = new Tuple<int, int>(int.Parse(pos[0]), int.

Parse(pos[1]));

var colsTuple = new Tuple<int, int>(posTuple.Item2, posTuple.

Item2 + _room.GetLength(1) / Platform.Directory.Count - 1);

 var result = new List<Tuple<int, int>>();

 var startRow = _room.GetLength(0) - 1;

 var dx = -1;

 // Generate path to clean

 �for (var col = colsTuple.Item1; col <= colsTuple.

Item2; col++)

 {

 �startRow = startRow == _room.GetLength(0) - 1 ?

0 : _room.GetLength(0) - 1;

 dx = dx == -1 ? 1 : -1;

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

278

 �for (var row = startRow; row < _room.GetLength(0)

&& row >= 0; row+=dx)

 result.Add(new Tuple<int, int>(row, col));

 }

 return result;

 }

While in their cleaning area, and for the purpose of having an ordered,

uniform way of executing their cleaning task, the SetSocialLaw() method

will define the path followed by agents during their cleaning process; this

social law is illustrated in Figure 7-2.

Figure 7-2.  Social law followed by agents

If there’s an active plan (for going to the designated cleaning area)

then a move from this plan is executed and deleted from the plan’s path.

According to the percepts received (clean, dirty), the agent will choose to

update its state or clean the dirty cell. If the area to be cleaned still contains

some unvisited cells, then we move to that cell. If the area to be cleaned

has no more cells, then the task can be considered finished. This is the

process executed by the Action() method seen in Listing 7-10.

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

279

Listing 7-10.  Action() Method

public void Action(List<Tuple<TypesPercept, Tuple<int, int>>>

percepts)

 {

 if (Plan.Path.Count > 0)

 {

 var nextAction = Plan.NextAction();

 �var percept = percepts.Find(p => p.Item1 ==

nextAction);

 Move(percept.Item1);

 return;

 }

 �if �(percepts.Exists(p => p.Item1 == TypesPercept.

Clean))

 UpdateState();

 �if (percepts.Exists(p => p.Item1 == TypesPercept.

Dirty))

 {

 Clean();

 return;

 }

 if (AreaTobeCleaned.Count > 0)

 {

 var nextCell = AreaTobeCleaned.First();

 AreaTobeCleaned.RemoveAt(0);

 Move(GetMove(nextCell));

 }

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

280

 else

 {

 if (!TaskFinished)

 {

 TaskFinished = true;

 MessageBox.Show("Task Finished");

 }

 }

 }

Other methods of the MasCleaningAgent class, such as Clean(),

IsDirty(), Move(), GetMove(), UpdateState(), ManhattanDistance(),

MoveAvailable(), and Perceived() share a high degree of similitude with

methods of the same name defined in the example from Chapter 2; thus,

we will not be including their codes in this chapter. For further reference

please consult the source code associated with this book.

�GUI
As mentioned before, we will include in the project two Windows Forms

applications—one for showing a list of messages received by the agent and

another for graphically representing the room. The Messaging class of the

message board acts as a client; it incorporates the code presented in the

last chapter in the client’s Windows Forms application. The service in this

case is called from a console application in similar fashion to the one we

detailed in Chapter 6. Even though the code of the Room class is merely a

Windows Forms code, we present it in Listing 7-11 to serve as reference.

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

281

Listing 7-11.  Room Class

public partial class Room : Form

{

 public List<MasCleaningAgent> CleaningAgents;

 private int _n;

 private int _m;

 private int[,] _room;

 public Room(int n, int m, int[,] room)

 {

 _n = n;

 _m = m;

 _room = room;

 CleaningAgents = new List<MasCleaningAgent>();

 InitializeComponent();

 }

 �private void RoomPicturePaint(object sender,

PaintEventArgs e)

 {

 var pen = new Pen(Color.Wheat);

 var cellWidth = roomPicture.Width / _m;

 var cellHeight = roomPicture.Height / _n;

 // Draw room grid

 for (var i = 0; i < _m; i++)

 �e.Graphics.DrawLine(pen, new Point

(i * cellWidth, 0), new Point(i * cellWidth,

i * cellWidth + roomPicture.Height));

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

282

 for (var i = 0; i < _n; i++)

 �e.Graphics.DrawLine(pen, new Point(0, i *

cellHeight), new Point(i * cellHeight +

roomPicture.Width, i * cellHeight));

 // Draw agents

 for (var i = 0; i < CleaningAgents.Count; i++)

 �e.Graphics.FillEllipse(new SolidBrush

(CleaningAgents[i].Color), CleaningAgents[i].Y

* cellWidth, CleaningAgents[i].X * cellHeight,

cellWidth, cellHeight);

 // Draw Dirt

 for (var i = 0; i < _n; i++)

 {

 for (var j = 0; j < _m; j++)

 if (_room[i, j] > 0)

 �e.Graphics.DrawImage(new Bitmap("rock-

transparency.png"), j * cellWidth, i *

cellHeight, cellWidth, cellHeight);

 }

 }

 private void RoomPictureResize(object sender, EventArgs e)

 {

 Refresh();

 }

}

In the Room class, we implemented the Paint event and the

PictureResize event of the PictureBox, where all elements (dirt, agents)

are graphically represented. Agents are drawn as ellipses of a color defined

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

283

by the Color agent property, and dirt is drawn as images. When agents

clean dirty cells, the dirt will vanish (image no longer painted), and the

global task will end when no cell contains a picture of dirt.

�Running the Application
Now that we’ve finished building an MAS program that incorporates all

topics described in the preceding three chapters, let us run and look at the

complete application and how the agents cooperate, coordinate, and are

actually capable of cleaning an n x m room. Remember we are assuming

the number of columns is divisible by the number of agents, which

simplifies our planning process. The reader can easily change this strategy,

transforming it into a more general strategy—one that will allow him to

plan the cleaning task for any number of agents.

We embed the WCF service in the console application where we also

declare all agents, platform, and the room GUI (Listing 7-12).

Listing 7-12.  Setting Up and Starting the Application in a Console

Application Project

var room = new [,]

 {

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {2, 0, 0, 1, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 1},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 1, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

 };

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

284

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 const int N = 10;

 const int M = 10;

 var roomGui = new Room(N, M, room);

 // Starts the WCF service.

 InitCommunicationService();

var clAgent1 = �new MasCleaningAgent(Guid.NewGuid(), room,

roomGui, 0, 0, Color.Teal);

 �var clAgent2 = new MasCleaningAgent(Guid.NewGuid(),

room, roomGui, 1, 1, Color.Yellow);

 �var clAgent3 = new MasCleaningAgent(Guid.NewGuid(),

room, roomGui, 0, 0, Color.Tomato);

 �var clAgent4 = new MasCleaningAgent(Guid.NewGuid(),

room, roomGui, 1, 1, Color.LightSkyBlue);

 �var clAgent5 = new MasCleaningAgent(Guid.NewGuid(),

room, roomGui, 1, 1, Color.Black);

roomGui.CleaningAgents = new List<MasCleaningAgent> { clAgent1,

clAgent2, clAgent3, clAgent4, clAgent5 };

 �var platform = new CleaningAgentPlatform(roomGui.

CleaningAgents, new CleaningTask(M, roomGui.

CleaningAgents.Count));

 Application.Run(roomGui);

The InitCommunicationService() method contains the exact lines

of code as in the agent service detailed in Chapter 6. The result is the one

shown in Figure 7-3, where the MAS application starts by having all agents

exchange messages in a Contract Net mechanism.

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

285

Figure 7-3.  Agents exchanging messages in a Contract Net
mechanism; messages received are shown in their Message Board
windows

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

286

Once an agreement has been reached and every agent is aware of

its designated cleaning area, the cleaning process starts by following the

social law previously described. When they complete their subtask, a

message box with a “Task Finished” message is displayed (Figure 7-4).

Each agent thread is put to sleep for a certain time while cleaning a unit of

dirt from the room; that way we simulate the cleaning process as it would

occur in real life.

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

287

Figure 7-4.  Agents cleaning their designated area and displaying the
“Task Finished” message once they have completed cleaning their area

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

288

We have finally reached the closing stages of our cleaning agent MAS

application. In this particular example, a 10 x 10 room was successfully

cleaned by five agents, which distributed the global task of cleaning the

entire room into subtasks of cleaning just portions of it; these portions

were defined by column ranges. Moreover, communication via a WCF

service resulted in a coordination and cooperation strategy. As occurred

with the Mars Rover program from Chapter 4, the reader can use this

example in an experimental application or improve it with new strategies

or methods. The cleaning MAS developed in this book can serve as the

foundation or base application for solving other problems that require a

more efficient solution when various agents interact and collaborate.

�Summary
Chapter 7 ends for now the “Agents” topic of this book, the closing practical

problem not only encompassing many of the points studied in Chapters 5

and 6 but also going beyond the scope of detail included in those chapters

to be the most thorough, precise chapter up to this point. Going back to

the cleaning MAS application, you’ll notice that topics such as logic, first-

order logic, and agents are incorporated as inevitable components of a

multi-agent program. In Chapter 8, we’ll begin describing an area that is

deeply related to probability and statistics—the very interesting topic of

simulation.

Chapter 7 Cleaning Agents: A Multi-Agent System Problem

289© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_8

CHAPTER 8

Simulation
Modeling is a basic tool of the human mind that provides us with the ability

to create abstract versions of the world, or part of it. These abstract versions

can embody a convenient, simplified representation of a situation, object,

and so forth and can be used to find a solution to a given problem. Modeling

involves imagination and creativity; it underlies our capacity to communicate,

generalize, and express meaning or patterns in an intelligent manner.

It is usually accepted that modeling is a way of making decisions and

predictions about the world and that the purpose of a model must be well

defined and understood before the model is created. Models are typically

classified as descriptive (they explain or describe the world) or prescriptive

(they formulate optimal solutions to problems and are related to the area

of optimization). Examples of models of the first type are maps, 3D objects

created using computer graphics, or video games. Models of the latter type are

heavily related to math and specifically to optimization; in these models, we

define a set of constraints for a problem and a goal function to be optimized.

Every model possesses three basic features:

•	 Reference: It represents something, either from the real

world or an imaginary world; e.g., building, city.

•	 Purpose: It has a logical intention with respect to that

which it references; e.g. study, analysis.

•	 Cost-effectiveness: It is more effective to use the model

than the reference, e.g. blueprint vs. real building, map

vs. real city.

290

Simulation is considered a variety of modeling whose purpose is

comprehension, planning, prediction, and manipulation. It can be defined

broadly as a behavioral or phenomenological approach to modeling; that

is, a simulation is an active behavioral analog of its referent.

Note  Modeling is one of the most important processes that occurs
in the human mind. When modeling we try to create abstract versions
of our reality, simplifying it many times to help us solve a problem.
Examples of models are maps (such as Google Maps), which
represent abstract versions of the world.

�What Is Simulation?
As occurs with the logic and agent words (it seems like the AI community

should get together and try to agree on several definitions), there’s no

consensus on what the word simulation means. There is, however, a

consensus on the fact that simulation is an imitative and dynamic type

of modeling used to model phenomena that must be researched or

understood for some reason.

When we implement a simulation as a computer program we obtain

high flexibility; being in a programming-language environment means

that in principle it is possible to refine, maintain, evolve, and extend

a computer simulation in ways that are difficult to match in any other

environment. Modern programming languages such as C# facilitate

the development of modular data and program code, allowing new

simulations to be built using pieces or modules of existing ones.

Computer simulation is usually divided into analytic and discrete-

event approaches. The analytic approach involves mathematical analysis

and problems that can be understood or approximated from an analytic

Chapter 8 Simulation

291

perspective. For instance, if the reality being modeled can be accurately

described by a set of differential equations (as in the flow of heat over a

surface), analytic solutions for those equations can be used to generate the

time-dependent behavior required for the simulation. The mathematical

elegance of analytic simulation makes it in many scenarios cryptic and

incomprehensible; by reducing reality to an abstract mathematical

relationship the understanding required could get obscured. There are

also cases in which analytic solutions are known but feasible means

of computing these solutions are not available. Nonetheless, analytic

simulations are indispensable in many situations, particularly when

dealing with complex physical phenomena involving enormous numbers

of relatively small and relatively similar entities whose individual

interactions are relatively simple and whose aggregate interactions

follow the “law of large numbers”; in other words, they permit statistical

treatment. In such cases, analytic models often represent at least one form

of complete understanding.

Note  There is a large class of problems that are not well enough
understood to be handled analytically—i.e., for which no formal
mathematical solutions exist. These problems are modeled and
simulated by means of discrete-event simulations (DES).

When we have a system that is composed of several entities, and we

understand each entity in isolation and also their pairwise interactions,

but fail to comprehend the behavior and relations of the system as a whole,

then we can make use of a simulation to encode the pairwise interactions

and then run the simulation to try to approximate the relations or behavior

of the system as a whole; one of these simulations is known as a

discrete-event simulation (DES).

Chapter 8 Simulation

292

�Discrete-Event Simulation
Time is essential in a DES, and the simulation can be seen as a succession

of discrete events in which entities interact. Time advances in a discrete

manner by means of fixed ticks or a simulated clock.

A DES is often the last alternative for modeling certain kinds of

intractable problems. Its power lies in its capacity to expose patterns of

interaction for the whole system that cannot be acknowledged in other

ways. It’s frequently possible to enumerate and describe a collection of

entities and their properties, relations, and immediate interactions without

knowing where these interactions lead. If this knowledge is encoded in

a DES simulation and the behavior of the resulting model is observed,

then we could acquire a better understanding of the system and the

interaction among its entities; this is typically the main purpose behind the

development of a DES.

When developing a DES there are six key elements to consider:

•	 Objects, which represent elements of the system,

have properties, relate to events, consume resources,

and enter and leave queues over time. In an airport

simulation (soon to be examined), objects would be

airplanes. In a health-care system, objects might be

patients or organs. In a warehouse system, objects

would be products in stock. Objects are supposed

to interact with each other or the system and can be

created at any time during the simulation.

•	 Properties, which are features particular to every object

(size, takeoff time, landing time, sex, price, and so

on), are stored in some manner and help determine

a response to a variety of scenarios that might arise

during the simulation; such values can be modified.

Chapter 8 Simulation

293

•	 Events, which are incidents that can occur in the system

and are usually related to objects, can be things like

the landing of an airplane, the arrival of a product to a

warehouse, the appearance of a particular disease, and

so forth. Events can occur and reoccur in any order.

•	 Resources, which are elements that provide services to

objects (for example, a runway at the airport, storage

cells in a warehouse, and doctors at a clinic), are finite.

When a resource is occupied and an object needs it,

the object must queue and wait until the resource is

available. We’ll see such a scenario in the practical

problem of this chapter.

•	 Queues, which are the means by which objects are

organized to await the release of some resource that’s

currently occupied, can have a maximum capacity

and can have different calling approaches: First-In-

First-Out (FIFO), Last-In-First-Out (LIFO), or based

on some criteria or priority (disease progression, fuel

consumption, and the like).

•	 Time (as mentioned before and occurs in real life) is

essential in simulation. To measure time, a clock is

started at the beginning of the simulation and can be

used to track particular periods of time (departure

or arrival time, transportation time, time spent with

certain symptoms, and so on). Such tracking is

fundamental because it allows you to know when the

next event should occur.

Discreet Events Simulation (DES) are closely related to probability and

statistics because they model real-life scenarios where randomized and

probabilistic events occur; DES must rely on probabilistic distributions,

random variables, and other statistics and probability tools for events

generation.

Chapter 8 Simulation

294

�Probabilistic Distributions
A discrete random variable is one whose set of values is finite or countably

infinite; in other words, its values can be listed as a finite or infinite

sequence, such as 1, 2, 3 . . . and so on. The probability distribution for

a discrete random variable is any graph, table, or formula that assigns a

probability to each possible value. The sum of all probabilities must be 1,

and each individual probability must be between 0 and 1. For example,

when we throw a fair die (all sides equally probable), the discrete random

variable X representing the possible outcomes will have the probability

distribution X(1) = 1/6, X(2) = 1/6, …, X(6) = 1/6. All sides are equally

probable, so the assigned probability for every value of the random

variable is 1/6.

Parameter μ will indicate the mean (expected value) in their

corresponding distributions. The mean represents the value that the

random variable takes on average. In other words, it’s the sum E=[(each

possible outcome) × (probability of that outcome)], where E denotes the

mean. In the case of the die, the mean would be E = 1/6 + 2/6 + 3/6 + 4/6 +

5/6 + 6/6 = 3.5. Notice that the result 3.5 is actually halfway between all

possible values the die can take; it’s the expected value when the die is

rolled a large number of times.

Parameter σ2 will indicate the variance of the distribution. Variance

represents the dispersion of possible values of the random variable; it’s

always non-negative. Small variances (close to 0) indicate values are close

to each other and the mean; high variances (close to 1) indicate great

distance among values and from the mean.

Poisson is a discrete distribution expressing probabilities concerning

the number of events per time unit (Figure 8-1). It’s usually applied when

the probability of an event is small and the number of opportunities for its

occurrence is large. The number of misprints in a book, airplanes arriving

at an airport, cars arriving at traffic lights, and deaths per year in a given

age group are all examples of applications of the Poisson distribution.

Chapter 8 Simulation

295

An exponential distribution expresses time between events in a Poisson

process (Figure 8-2). For instance, if you’re dealing with a Poisson process

describing the number of airplanes arriving at an airport during a certain

time then you may be interested in a random variable that would indicate

how much time passed before the first plane arrived. An exponential

distribution can serve this purpose, and it could also be applied to physics

processes; for example, to represent the lifetime of particles where the λ

parameter would indicate the rate at which the particle ages.

Figure 8-1.  Poisson distribution

Figure 8-2.  Exponential distribution

Chapter 8 Simulation

296

The normal distribution describes a probability that converges around

a central value, no bias left or right, as shown in Figure 8-3. Normal

distributions are symmetric and possess bell-shaped density curves with

a single peak at the mean. Fifty percent of the distribution lies to the left of

the mean and fifty percent to the right. The standard deviation indicates

the spread or belt of the bell curve; the smaller the standard deviation the

more concentrated the data. Both the mean and the standard deviation

must be defined as parameters of the normal distribution. Many natural

phenomena strongly follow a normal distribution: blood pressure, people’s

height, errors in measurements, and many more.

Figure 8-3.  Normal distribution

So far we have described what a DES is, its components, and some of

the most important probability distributions that can be applied for event

time-generation in this type of simulation. In the next section, we will start

looking at a practical problem, where we will see how to put all the pieces

together in an airport simulation example.

Chapter 8 Simulation

297

�Practical Problem: Airport Simulation
Let’s imagine a scenario in which we would like to simulate the operation

of a five-runway airport where airplanes transporting a certain number of

passengers arrive, spend some time at the airport to refuel, and eventually

depart in a timeframe that depends, among others, on the probability that

the airplane might have gotten broken up. This is the airport simulation

that we will be implementing in this chapter. The IDistribution, Poisson,

and Continuous classes (interfaces) seen in future code are part of the

MathNet.Numerics package.

The time between arrival to the airport of one plane and another

distributes as a Poisson function with a lambda parameter specified by

Table 8-1.

Table 8-1.  Arrivals of Airplanes at the

Airport According to Timeframes

Time Lambda

06:00–14:00 7 mins

14:00–22:00 10 mins

22:00–06:00 20 mins

When an airplane arrives at the airport it lands on an available runway,

selecting it uniformly from any of the available runways. If there’s no

runway available, the airplane is enqueued into a line of airplanes asking

permission to land. Once the airplane finally lands, it processes its cargo

in an amount of time that distributes by an exponential function whose

parameter gets its value by considering the number of passengers traveling

on the plane, as shown in Table 8-2.

Chapter 8 Simulation

298

While an airplane is processing its cargo, it’s considered to be

occupying the runway. An airplane can get broken down with a probability

of 0.15, in which case the reparation will distribute by an exponential

function with parameter lambda = 80 mins.

In order to start analyzing the code of our airport simulation, let’s

consider the Airplane class as described in Listing 8-1.

Listing 8-1.  Airplane Class

public class Airplane

 {

 public Guid Id { get; set; }

 public intPassengersCount{ get; set; }

 public double TimeToTakeOff{ get; set; }

 public intRunwayOccupied{ get; set; }

 public bool BrokenDown{ get; set; }

 public Airplane(int passengers)

 {

 Id = Guid.NewGuid();

PassengersCount = passengers;

RunwayOccupied = -1;

 }

 }

Table 8-2.  Time to Process Cargo for Any

Airplane and Dependant on Number of

Passengers

Passengers Lambda

0–150 50 mins

150–300 60 mins

300–450 75 mins

Chapter 8 Simulation

299

The Airplane class contains the following properties:

•	 Id: It’s initialized in the constructor and will uniquely

identify every airplane.

•	 PassengersCount: defines the number of passengers in

the airplane

•	 TimeToTakeOff: defines the time (in minutes) at which

the airplane is supposed to take off from the landing

strip

•	 RunwayOccupied: identifies whether an airplane is

occupying a runway at the airport, and, if so, this

property matches the index of the runway being

occupied. When its value is less than 0 it means the

airplane is not occupying any runway.

•	 BrokenDown: has value True if the airplane has broken

down, False otherwise

In Listing 8-2 we can see the AirportEvent<T> abstract class, which

will serve as the parent of the other three classes representing different

events taking place in the AirportSimulation. The intention is to shorten

the code, compacting all lines that can be logically compacted or included

in one single parent class, thus taking advantage of inheritance in C#.

Listing 8-2.  AirportEvent<T> Abstract Class

public abstract class AirportEvent<T> where T: IComparable

 {

 protected double[] Parameters;

 protected List<Tuple<T, T>> Frames;

 public double[] DistributionValues;

 public List<IDistribution> Distributions;

Chapter 8 Simulation

300

 protected AirportEvent(params double[] lambdas)

 {

 Distributions = new List<IDistribution>();

DistributionValues = new double[lambdas.Length];

 Frames = new List<Tuple<T, T>>();

 Parameters = lambdas;

 }

 �public virtual void SetDistributionValues(Distribution

Type type)

 {

foreach (var lambda in Parameters)

 {

 switch (type)

 {

 case DistributionType.Poisson:

Distributions.Add(new Poisson(lambda));

 break;

 case DistributionType.Exponential:

Distributions.Add(new Exponential(lambda));

 break;

 }

 }

 // Sampling distributions

 for (vari = 0; i<Frames.Count; i++)

DistributionValues[i] = type == DistributionType.Poisson

 �? ((Poisson)

Distributions[i]).Sample()

 �: (1 - ((Exponential)

Distributions[i]).

Sample()) *

Parameters[i];

 }

Chapter 8 Simulation

301

 public virtual double GetEvtFrequency(T elem)

 {

 for (vari = 0; i<Frames.Count; i++)

 {

 �if (elem.CompareTo(Frames[i].Item1) >= 0

&&elem.CompareTo(Frames[i].Item2) < 0)

 return DistributionValues[i];

 }

 return -1;

 }

 }

 public enumDistributionType

 {

 Exponential, Poisson

 }

Note  In the AirportEvent<T> class we are requiring, by use of
the where keyword, that the T parameter be of type IComparable.
We need this prerequisite to be able to compare them later in the
most generic way possible.

The AirportEvent<T> class includes the following properties:

•	 Parameters: an array of doubles storing the lambda

parameters to be used in the different distributions

•	 Frames: a list of tuples of type T defining the timeframes

or numeric frames of an event, corresponding with a

probability distribution and a parameter as indicated

in Tables 8-1 and 8-2. The cardinality of this list must

match that of the Parameters array and also of the next

two properties that we will list.

Chapter 8 Simulation

302

•	 DistributionValues: array of doubles used to store

at index i the value resulting from calculating the

probability distribution i using parameter i from array

Parameters

•	 Distributions: list of distributions to be used; when

calculating a probability distribution we consider some

parameter lambda, and the value resulting from this

calculation is stored in the DistributionValues array

Apart from the previous properties, the class also includes the

following methods:

•	 SetDistributionValues(): depending on the

type of distribution indicated as argument, it adds

new distributions to the Distributions list and

samples these distributions with the Parameters

specified, leaving every sampled value in the

DistributionValues array

•	 GetEvtFrequency(): This method receives as argument

a type T, which is Icomparable, and compares it against

the time or numeric frames to decide the portion to

which it belongs and therefore the distribution value

for it. For instance, if frames are (0, 100), (100, 200),

(200, 250) and T = 110, then T would fall into the

second frame and match the second (index=1)

distribution value.

Additionally, we have the DistributionType enum indicating the two

types of distributions that we will be considering in this example (Poisson,

Exponential).

The AirplaneEvtArrival (Listing 8-3) class inherits from

AirportEvent<T>; in this case, T becomes a TimeSpan. This class represents

the event that an airplane arrived at the airport.

Chapter 8 Simulation

303

Listing 8-3.  AirplaneEvtArrival<TimeSpan> Class

public class AirplaneEvtArrival :AirportEvent<TimeSpan>

 {

 �public AirplaneEvtArrival(params double[] lambdas) :

base(lambdas)

 {

Frames = new List<Tuple<TimeSpan, TimeSpan>>

 {

 �new Tuple<TimeSpan,

TimeSpan>(new TimeSpan(0, 6, 0,

0), new TimeSpan(0, 14, 0, 0)),

 �new Tuple<TimeSpan,

TimeSpan>(new TimeSpan(0, 14, 0,

0), new TimeSpan(0, 22, 0, 0)),

 �new Tuple<TimeSpan,

TimeSpan>(new TimeSpan(0, 22, 0,

0), new TimeSpan(0, 6, 0, 0))

 };

 }

 }

The class merely contains a constructor, where the Frames list is

defined as a set of tuples where each tuple details a time range.

Similarly, the AirplaneEvtProcessCargo class (Listing 8-4), which also

inherits from AirportEvent<int>, defines in its constructor a list of Frames

containing tuples of integers that indicate ranges of passengers. These

ranges ultimately match some value (in minutes) that is the time it takes to

process that amount of passengers (recall Table 8-2).

Chapter 8 Simulation

304

Listing 8-4.  AirplaneEvtProcessCargo<int> Class

public class AirplaneEvtProcessCargo :AirportEvent<int>

 {

 �public AirplaneEvtProcessCargo(params double[] lambdas)

: base(lambdas)

 {

 Frames = new List<Tuple<int, int>>

 {

 new Tuple<int, int>(0, 150),

 new Tuple<int, int>(150, 300),

 new Tuple<int, int>(300, 450)

 };

 }

 public double SampleAt(intelem)

 {

 for (vari = 0; i<Frames.Count; i++)

 {

 �if (elem.CompareTo(Frames[i].Item1) >=0&&elem.

CompareTo(Frames[i].Item2) < 0)

return (1 - ((Exponential) Distributions[i]).Sample()) *

Parameters[i];

 }

 return -1;

 }

 }

The class also contains a SampleAt() method, which returns the

probability distribution value of the element supplied as argument and

considers the range imposed on the class by the Frames list.

Chapter 8 Simulation

305

In Listing 8-5 we can see the AirplaneEvtBreakdown class, which

inherits from AirportEvent<TimeSpan>; its code is very simple, as it simply

calls the constructor of its parent class.

Listing 8-5.  AirplaneEvtBreakdown<TimeSpan> Class

public class AirplaneEvtBreakdown :AirportEvent<TimeSpan>

 {

public AirplaneEvtBreakdown(params double[] lambdas): base(lambdas)

{

}

 }

Lastly, the Simulation class includes various properties, fields, and

constructor, as shown in Listing 8-6.

Listing 8-6.  Constructor, Fields, and Properties of the Simulation Class

public class Simulation

 {

 public TimeSpanMaxTime{ get; set; }

 private TimeSpan _currentTime;

 private readonlyAirplaneEvtArrival _arrivalDistribution;

 �private readonlyAirplaneEvtProcessCargo

_processCargoDistribution;

private readonlyAirplaneEvtBreakdown _airplaneBreakdown;

 private readonly bool [] _runways;

 private readonlyint _planeArrivalInterval;

 private readonly Queue<Airplane> _waitingToLand;

 private readonly List<Airplane> _airplanes;

 private List<Airplane> _airplanesOnLand;

 private static readonly Random Random = new Random();

Chapter 8 Simulation

306

 �public Simulation(TimeSpanstartTime, TimeSpanmaxTime,

IEnumerable<Airplane> airplanes)

 {

MaxTime = maxTime;

 _runways = new bool[5];

 �_arrivalDistribution = new AirplaneEvtArrival(7, 10, 20);

 �_processCargoDistribution = new

AirplaneEvtProcessCargo(50, 60, 75);

 _airplaneBreakdown = new AirplaneEvtBreakdown(80);

 _waitingToLand = new Queue<Airplane>();

 _airplanes = new List<Airplane>(airplanes);

 _airplanesOnLand = new List<Airplane>();

 _currentTime = startTime;

 // For 1st day set distribution values.

 �_arrivalDistribution.SetDistributionValues

(DistributionType.Poisson);

 �_processCargoDistribution.SetDistributionValues

(DistributionType.Exponential);

 �_airplaneBreakdown.SetDistributionValues(Distribution

Type.Exponential);

 �_planeArrivalInterval = (int) _arrivalDistribution.

GetEvtFrequency(startTime);

 }

}

The properties and fields of the Simulation class are as follows:

•	 MaxTime: the maximum time the simulation will last

•	 _currentTime: current time in the simulation

•	 _arrivalDistribution: object describing the event of

an airplane arrival

•	 _processCargoDistribution: object describing the

event of an airplane processing its cargo

Chapter 8 Simulation

307

•	 _airplaneBreakdown: object describing the event of an

airplane being broken down

•	 _runways: set of runways at the airport

•	 _planeArrivalInterval: interval by which an airplane

arrives at the airport. This value is calculated using the

_arrivalDistribution.

•	 _waitingToLand: queue of airplanes waiting for an

available runway to land

•	 _airplanes: list of airplanes arriving at the airport

•	 _airplanesOnLand: list of airplanes that have already

landed at the airport

•	 Random: random variable

The constructor of the Simulation class receives as arguments the start

time and end time of the simulation and the list of airplanes scheduled

to land at the airport. Inside the constructor, we initialize the fields and

properties according to the values described in Tables 8-1 and 8-2.

In the Execute() method (Listing 8-7) we execute the simulation;

everything occurs within an outer while loop that runs until the current

time of the simulation exceeds the maximum time allowed.

Inside the outer while loop, we first try to give landing permission

to airplanes that have been queued for landing. We’ll soon examine the

TryToLand() method, which attempts to perform a landing for some

airplane. Then, we take care of the airplane arrival event, checking first if

there are still airplanes waiting to land and if the current time in minutes

leaves a remainder of zero when divided by the interval by which airplanes

are supposed to arrive at the airport; this is equivalent to saying that the

current minute belongs to the residual class defined by the value of the

arrival-time interval previously calculated.

Chapter 8 Simulation

308

Ultimately, we loop through every airplane on land, checking for those

that must depart at the current minute or looking into the possibility of an

airplane’s having a breakdown. We also update the list of airplanes and

airplanes on land and the list of runways occupied at any given moment.

To conclude and start another cycle of the simulation, we add a minute to

the current time.

Listing 8-7.  Execute() Method

public void Execute()

 {

 while (_currentTime<MaxTime)

 {

Console.WriteLine(_currentTime);

 // Process airplanes on queue for landing

foreach (var airplane in _waitingToLand)

 {

 if (!TryToLand(airplane))

 break;

 }

 // Plane arrival event

 �if (_currentTime.Minutes % _planeArrivalInterval

== 0 && _airplanes.Count> 0)

 {

varnewPlane = _airplanes.First();

 _airplanes.RemoveAt(0);

Console.WriteLine("Plane {0} arriving ...", newPlane.Id);

 if (TryToLand(newPlane))

 _airplanesOnLand.Add(newPlane);

 }

Chapter 8 Simulation

309

 // For updating list of airplanes on the ground

varnewAirplanesOnLand = new List<Airplane>();

 // Update airplane status for this minute

foreach (var airplane in _airplanesOnLand)

 {

airplane.TimeToTakeOff--;

 if (airplane.TimeToTakeOff<= 0)

 {

 _runways[airplane.RunwayOccupied] = false;

airplane.RunwayOccupied = -1;

Console.WriteLine("Plane {0} took off", airplane.Id);

 }

 else

newAirplanesOnLand.Add(airplane);

 // Odds of having a breakdown

 �if (Random.NextDouble() < 0.15 &&

!airplane.BrokenDown)

 {

airplane.BrokenDown = true;

airplane.TimeToTakeOff += _airplaneBreakdown.

DistributionValues.First();

Console.WriteLine("Plane {0} broke down, take off time is now

{1} mins", airplane.Id, Math.Round(airplane.TimeToTakeOff, 2));

 }

 }

 �_airplanesOnLand = new List<Airplane>(newAirplanes

OnLand);

Chapter 8 Simulation

310

 // Add a minute

 �_currentTime = _currentTime.Add(new TimeSpan

(0, 0, 1, 0));

 }

 }

In Listing 8-8, we can see the RunwayAvailable() and TryToLand()

methods. The first is very simple and allows us to know whether there’s a

runway available, returning its index in that case. The latter tries to provide

landing permission to an airplane by checking first if there are runways

available. Assuming there is, then it updates the corresponding list and

properties and sets the time the airplane will consume at the airport;

i.e., its takeoff time. In case there’s no runway available, the airplane is

enqueued for an eventual landing.

Listing 8-8.  RunwayAvailable() and TryToLand() Methods

 public intRunwayAvailable()

 {

 return _runways.ToList().IndexOf(false);

 }

 public bool TryToLand(Airplane newPlane)

 {

varrunwayIndex = RunwayAvailable();

 if (runwayIndex>= 0)

 {

 _runways[runwayIndex] = true;

newPlane.RunwayOccupied = runwayIndex;

newPlane.TimeToTakeOff = _processCargoDistribution.

SampleAt(newPlane.PassengersCount);

Chapter 8 Simulation

311

Console.WriteLine("Plane {0} landed successfully", newPlane.Id);

Console.WriteLine("Plane {0} time for take off {1} mins",

newPlane.Id, Math.Round(newPlane.TimeToTakeOff, 2));

 return true;

 }

 _waitingToLand.Enqueue(newPlane);

 return false;

 }

 }

To initialize and test the simulation we can rely upon the code shown

in Listing 8-9, which corresponds to a console application in C#.

Listing 8-9.  Initiating the Simulation

var airplanes = new List<Airplane>

 {

 new Airplane(100),

 new Airplane(300),

 new Airplane(50),

 new Airplane(250),

 new Airplane(150),

 new Airplane(200),

 new Airplane(120)

 };

var sim = new Simulation.Airport.Simulation(new TimeSpan(0, 13,

0, 0), new TimeSpan(0, 15, 0, 0), airplanes);

sim.Execute();

Chapter 8 Simulation

312

Once we execute the simulation we will get a peek at the various events

taking place in the simulation, such as time, airplane arriving, airplane

taking off, airplane broke down, and so on. These will all be printed in the

console application, as Figure 8-4 illustrates.

Figure 8-4.  Console application displaying diverse events occurring
at the simulation

In our airport simulation we considered events such as arrival,

departures, and breakdowns. As usual, the suggestion to the reader is to

try to expand the simulation and consider new events or maybe adjust the

parameters to make them fit a more realistic scenario.

Chapter 8 Simulation

313

�Summary
Throughout this chapter, we introduced the concepts of modeling and

simulation. We described what a discrete-events simulation (DES) is

and also described its components (events, queue, and so forth). We

studied various probabilistic distributions and their relation to simulation

applications. Ultimately, we presented a full example where we simulated

the functioning of an airport during a given time and were able to see how

every piece came together to create a program that simulated the working

hours of an airport while considering several events (arrivals, departures,

breakdowns). In the following chapter, we will start diving into the

interesting and vast world of supervised learning.

Chapter 8 Simulation

315© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_9

CHAPTER 9

Support Vector
Machines
In this chapter, we’ll begin the study of supervised learning, a branch of

machine learning whose algorithms resemble the type of learning we

would have at school where we learn from experience and from many

examples introduced by a professor during class or training.

Many supervised learning algorithms are composed of two phases: a

training phase where the learner is presented with a set of training data,

having each data as a vector along with its correct classification, and a

prediction phase where the learner, having learned the function that

corresponds to the training data, is now supposed to predict the correct

classification or value of new incoming data. For instance, a training data

set could be defined as follows:

{ { (2, 3), 1}, { (1, 1), -1}, { (3, 3), 1} }

Notice that each pair (x, y) is accompanied by a classification or class,

in this case 1 or -1.

The training data is usually expressed as a pair (v, c) where v is an

n-dimensional vector (typically known as a feature vector) representing

different properties of an object and c is the classification or label of that

object considering the problem at hand. The object could be anything,

from people, flowers, and chemical compounds to cities, states, and

316

basically anything we can imagine or can be classified. The vector could

indicate various properties of the object, such as location, height, weight,

strength, sex, population, oxygen, and so on.

In general, the learning process of a classification (we’ll examine soon

what classification means in this context) supervised learning algorithm

follows the following points:

•	 Training: From the training data received as input,

a function f(x) is inferred. This function describes

the structure of the data and attempts to classify new

input data considering the structure learned from the

training data.

•	 Prediction: Assuming a new data x has been received,

it classifies it as f(x); i.e., uses the learned function f to

classify the new input data.

Two of the most significant problems that supervised learning tries to

solve are classification and regression.

In the first type of problem, we map incoming data into a predefined,

discrete number of categories. Therefore, we categorize incoming

data by labeling it with some class. In such cases, we claim that the

supervised learning algorithm is a classifier. In the latter problem, we do

not categorize or classify an object; rather, we provide an estimate of the

odds of some variable belonging to a class. In this type of problem we are

interested in finding a good relation that represents the set of data. This

relation could be embodied by the line that best approximates this set as

it occurs in a type of regression known as linear regression; a method that

solves this type of problem is known as a regressor.

Chapter 9 Support Vector Machines

317

Note I n classification algorithms, output variables take on discrete,
categorical values. In regression algorithms, output variables take
continuous, real values. A regression algorithm would predict the
temperature on a given day; a classification algorithm would simply
tell us whether it’s going to be hot or not.

In Figure 9-1 we can graphically see the difference between a classifier

and a regressor. The classifier (b) is able to partition the space into various

subspaces or classes (two classes in Figure 9-1), and the regressor (a)

simply tries to find a structure (line in Figure 9-1) that best approximates

the shape of the set of data at hand; because this set has a linear structure a

linear regressor is a good approximator.

Figure 9-1.  a) represents a regressor and b) represents a classifier

Chapter 9 Support Vector Machines

318

Throughout this chapter, we’ll be studying support vector machine

algorithms, which are applied in data classification and consequently

are regarded as classifiers. The purpose of this chapter is to describe the

support vector machine algorithm and present the full code in C# of such

an algorithm, accompanied by a visual application in Windows Forms

to validate the results obtained(graphically shown) and serve as a tool

for testing and clarification. We’ll use two approaches when developing

our support vector machine. One will use an optimization library to find

a solution to the optimization problem that support vector machines

attempt to solve, and the second will use Platt’s Sequential Minimal

Optimization (SMO) algorithm to find a solution for the same problem.

We’ll soon examine what element support vector machine provides us that

allows us to predict the class of new incoming data.

Note  Statistical learning theory is a branch of machine learning
dealing with the problem of finding a predictive function based on
data. Statistical learning theory has led to successful applications in
fields such as computer vision, speech recognition, text classification,
pattern recognition, bioinformatics, and more.

�What Is a Support Vector Machine (SVM)?
A support vector machine (SVM) is an optimization technique usually

applied to classification problems. It’s commonly referred to as a classifier

but has also been adapted to other optimization problems such as

regression; thus, we can affirm that SVMs can be both classifiers and

regressors. SVM algorithms were introduced by Vladimir Vapnik during

the 1960s and rely heavily on statistical learning theory and mathematical

optimization. As a matter of fact, the training phase of an SVM reduces to

Chapter 9 Support Vector Machines

319

solving an optimization problem that provides us with a set of weights and

a value (bias) that allows us to classify new incoming data.

As occurs with many areas of machine learning, SVMs are about

learning structure from data. In the binary classification case (only two

classes), an SVM algorithm finds the hyperplane that gives the widest

margin with respect to vectors on the frontier of each class.

A hyperplane of an n-dimensional space is the subspace of n - 1

dimension. For example, when n = 1 our space is a line, therefore its

hyperplanes are points; when n = 2 our space is the usual two-dimensional

coordinate space, thus its hyperplanes are lines; when n = 3 our space

is the three-dimensional space, therefore its hyperplanes are two-

dimensional planes, and so on. Figure 9-1 b) shows a two-dimensional

space with an orange line that represents a hyperplane in that space.

Note  SVMs are used for text-classification tasks such as category
assignment, detecting spam, and sentiment analysis. It is also
commonly used for image-recognition challenges, performing
particularly well in aspect-based recognition and color-based
classification. SVMs also play a vital role in many areas of
handwritten-digit recognition, such as postal-automation services.

We may also notice that this hyperplane separates the blue points from

the red points; we can say that this is a classifying hyperplane because it’s

separating the space into two classes. As illustrated in Figure 9-2, there can

be multiple classifying hyperplanes for a given classification problem.

Chapter 9 Support Vector Machines

320

For future incoming data, not every hyperplane will have the same

efficacy. Intuitively, we would like to have a classifying hyperplane that

would produce the greatest margin between the two classes so that new

data to be predicted will have a better chance of being correctly classified.

The distance between the hyperplane and the nearest data point from

either set (blue or red points) is known as the margin (Figure 9-3). The goal

of SVMs is to choose a classifying hyperplane with the greatest possible

margin between the hyperplane and any point within the training set in

either class. As mentioned before, this gives us a better chance of having

new incoming data correctly classified; in this sense, we can affirm that

SVMs search for the optimal hyperplane to classify data.

Figure 9-2.  Various possible classifying hyperplanes for a
classification problem

Figure 9-3.  Margin M defined by the classifying hyperplane

Chapter 9 Support Vector Machines

321

To find the optimal hyperplane for a training data set we need to find

the classifying hyperplane that provides the greatest possible margin

between the two classes. As a result, the training phase of SVMs consists

of an optimization problem (more precisely, a quadratic programming

problem) where we maximize the value 2 x M; in other words, two times

the margin will determine the full width of the “street” defined by the

hyperplanes passing through the set of support vectors (Figure 9-4).

Vectors defining this margin are known as support vectors.

To obtain a formula for M, let’s first remember that in a two-dimensional

space the formula for a line (hyperplane in 2D) is Ax + By + C = 0. This

expression can be generalized to the point of deducing the general

expression of any hyperplane according to the formula wx + b = 0, where w

is a vector known as weight vector and b (matches C in the line equation)

is a real value known as bias or intercept; this value determines the shift of

the hyperplane from the origin of its space. Therefore, when b = 0 it means

the hyperplane passes through the origin (0, 0, … 0); w is a normal vector

to the hyperplane and defines its orientation.

Figure 9-4.  Support vectors denoted as black points

Chapter 9 Support Vector Machines

322

Now that we have a formula for the hyperplane, we can obtain the

value of M by finding the distance from the support vectors (marked

as black points in Figure 9-4) to the hyperplane. Recall that in a two-

dimensional space the distance from a point (x′, y′) to a line is given by the

following formula:

M
Ax By C

A B
=

¢+ ¢+

+2 2

In general form, in the n-dimensional space, the formula for M can be

deduced as follows:

M
wx b

w
=

+

where ||w|| is the norm of the weight vector w. Recall that for a vector

v = (v1, v2 …vn) its norm is defined as follows:

v v v vn= + +¼+1
2

2
2 2

Any hyperplane can be represented in an infinite number of ways by

scaling w and b. This type of normalization or scaling is analogous to the

type of scaling we use with percentages sometimes; instead of referring to

a percentage as 85 percent we simply work with numbers in the range

[0, 1] and find a direct mapping from 85 percent to the equivalent 0.85.

In our case, we have the classifying hyperplane and also two other

hyperplanes that are parallel to the classifying hyperplane and pass

through the support vectors of each class. By means of normalization,

we can express these hyperplanes as follows:

wx b+ =1

wx b+ = -1

Chapter 9 Support Vector Machines

323

This representation is known as the canonical hyperplane; under this

representation, assuming a normalization of values and the fact that we

are trying to find the distance from a point in the classifying hyperplane

to any of the hyperplanes formed by support vectors, we can adjust M’s

equation as follows:

M
wx b

w w
=

+
=

1

Thus, the total margin to be maximized would be 2 x M = 2 / ||w||.

Notice that maximizing this value is equivalent to minimizing the

following:

w
2

2

At this point we know we need to minimize the previous function

in order to find a (weight vector, bias) pair that maximizes the margin

between the classifying hyperplane and both classes. Now we need to

define under what set of constraints such optimization will occur.

We already have an equation for the hyperplanes passing through

support vectors. Since support vectors define the border of each class in

space, these hyperplanes determine our constraints, as we need every

data point to be on one side or the other of these hyperplanes (Figure 9-5).

Thus, we end up having the following constraints:

wx b+ ³1

wx b+ £ -1

Chapter 9 Support Vector Machines

324

The first equation applies to the case when the classification of data

point x equals yi = 1; otherwise when yi = -1. Remember for each data point

x we have its corresponding classification in the data-set training.

The previous constraints can be combined into one:

y wx bi i +() ³1

Finally, the optimization problem that SVMs solve is formulated as

follows:

min
,w b

w

2

2

subject to y wx bi i: +() ³1

Let’s remember at this moment that the optimization problem just

presented corresponds to a linear SVM classifier; in other words, we

are assuming the set of training data to be linearly separable. The SVM

classifier function would then be as follows:

sign wx b+()

Figure 9-5.  Blue points satisfy equation wx + b >= 1 and red points
satisfy equation wx + b <= -1

Chapter 9 Support Vector Machines

325

sign x

if x

if x

if x

() =
- <

=
>

ì

í
ï

î
ï

1 0

0 0

1 0

Note that if wx + b >= 1 then data point x belongs to class 1; otherwise,

x belongs to class -1. As we can see, merely having w, b as the weight vector

and bias of the optimal classifying hyperplane will allow us to classify new

incoming data.

Even though at the moment we have reached a formulation for an

optimization problem whose solution would indeed lead us to finding

the maximum margin of a classifying hyperplane, this formulation is

typically disregarded for one that facilities the computational effort and the

optimization itself. This new formulation is based on Lagrange multipliers

and the Wolfe dual-problem equivalence.

Duality represents a key role in optimization theory, and many

optimization problems have an associated optimization problem called

the dual. This alternative formulation of the problem possesses a set of

solutions that are related to the solutions of the original (known as primal)

problem. In particular, for a broad class of problems the primal solutions

can be easily calculated from the dual ones. Moreover, in the specific case

of the problem we are dealing with in this chapter, the dual formulation

provides us with easier-to-handle constraints that are also well suited for

kernel functions (we’ll examine them soon).

A constrained optimization problem such as ours can be solved by

means of the Lagrangian method. This method allows us to find the

maximum or minimum of a multi-variable function subject to a set of

constraints. It reduces the constrained problem to an unconstrained

problem by adding n + k variables, k being the number of constraints of the

original problem. These new variables are known as Lagrange multipliers.

Using this transformation, the resulting problem will include equations

that are easier to solve than the ones in the original problem.

Chapter 9 Support Vector Machines

326

The Lagrangian of a function f(x) having constraints g x i m)i () = = ¼0 1(

is the following:

L x f x g x
i

m

i i,a a() = () + ()
=
å

1

Notice the new formulation has no constraints; they have been

encapsulated in the only function now present, L(x, α). In this case, the

αi represents the Lagrangian multipliers. Let’s substitute the objective

function and constraints of our primal problem into L(w, b, α):

L w b
w

y wx b
i

m

i i i, ,a a() = - +()-()
=
å

2

12
1

The previous expression uses the generalized Lagrangian form that not

only encompasses equality constraints but also inequalities g xi () £ 0 or

equivalently - () ³g xi 0. Once we have introduced the Lagrangian

multipliers, we just need to find the dual form of the problem. In particular,

we’ll find the Wolfe dual form of the problem. For this purpose, we

minimize L with respect to w, b, which is achieved by solving the following

equations where Ñ ()xL w b, ,a denotes the gradient of L with respect to x:

Ñ () =wL w b, ,a 0

Ñ () =bL w b, ,a 0

The derivative of L with respect to w yields the following result:

Ñ () = - =
=
åw
i

m

i i iL w b w y x, ,a a
1

0

Chapter 9 Support Vector Machines

327

This implies the following:

w y x
i

m

i i i=
=
å

1

a

As for the gradient with respect to b, the result is as follows:

Ñ () = =
=
åb
i

m

i iL w b y, ,a a
1

0

Substituting the new formula obtained for w and considering that

i

m

i iy
=
å =

1

0a , we can adjust L(w, b, α) as follows:

L w b y y x x
i

m

i
i j

m

i j i j i j, ,
,

a a a a() = -
= =
å å

1 1

1

2

Notice that since xi, xj are vectors, xixj denotes their inner product. So,

finally, we have reached the expression of the dual problem, and in fact the

optimization problem that most SVM libraries and packages solve because

of the advantages previously mentioned. The complete optimization

problem would be as follows:

max , ,

.

,
a

a a a a

a

a

L w b y y x x

s t y

i

m

i
i j

m

i j i j i j

i

m

i i

i

() = -

=

= =

=

å å

å

1 1

1

1

2

0

³³ = ¼0 1i m,

In the next section, we’ll see a practical problem where the previous

problem (dual) will be solved using an optimization library in C#. Such a

problem will help us understand some of the concepts and ideas that have

been introduced in this chapter.

Chapter 9 Support Vector Machines

328

Note T he gradient of a function f is usually denoted by the symbol
Ñ preceding the function name (Ñf). It’s a vector formed by the
derivatives of f with respect to every variable and indicates the
direction of the maximum increment of f at a given point. For
instance, assuming f is the function that maps every point in space
with a given pressure, then the gradient will indicate the direction in
which pressure will change more quickly from any point (x, y, z).

�Practical Problem: Linear SVM in C#
To develop our Linear SVM, we will create a class named

LinearSvmClassifier that has the following fields or properties

(Listing 9-1).

Listing 9-1.  Properties and Fields of Our Linear SVM

public class LinearSvmClassifier

{

 public List<TrainingSample>TrainingSamples{ get; set; }

 public double[] Weights;

 public double Bias;

 public List<Tuple<double, double>>SetA{ get; set; }

 public List<Tuple<double, double>>SetB{ get; set; }

 �public List<Tuple<double, double>> Hyperplane

{ get; set; }

 private readonlydouble[] _alphas;

public intModelToUse = 1;

Chapter 9 Support Vector Machines

329

public LinearSvmClassifier(IEnumerable<TrainingSample>training

Samples)

 {

TrainingSamples = new List<TrainingSample>(trainingSamples);

 �Weights = new double[TrainingSamples.First().

Features.Length];

SetA = new List<Tuple<double, double>>();

SetB = new List<Tuple<double, double>>();

 Hyperplane = new List<Tuple<double, double>>();

 _alphas = new double[TrainingSamples.Count];

 }

}

public class TrainingSample

{

 public int Classification { get; set; }

 public double[] Features { get; set; }

 �public TrainingSample(double [] features, int

classification)

 {

 Features = new double[features.Length];

Array.Copy(features, Features, features.Length);

 Classification = classification;

 }

 }

Each property or field is described as follows:

•	 TrainingSamples: list of TrainingSample objects;

each object represents a data point accompanied by

its classification. The TrainingSample class illustrated

in Listing 9-1 merely consists of a Features array of

doubles and an integer Classification.

Chapter 9 Support Vector Machines

330

•	 Weights: double array representing the weights in an

SVM model

•	 Bias: double value representing the bias or intercept in

an SVM model

•	 SetA: list of Tuple<double, double> representing

points in the training data that satisfy wx + b >= 1. It’s

only used in the prediction stage.

•	 SetB: list of Tuple<double, double> representing

points in the training data that satisfy wx + b <= -1. It’s

only used in the prediction stage.

•	 Hyperplane: list of Tuple<double, double>

representing points in the training data that satisfy

wx + b = 0; i.e., points that lie in the hyperplane. It’s

only used in the prediction stage.

•	 _alphas: array of doubles representing the alphas in

the dual problem in SVMs

•	 ModelToUse: determines the training method used

during the training phase of our SVM

The Training() method where we encoded the dual-optimization

problem is illustrated in Listing 9-2. We are using the Accord.NET library

as an optimization tool for solving the SVM model. You can download

Accord.NET from Nuget via the web or by using the Nuget Package

Manager provided by Visual Studio.

Chapter 9 Support Vector Machines

331

Listing 9-2.  Training() Method Where We Model the Dual-

Optimization Problem Using Accord.NET

public void Training()

{

var coefficients = new Dictionary<Tuple<int, int>, double>();

ModelToUse = 1;

 for (vari = 0; i<TrainingSamples.Count; i++)

 {

 for (var j = 0; j <TrainingSamples.Count; j++)

coefficients.Add(new Tuple<int, int>(i, j),

 -1 * TrainingSamples[i].

Classification * TrainingSamples[j].Classification *

TrainingSamples[i].Features.Dot(TrainingSamples[j].Features));

 }

var q = new double[TrainingSamples.Count, TrainingSamples.Count];

q.SetInitValue(coefficients);

 // This variable contains (1, 1, ..., 1)

var d = Enumerable.Repeat(1.0, TrainingSamples.Count).ToArray();

var objective = new QuadraticObjectiveFunction(q, d);

 // sum(ai * yi) = 0

var constraints = new List<LinearConstraint>

 {

 new LinearConstraint(d)

 {

VariablesAtIndices=Enumerable.Range(0, TrainingSamples.Count).

ToArray(),

ShouldBe = ConstraintType.EqualTo,

 Value = 0,

Chapter 9 Support Vector Machines

332

CombinedAs = TrainingSamples.Select(t =>t.Classification).

ToArray().ToDouble()

 }

 };

// 0 <= ai

 for (vari = 0; i<TrainingSamples.Count; i++)

 {

constraints.Add(new LinearConstraint(1)

 {

VariablesAtIndices = new[] { i },

ShouldBe = ConstraintType.GreaterThanOrEqualTo,

 Value = 0

 });

 }

var solver = new GoldfarbIdnani(objective, constraints);

 if (solver.Maximize())

 {

var solution = solver.Solution;

UpdateWeightVector(solution);

UpdateBias();

 }

 else

Console.WriteLine("Error ...");

 }

To solve the optimization problem, we’ll be making use of the

constraint-optimization problem solver GoldfarbIdnani; this and

many others can be found in the Accord.NET library. There exist

different ways to specify the objective function and constraints in the

constructor of the GoldfarbIdnani class; in this case we have opted

Chapter 9 Support Vector Machines

333

to indicate the objective as a QuadracticObjectiveFunction class

and the set of constraints as instances of the LinearConstraint class.

The QuadracticObjectiveFunction, which represents the objective

function, was declared by specifying the Hessian matrix of the

objective function and the vector of linear terms. As we can see from

Listing 9-2, the Training() method starts by storing a set of values

into a Dictionary<Tuple<int, int>, double>, where the first item

(Tuple<inti, int j>) indicates the variables i, j to which the coefficient

belongs in the Hessian matrix.

Note T he Hessian matrix H of a function f of n variables is an n x n
matrix containing the second derivatives of f with respect to each of
the n variables. We can say that f is convex if and only if H is positive
semidefinite; i.e., all its eigenvalues are positive.

The Hessian of the objective function with respect to variables αi has

the following form:

- éë ùû1* y y x xi j i j mxm

This matrix is negative semidefinite, which indicates that our problem

is concave, not convex. If H is positive semidefinite our problem is convex,

meaning any optimizer that converges to a local minimum will converge

to a global minimum because the two sets of minima coincide for convex

problems. Moreover, this can be accomplished in polynomial time and

can exploit the quadratic structure of the problem; therefore, it will be fast

in practice. On the contrary, if H has at least one negative eigenvalue then

your problem is nonconvex. When H has at least one negative eigenvalue,

the problem is known to be NP-hard.

The set of linear constraints is easily defined in the Training() method

using Accord.NET objects and properties, which are self-explanatory;

Chapter 9 Support Vector Machines

334

the only property that could raise some doubts is the CombineAs property

of the LinearConstraint object. CombineAs allows us to indicate

the scalar coefficients accompanying the variables specified in the

VariablesAtIndices property, in this case αiyi.

The UpdateWeightVector() and UpdateBias() methods shown in

Listing 9-3 are in charge of updating the weight vector and bias according

to the formulas previously described.

Listing 9-3.  Methods for Updating Weights and Bias of the

Classifying Hyperplane

private void UpdateWeightVector(double [] alphas)

 {

varlen = TrainingSamples.First().Features.Length;

 for (vari = 0; i<len; i++)

 {

 for (var j = 0; j <TrainingSamples.Count; j++)

 �Weights[i] += TrainingSamples[j].

Classification*alphas[j]*

TrainingSamples[j].Features[i];

 }

 }

 private void UpdateBias()

 {

var x = TrainingSamples.First().Features;

 Bias = 1;

 for (vari = 0; i<x.Length; i++)

 Bias -= Weights[i] * x[i];

}

Chapter 9 Support Vector Machines

335

There’s one final method used within the Training() method that

must be explained: the SetInitValue() method, which belongs to an

extension class that we created to simplify the code and avoid unnecessary

loops and ideas that do not correspond to the core functionality of the

methods that actually use them. This extension class, along with its

methods, is illustrated in Listing 9-4.

Listing 9-4.  Class with Extension Methods

 public static class ArrayDoubleExtended

 {

 �public static void SetInitValue(this double[,] q,

Dictionary<Tuple<int, int>, double> coefficients,

double epsilon = 0.000001)

 {

 for (vari = 0; i<q.GetLength(0); i++)

 {

 for (var j = 0; j <q.GetLength(1); j++)

 {

q[i, j] = coefficients[new Tuple<int, int>(i, j)];

 if (i == j)

q[i, j] -= epsilon;

 }

 }

 }

 �public static IEnumerable<int>GetIndicesFromValues(this

double [] toCompare, params double [] values)

 {

var result = new List<int>();

 for (vari = 0; i<toCompare.Length; i++)

 if (values.Contains(toCompare[i]))

result.Add(i);

Chapter 9 Support Vector Machines

336

 return result;

 }

 �public static IEnumerable<double>RoundValues(this

double [] list, int decimals)

 {

var result = new double[list.Length];

 for (vari = 0; i<list.Length; i++)

 result[i] = Math.Round(list[i], decimals);

 return result;

 }

 }

The SetInitValue() method fills the values of the Hessian matrix with

those of the coefficient dictionary formerly explained. Note the epsilon

value decrementing every value in the main diagonal by a tiny quantity.

This is necessary since our function is not convex; therefore, we alter these

values just a little bit, looking to change it into a positive semidefinite

matrix. We must later consider the numerical error that will derive from

this twist. The GoldfarbIdnani solver will not give us a solution if the

matrix does not satisfy this condition.

The GetIndicesFromValues() method saves indices of the values

contained in both arrays, and RoundValues() rounds an array of values by

the number of decimals indicated. Finally, the Predict() method is shown

in Listing 9-5.

Listing 9-5.  Predict() Method

public void Predict(IEnumerable<double[]>elems)

{

varroundWeights = Weights.RoundValues(2).ToArray();

varroundBias = new [] {Bias}.RoundValues(2).ToArray();

Chapter 9 Support Vector Machines

337

foreach (var e in elems)

 {

var @class = Math.Sign(e.Dot(roundWeights) + ModelToUse *

roundBias.First());

 if (@class >= 1)

SetA.Add(new Tuple<double, double>(e[0], e[1]));

 else if (@class <= -1)

SetB.Add(new Tuple<double, double>(e[0], e[1]));

 else

Hyperplane.Add(new Tuple<double, double>(e[0], e[1]));

 }

}

In the Predict() method, we start by rounding the weights and bias

values, then for each element or new data point we get its class by using

the hyperplane equation that is well known to us already (wx + b). If

its class is greater than or equal to 1 we add it to SetA; if it’s less than or

equal to -1 we add it to SetB; otherwise it must be that wx + b = 0 and so it

belongs to the classifying hyperplane.

In order to test our hyperplane equation and see how well it separates

or classifies our data points, we have created a Windows Forms application

that uses the OxyPlot library to plot the graphic. You can obtain OxyPlot via

the web on Nuget or by using the Nuget Package Manager included with

Visual Studio. Listing 9-6 shows the SvmGui class of our Windows Forms

application.

Listing 9-6.  SvmGui Windows Forms Class Where We Plot the

Results Obtained

public partial class SvmGui : Form

 {

 private readonlyMainViewModel _plot;

Chapter 9 Support Vector Machines

338

 �public SvmGui(double [] weights, double bias, int

model, IEnumerable<Tuple<double, double>>setA,

IEnumerable<Tuple<double, double>>setB,

IEnumerable<Tuple<double, double>> hyperplane = null)

 {

InitializeComponent();

 �_plot = new MainViewModel(weights, bias, model,

setA, setB, hyperplane);

var view = new OxyPlot.WindowsForms.PlotView

 {

 Width = Width,

 Height = Height,

 Parent = this,

BackColor = Color.WhiteSmoke,

 Model = _plot.Model

 };

 }

 }

As we can see, the class is very simple; we just need to create a

PlotModel, which is done by the MainViewModel class, and a PlotView

that displays this model. The MainViewModel class is illustrated in

Listing 9-7.

Listing 9-7.  MainViewModel Class Where the Model to Be Plotted Is

Created

public class MainViewModel

 {

 public PlotModel Model { get; set; }

Chapter 9 Support Vector Machines

339

 �public MainViewModel(double[] weights, double

bias, int model, IEnumerable<Tuple<double,

double>>setA, IEnumerable<Tuple<double, double>>setB,

IEnumerable<Tuple<double, double>> hyperplane = null)

 {

 Model = new PlotModel{ Title = "SVM by SMO" };

varscatterPointsA = setA.Select(e => new ScatterPoint(e.Item1,

e.Item2)).ToList();

varscatterPointsB = setB.Select(e => new ScatterPoint(e.Item1,

e.Item2)).ToList();

var h = new List<ScatterPoint>();

 if (hyperplane != null)

 �h = hyperplane.Select(e => new ScatterPoint

(e.Item1, e.Item2)).ToList(); ;

varscatterSeriesA = new ScatterSeries

 {

MarkerFill = OxyColor.FromRgb(255, 0, 0),

ItemsSource = scatterPointsA,

 };

varscatterSeriesB = new ScatterSeries

 {

MarkerFill = OxyColor.FromRgb(0, 0, 255),

ItemsSource = scatterPointsB

 };

varscatterSeriesH = new ScatterSeries

 {

MarkerFill = OxyColor.FromRgb(0, 255, 255),

ItemsSource = h

 };

Chapter 9 Support Vector Machines

340

Model.Series.Add(scatterSeriesA);

Model.Series.Add(scatterSeriesB);

Model.Series.Add(scatterSeriesH);

Model.Series.Add(GetFunction(weights, bias, model));

 }

 �public FunctionSeriesGetFunction(double [] w, double b,

int model)

 {

const int n = 10;

var series = new FunctionSeries();

 for (var x = 0.0; x < n; x += 0.01)

{

for (var y = 0.0; y < n; y += 0.01)

{

 //adding the points based x,y

varfunVal = GetValue(x, y, w, b, model);

 if (Math.Abs(funVal) <= 0.001)

series.Points.Add(new DataPoint(x, y));

 }

 }

 return series;

 }

 �public double GetValue(double x, double y, double [] w,

double b, int model)

 {

 w = w.RoundValues(5).ToArray();

 b = new [] {b}.RoundValues(5).ToArray().First();

 return w[0] * x + w[1] * y + model * b;

 }

 }

Chapter 9 Support Vector Machines

341

The constructor of the class receives all necessary values (weights, bias,

etc.) and creates different scatter-point series: one for points satisfying

wx + b >= 1, another for points satisfying wx + b <= -1, and lastly one for

points in the hyperplane—those that satisfy wx + b = 0. Additionally, the

GetFunction() method plots the line corresponding to the hyperplane.

Note that in this case we are considering the numeric error introduced

by adding epsilon to values in the main diagonal of the Hessian matrix;

therefore, we accept as hyperplane points those that yield a class value

less than or equal to 0.001. The GetValue() method finds the class of the

incoming data using our RoundValues() extension method.

We can run the code from a console application as shown in

Listing 9-8.

Listing 9-8.  Console Application Where Our SVM Will Be Created

and Executed

vartrainingSamples = new List<TrainingSample>

 {

 �new TrainingSample(new

double[] {1, 1}, 1),

 �new TrainingSample(new

double[] {1, 0}, 1),

 �new TrainingSample(new

double[] {2, 2}, -1),

 �new TrainingSample(new

double[] {2, 3}, -1),

 };

varsvmClassifier = new LinearSvmClassifier(trainingSamples);

svmClassifier.Training();

Chapter 9 Support Vector Machines

342

svmClassifier.Predict(new List<double[]>

 {

 new double[] {1, 1},

 new double[] {1, 0},

 new double[] {2, 2},

 new double[] {2, 3},

 new double[] {2, 0},

 new [] {2.5, 1.5},

 new [] {0.5, 1.5},

 });

Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

Application.Run(new SvmGui(svmClassifier.Weights,

svmClassifier.Bias, svmClassifier.ModelToUse, svmClassifier.

SetA, svmClassifier.SetB, svmClassifier.Hyperplane));

Once we execute the preceding code, the result obtained can be seen

in Figure 9-6.

Chapter 9 Support Vector Machines

343

So far we have assumed that the set is linearly separable, but what if

it’s not, or what if there’s no perfect separation between the two classes?

These concerns will be the main topic of the following sections, where

we’ll examine the non-linearly separable case of SVMs and the imperfect

separation case.

�Imperfect Separation
In some cases finding the optimal classifying hyperplane as we have

considered it thus far is not the most suitable option. For instance,

Figure 9-7 illustrates the effect an outlier point has on deciding the optimal

classifying hyperplane. The single red point on the upper-left corner of the

right graphic is causing the hyperplane to significantly swing, changing its

direction and resulting in a much smaller margin than the one on the left

graphic.

Figure 9-6.  Plot showing the classifying hyperplane and points on
one side and the other

Chapter 9 Support Vector Machines

344

In order to make the algorithm sensitive to outliers and accept some

misclassifications for the greater good (finding a hyperplane with a

considerable margin), we’ll change the formulation of the primal problem

and introduce a set of slack variables and a constant C that will control

how the misclassification will be handled.

The new formulation of the primal problem is the following:

min

:

,w b
i

m

i

i i i

i

w
C

subject to y wx b

i m

2

1

0 1

2

1

+

+() ³ -
³ = ¼

=
åx

x
x

A direct result of this reformulation is that training data is now

permitted to have a margin of less than 1, and whenever a training data

has a functional margin of 1 − ξi (ξ > 0), that cost or penalization is paid

at the objective function, which is increased by C * ξi. The parameter C

controls the relative weighting between the goals of making ||w||2 small

(as we examined earlier, this makes the margin large) and ensuring that

most training data will have a margin of at least 1.

Figure 9-7.  Left and right graphics show the effect caused by an
outlier on the optimal classifying hyperplane

Chapter 9 Support Vector Machines

345

Seeking to reach the dual form again, we introduce the Lagrangian

form and set the derivatives with respect to w and b to zero again. We will

skip the full calculation, which is left to the reader; the final result would be

the following:

max , ,

.

,
a

a a a a

a

L w b y y x x

s t y

i

m

i
i j

m

i j i j i j

i

m

i i

() = -

=

£

= =

=

å å

å

1 1

1

1

2

0

0 aai C i m£ = ¼1,

As we can see, the dual form of the reformulated problem is basically

the same as before; the only difference lies in the fact that the previous

ai ³ 0 constraint is now the box constraint 0 £ £ai C . The calculation of b

also changes; we’ll see it shortly when we examine the SMO algorithm.

Note T he reformulated problem is known as the soft-margin
SVM as opposed to the hard-margin SVM described before. For a
soft-margin SVM, we allow training data to lie inside the margin, or to
be misclassified, and we want the overall error measured by the sum
of slack variables to be minimized.

�Non-linearly Separable Case: Kernel Trick
Up to this point, we have assumed the training data set to be linearly

separable, but what happens when neither the training data set nor the

function being learned have a linear structure? This scenario is illustrated

in Figure 9-8.

Chapter 9 Support Vector Machines

346

As the reader can verify, there’s no possible way to divide the two

classes (red and blue points) in the graphic using a hyperplane. What’s

the solution in this scenario? The SVM solution is to map or transform the

training data into a higher, richer space; find a classifying hyperplane in

that higher space and then transform the result back to the original space.

The mapping is accomplished through a feature mapping function that

goes from the original space (R2 in the previous example) to a higher space

(R3), thus increasing the dimensionality of the data (Figure 9-9).

Figure 9-9.  Data mapped from 2D space into 3D space

Figure 9-8.  Non-linear case

Chapter 9 Support Vector Machines

347

For instance, a polynomial feature mapping j : R R2 3® would

transform the data as follows:

x y x xy y, , * ,()®()2 22

The decision function would now change its formulation to adjust to

the new dimension of data as follows:

f x w x b() = × () +j

One problem with this approach is that the dimensionality of φ(x) can

get very large on some occasions; this would complicate the quadratic

problem to be solved and also the explicit representation of w. Fortunately

for us, sections ago we obtained the dual form of the problem in terms

only of αi and as an alternative for expressing w; hence, the new decision

equation or classifying hyperplane equation can be stated as follows:

f x x x b
i

m

i i() = ()× +
=
å

1

a j

In this context, we say that K (x x x xi i,)= ()× ()j j is a kernel function;

this function will replace any inner product we may have in our

formulation. The key point when using kernel functions is that the cost of

computing their value can be significantly lower when compared to the

cost of computing or even representing φ(x); computing a kernel function

does not imply computing φ(x).

The polynomial kernel for instance, follows the formula shown here:

K x x x x
d

, ¢ ¢() = × +()1

Chapter 9 Support Vector Machines

348

The reader can verify that computing this kernel will be far more efficient

than computing explicitly j jx xi() × () , especially for large dimensions.

Another relevant kernel is the Gaussian kernel, which is defined as

K x x e x x¢() = - - ¢
, /

2 22s

where s > 0 , and it’s chosen by the user. Intuitively, if φ(x) and φ(z) are

close together, we might expect K (¢ = ¢() × ()x x x x,) j j to be large. On the

other hand, if φ(x ') and φ(x) are far apart (nearly orthogonal to each other)

then K (¢ = ¢() × ()x x x x,) j j will be small. Thus, we can think of K (¢x x,) as

some measurement of how similar φ(x ') and φ(x) are, or of how similar x '

and x are.

The application of kernels is not reduced to SVMs. On the contrary, it

has a much broader application in the area of artificial intelligence. Any

learning algorithm that computes inner products can have them replaced

by kernel functions, thus allowing a much more efficient way of working

with higher-dimensional feature spaces.

Note N ot every function can be regarded as a kernel. It has been
proven (Mercer’s theorem) that a sufficient and necessary condition
for a function to be considered a kernel is that its kernel matrix K be
symmetric positive semidefinite. The kernel matrix associated with
a training data set of m vectors is a square m x m matrix containing
every possible combination of values Kij = K(xi, xj).

�Sequential Minimal Optimization
Algorithm (SMO)
The sequential minimal optimization (SMO) algorithm was proposed by

John Platt at Microsoft Research in 1998; at that time its purpose was to

introduce an efficient method for training an SVM. Consequently, SMO

Chapter 9 Support Vector Machines

349

avoids working with Quadratic Programming (QP) libraries and solves

the optimization problem by analytically solving a large number of small

optimization subproblems that involve any two Lagrange multipliers

previously selected using a heuristic.

Two mathematical results or theorems are basic for understanding

SMO’s functioning. First, the Karush-Kuhn-Tucker (KKT) conditions as

a generalization of Lagrange multipliers provide necessary, sufficient

conditions for determining whether a solution of an optimization problem

is optimal. Secondly, Osuna’s theorem proves that a large QP problem

can be broken down into a series of smaller QP subproblems. As long

as at least one example that violates the KKT conditions is added to the

examples for the previous subproblem, each step will reduce the overall

objective function and maintain a feasible point that satisfies every

constraint. Hence, a sequence of QP subproblems that always adds at

least one violator will guarantee convergence. Osuna’s theorem validates

SMO’s strategy of choosing only two multipliers when optimizing a QP

subproblem of the major QP problem. In general, SMO heavily relies on

the two previous results to justify its functioning.

Checking KKT conditions implies solving a system of equations where

the gradient of the objective function plus all constraints and Lagrange

multipliers are equal to zero. Having solved this system, which is left to the

reader as an exercise, you would have the following conditions for the αi to

be considered as an optimal solution:

a
a

a

i i i

i i i

i i i

y u

y u

C y u

= « ³
< < « =

= « £

0 1

0 1

1

C

In this case, ui is the output or classification provided by the SVM for

the ith training data. The geometric interpretations of these conditions are

presented in Table 9-1.

Chapter 9 Support Vector Machines

350

The SMO algorithm will terminate once all αi satisfy the previous

conditions to a certain, predefined tolerance, which is usually 10 3- .

Note I n Platt’s original paper he assumed the formula for the
classifying hyperplane to be wx - b instead of wx + b. Also, instead of
maximizing the objective function f(x) of the dual problem described
in this chapter, he minimized -f(x); we know that’s equivalent to our
maximization problem because min f(x) = max -f(x).

As described earlier, the algorithm optimizes two αi at a time. First of

all, and following Osuna’s theorem, we must search for an αi that violates

KKT conditions; let this αi be α2. Then, using a heuristic, another αi—let it

be α1—is also found. The first multiplier (α2) is typically taken from the set

of unbound multipliers (those that satisfy 0 < <ai C).

Table 9-1.  Geometric Interpretation of Lagrange Multiplier Values

and KKT Conditions

Value Interpretation

ai = 0 i th training data is correctly classified; might lie on the margin.

0 < <ai C i th training data is correctly classified and lies on the margin

(support vector).

ai C= Three cases may arise in this scenario; either the i th training data is

correctly classified and lies on the margin, or the i th training data is

correctly classified and lies between the classifying hyperplane and

the margin, or the i th data training is incorrectly classified because

it is probably an outlier.

Chapter 9 Support Vector Machines

351

Once we have selected α2, the second multiplier α1 is chosen to

maximize E E1 2- , where E f x yi i i= ()- is the error committed by the SVM

when correctly classifying the ith training data. This is the heuristic we

mentioned before and is supposed to speed up the procedure. If we can’t

find such α1 then we randomly choose an unbound training data point. If

that also fails then we randomly choose any training data, and if that fails

we reselect α2.

After choosing α1 , α2 the rest of the algorithm is reduced to updating

these values. To carry out such an update we must guarantee that every αi

respects the constraints of the problem; i.e., 0 < <ai C and
i

m

i iy
=
å =

1

0a .

Since Osuna’s theorem allows us to focus only on the QP subproblem

composed of α1 , α2 we must guarantee at each time that both Lagrange

multipliers satisfy the following constraints:

0 1 2

1 1 2 2

< <
+ =
a a

a a
, C

y y k

The constraints that α1, α2 must satisfy can be graphically represented

in a two-dimensional space as illustrated in Figure 9-10.

Chapter 9 Support Vector Machines

352

In order to maintain both α1, α2 in the constraint box and respect the

linear constraint we must establish low (L) and high (H) bound values. If

y1 ≠ y2 it can be proven that the following bounds apply to α2:

L

H C C

= -()
= + -()
max ,

min ,

0 2 1

2 1

a a

a a

Figure 9-10.  Case a) occurs when y1 ≠ y2; case b) occurs when y1 = y2

Chapter 9 Support Vector Machines

353

If y1 = y2 then the line changes direction; therefore,

L C

H C

= + -()
= +()
max ,

min ,

0 2 1

2 1

a a

a a

Thus, the updated α2—let’s call it α2
new, and we’ll soon see how to

compute it—after being calculated must be clipped against these bounds,

and its clipped value would be as follows:

a

a

a a

a
2

2

2 2

2

new clipped

new

new new

new

, =

ì

í
ï

î
ï

³

< <

£

H if H

if L C

L if L

Once we have obtained a final, clipped (if necessary) value for α2
new we

can easily obtain α1
new using the equation of the linear constraint as shown

in the next lines. In the α1
new formula s y y= 1 2 is a value introduced with

the single purpose of clearing α1
new from the following linear constraint

equation:

a a a a1 1 2 2
new new clippeds= + -(),

Up to this point we have gathered almost every piece of the SMO

algorithm. Still, we are missing one very important component—the

learning rule or update rule for α2. Recall the objective function we want to

optimize is as follows:

min , ,

.

,
a

a a a a

a

L w b y y K x K x

s t

i j

m

i j i j i j
i

m

i

i

m

i

() = () () -
= =

=

å å

å

1

2 1 1

1

yy

C i m

i

i

=

£ £ = ¼

0

0 1a ,

Chapter 9 Support Vector Machines

354

Note that this is the same problem we defined before but includes the

kernel function K in the formulation and changes the objective from max

f(x) to min -f(x). This is the exact formulation solved in Platt’s paper.

The expression for the update rule of α2 is derived from the objective

function by rewriting it in terms of α1,  α2, then in terms of α2 only (using the

linear constraint equation), fixing all other αi and finding the minimum of

this rewritten objective by calculating its second derivative with respect to

α2. Rewriting it in terms of α1,  α2 and fixing any other αi term as a constant

would yield the following:

1

2

1

211 1
2

22 2
2

12 1 2 1 1 1 2 2 2 1 2K K sK v y v y Pa a a a a a a a+ + + + - - +

where K K x x v y K v yij i j i
j

m

j j ij= () =
=
å, , ,

3
1 1 1a a is the term that relates α1 with

all other variables, and equivalently v2y2α2 is the term that relates α2 with all

other variables. P is a constant representing the terms related to all other

αi. Using the linear constraint equation in the form

a a1 2

1 2

+ =
=
s w

s y y

allows us to clear out α1 from our rewritten equation and merely view it in

terms of α2.

1

2

1

211 2

2

22 2
2

12 2 2

1 1 2 2 2 2

K w s K sK w s

v y w s v y

w

-() + + -()

+ -()+
- -

a a a a

a a

ss Pa a2 2() - +

To find an expression of the minimum of the previous formulation, we

find its second derivative with respect to α2, which is the following:

K K K s K K w y v v s11 22 12 2 11 12 2 1 22 1+ -() = -() + -()+ -a

Chapter 9 Support Vector Machines

355

This takes into consideration that

v y K u b y K y Ki
j

m

j j ij i i i= = + - -
=
å

3
1 1 1 2 2 2a a a* * *

In the previous equation, every variable that has a subscript identifies

its corresponding optimal value.

By substituting vi and w in the second derivative formula and

readjusting the terms we will finally obtain the update rule for α2:

a a2 2
2 1 2

11 22 122
new y E E

K K K
= +

-()
+ -

where E u yi i i= - and K K K11 22 122+ - is known as the learning rate of the

SVM.

One last step before diving into the implementation of the SMO

algorithm is the calculation of the bias. We already know how to compute

w, but what about the bias b? The bias will be computed as follows:

b E y K y K b

b E y

new new clipped

n

1 1 1 1 1 11 2 2 2 12

2 2 1 1

= + -() + -() +

= +

a a a a

a

,

eew new clippedK y K b-() + -() +a a a1 12 2 2 2 22
,

A mean of these values is calculated, so the final bias can be computed

as follows:

b b b= +()1 2 2/

In case none of the αi were clipped, it’s guaranteed that b b b= =1 2 . The

new value for b is computed at the end of each step of the SMO algorithm.

Having described every theoretical piece in detail, let’s now look at the

implementation of the algorithm in C#.

Chapter 9 Support Vector Machines

356

�Practical Problem: SMO Implementation
The C# algorithm we’ll describe in this section narrowly follows Platt’s

pseudocode seen in the original paper published in 1998. First, the access

point to the algorithm is the TrainingBySmo() method shown in Listing 9-9;

this is where the first αi is selected. Also shown in Listing 9-9 is a tiny

update that we need to do on our LinearSvmClassifier class, the one

presented in previous sections and where the SMO algorithm will be

embedded. This update consists of adding constant values C, Epsilon, and

Tolerance as class properties or fields; additionally, every SMO-related

method will be eventually added as well.

Listing 9-9.  Start Point of the SMO Algorithm Where We Search for

the First Lagrange Multiplier

public class LinearSvmClassifier

{

 private const double C = 0.5;

 private const double Epsilon = 0.001;

 private const double Tolerance = 0.001;

 ...

}

 public void TrainingBySmo()

 {

varnumChanged = 0;

varexamAll = true;

ModelToUse = -1;

 while (numChanged> 0 || examAll)

 {

Chapter 9 Support Vector Machines

357

numChanged = 0;

 if (examAll)

 {

 for (vari = 0; i<TrainingSamples.Count; i++)

numChanged += ExamineExample(i) ?1 : 0;

 }

 else

 {

var subset = _alphas.GetIndicesFromValues(0, C);

foreach (vari in subset)

numChanged += ExamineExample(i) ?1 : 0;

 }

 if (examAll)

examAll = false;

 else if (numChanged == 0)

examAll = true;

 }

 }

The TrainingBySmo() method declares two variables that will aid it

in finding the two Lagrange multipliers: numChanged and examAll. The

first, an integer variable, contains the number of unbound Lagrange

multipliers suitable to accompany the first selected Lagrange multiplier

α2 to be optimized. If no unbound multiplier can be found, then examAll

turns True, meaning all training data must be examined in the next loop

execution.

The ExamineExample() method illustrated in Listing 9-10 starts by

checking whether the given multiplier (α2) violates the KKT conditions by

more than the predefined tolerance value. Assuming it does, it then looks

for the second Lagrange multiplier and jointly optimizes them by calling

the TakeStep() method.

Chapter 9 Support Vector Machines

358

Listing 9-10.  The ExamineExample() Method Looks for a Second

Lagrange Multiplier and Jointly Optimizes Them by Calling the

TakeStep() Method

 private bool ExamineExample(int i1)

 {

varyi = TrainingSamples[i1].Classification;

varai = _alphas[i1];

varerrorI = LFunctionValue(i1) - yi;

varri = yi * errorI;

 if ((ri< -Tolerance &&ai< C) ||

 (ri> Tolerance &&ai> 0))

 {

 for (var i2 = 0; i2 <TrainingSamples.Count; i2++)

 if (TakeStep(i1, i2))

 return true;

 }

 return false;

 }

The TakeStep() method (Listing 9-11) receives as arguments the

indices of the two selected Lagrange multipliers.

Listing 9-11.  The TakeStep() Method Jointly Optimizes the Two

Lagrange Multipliers

 private bool TakeStep(inti, int j)

 {

 if (i == j)

 return false;

Chapter 9 Support Vector Machines

359

varyi = TrainingSamples[i].Classification;

varyj = TrainingSamples[j].Classification;

 // Checking bounds on aj

var s = yi*yj;

varerrorI = LFunctionValue(i) - yi;

 // Computing L, H

var l = Math.Max(0, _alphas[j] + _alphas[i] * s - (s + 1) / 2 * C);

var h = Math.Min(C, _alphas[j] + _alphas[i] * s - (s - 1) / 2 * C);

 if (l == h)

 return false;

 double newAj;

 // Obtaining new value for aj

var k12 = Kernel.Polynomial(2, TrainingSamples[i].Features,

TrainingSamples[j].Features);

var k11 = Kernel.Polynomial(2, TrainingSamples[i].Features,

TrainingSamples[i].Features);

var k22 = Kernel.Polynomial(2, TrainingSamples[j].Features,

TrainingSamples[j].Features);

var eta = 2*k12 - k11 - k22;

varerrorJ = LFunctionValue(j) - yj;

 if (eta < 0)

 {

newAj = _alphas[j] - TrainingSamples[j].

Classification*(errorI - errorJ)/eta;

 if (newAj< l)

newAj = l;

 else if (newAj> h)

newAj = h;

}

Chapter 9 Support Vector Machines

360

else

 {

var c1 = eta/2;

var c2 = yj * (errorI - errorJ) - eta * _alphas[j];

varlObj = c1*Math.Pow(l, 2) + c2*l;

varhObj = c1*Math.Pow(h, 2) + c2*h;

if (lObj>hObj + Epsilon)

newAj = l;

 else if (lObj<hObj - Epsilon)

newAj = h;

 else

newAj = _alphas[j];

 }

 �if (Math.Abs(newAj - _alphas[j]) < Epsilon *

(newAj + _alphas[j] + Epsilon))

 return false;

varnewAi = _alphas[i] - s * (newAj - _alphas[j]);

 if (newAi< 0)

 {

newAj += s*newAi;

newAi = 0;

 }

 else if (newAi> C)

 {

newAj += s * (newAi - C);

newAi = C;

 }

Chapter 9 Support Vector Machines

361

 // Updating bias & weight vector

UpdateBias(newAi, _alphas[i], newAj, _alphas[j], yi, yj,

errorI, errorJ, k11, k12, k22);

UpdateWeightVector(i, j, newAi, _alphas[i], newAj, _alphas[j],

yi, yj);

 _alphas[i] = newAi;

 _alphas[j] = newAj;

 return true;

 }

If the TakeStep() method achieves an optimization on both

Lagrange multipliers, then it returns True; otherwise, it returns False. The

LFunctionValue() and Kernel.Polynomial() methods are presented in

Listing 9-12. The first calculates the value of the objective function and the

latter is a static method of the Kernel class representing the polynomial

kernel. This class is intended to contain all kernel functions; since the

inner product is supposed to be a kernel function it has also been added to

this class.

Listing 9-12.  LFunctionValue() Method, Which Calculates the Value

of the Objective Function and the Kernel Class

private double LFunctionValue(inti)

{

var result = 0.0;

for (int k = 0; k <TrainingSamples[i].Features.Length; k++)

result += Weights[k] * TrainingSamples[i].Features[k];

 result -= Bias;

 return result;

}

Chapter 9 Support Vector Machines

362

public class Kernel

{

 �public static double Polynomial(double degree,

double [] v1, double [] v2)

 {

 return Math.Pow(InnerProduct(v1, v2) + 1, degree);

 }

 �private static double InnerProduct(double [] v1,

double [] v2)

 {

var result = 0.0;

 for (vari = 0; i< v1.Length; i++)

 result += v1[i]*v2[i];

 return result;

 }

}

To conclude, let’s present the methods in charge of updating the bias

and weight vector of the SVM (Listing 9-13).

Listing 9-13.  LFunctionValue() Method, Which Calculates the Value

of the Objective Function and the Kernel Class

private void UpdateBias(double newAi, double oldAi, double newAj,

 �double oldAj, double yi, double yj, double errorI,

double errorJ,

 double k11, double k12, double k22)

 {

 double b1, b2, bNew;

 if (newAi> 0 &&newAi< C)

Chapter 9 Support Vector Machines

363

bNew = Bias + errorI + yi*(newAi - oldAi)*k11 + yj*(newAj -

oldAj)*k12;

 else

 {

 if (newAj> 0 &&newAj< C)

bNew = Bias + errorJ + yi * (newAi - oldAi) * k12 + yj *

(newAj - oldAj) * k22;

 else

 {

 �b1 = Bias + errorI + yi * (newAi - oldAi) *

k11 + yj * (newAj - oldAj) * k12;

 �b2 = Bias + errorJ + yi * (newAi - oldAi) *

k12 + yj * (newAj - oldAj) * k22;

bNew = (b1 + b2)/2;

 }

 }

 Bias = bNew;

 }

private void UpdateWeightVector(inti, int j, double newAi,

double oldAi,

 double newAj, double oldAj, double yi, double yj)

 {

var t1 = yi * (newAi - oldAi);

var t2 = yj * (newAj - oldAj);

varobjI = TrainingSamples[i].Features;

varobjJ = TrainingSamples[j].Features;

 for (var k = 0; k <objI.Length; k++)

 Weights[k] += t1 * objI[k] + t2 * objJ[k];

 }

Chapter 9 Support Vector Machines

364

Now that we have the entire SMO algorithm implemented, let’s see the

result, or classifying hyperplane, obtained by this algorithm, using the same

graphical tool we used before (Windows Forms application, Figure 9-11).

A final question that has surely been on the reader’s mind throughout

this chapter is: How can I use SVMs for more than binary classification?

How can I classify or label a new incoming data from a set of n classes?

This problem, known as multi-class SVM, will not be addressed in detail

in this book as it gets into methods that ultimately use the binary SVM

classifier; we’ll just give a general overview of them.

There are a lot of methods for multi-class SVM classification. Two

classic options, which are not SVM specific, are:

•	 One-vs-All classification (OVA): Suppose you have

classes A, B, C, and D. Instead of doing a four-way

classification, we train four different binary classifiers:

Figure 9-11.  Classifying hyperplane obtained by our implementation
of the SMO algorithm

Chapter 9 Support Vector Machines

365

A vs. not(A), B vs. not(B), C vs. not(C), and D vs. not(D),

resulting in four hyperplanes. Then, for any new

incoming data, pick as class the hyperplane that gives

the maximum value when calculating wx + b.

•	 All vs All: Train all possible pairs of classifications.

Rank the classes by some factor (e.g., number of times

selected) and pick the best.

Multi-class SVMs remain an ongoing research issue, and most

methods proposed are typically constructed by combining several

binary classifiers. Some methods also consider all classes at once. As

it is computationally more expensive to solve multi-class problems,

comparisons of these methods using large-scale problems have not been

seriously conducted. Especially for methods solving multi-class SVMs in

one step, a much larger optimization problem is required, so up to now

experiments have been limited to small data sets.

This concludes our chapter on SVMs; it is now up to the reader to

evolve the C# SVM herein proposed and use it as an experimentation tool

or customize it to their needs.

�Summary
In this chapter, we described the very interesting topic of support vector

machines (SVMs) as optimization instruments oriented toward solving a

particular machine learning problem—the problem of classification. We

mainly focused on binary classification, even though in the last paragraphs

we briefly mentioned some multi-class methods. We showed how to

directly solve the dual-optimization problem of an SVM using the Accord

.NET library, and we also explained and implemented the sequential

minimal optimization (SMO) algorithm. We included a graphical

application developed in Windows Forms that used OxyPlot and allowed

us to display the hyperplane and data points of the problem.

Chapter 9 Support Vector Machines

367© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_10

CHAPTER 10

Decision Trees
Data mining is the process of discovering and extracting meaningful,

useful information (patterns) from large data sets. Numerous data-mining

techniques are inherited from AI, and particularly from machine learning

and its subfield of supervised learning; among these techniques lies the

classification technique.

Classification is a frequent task in data mining that solves a wide

range of real-world problems, such as fraud, spam mail checking, credit

scoring, bankruptcy prediction, medical diagnosis, pattern recognition,

multimedia classification, and so on. It is recognized as a powerful way for

companies to develop effective knowledge based on decision models to

gain competitive advantages. In the previous chapter, we studied our first

classifier, support vector machines. In this chapter, we’ll present a popular

classifier that presents us with a very intuitive way to classify a set of items:

the decision tree.

In this chapter, we’ll introduce decision trees (DTs) and describe their

purpose and how they achieve said purpose. We’ll present two of the

most popular algorithms for generating DTs, which are ID3 (Interactive

Dichotomizer 3) and C4.5, the latter being an extension of the first that

includes multiple significant improvements. Both ID3 and C4.5 were

developed by J. Ross Quinlan.

Additionally, and as we have done thus far, we’ll develop a graphical

application in Windows Forms using Microsoft Automatic Graph Layout to

graphically represent the DT obtained after executing our algorithm.

368

Note  Microsoft Automatic Graph Layout (MSAGL) is a .NET tool
for graph layout and viewing. It was developed in Microsoft by
Lev Nachmanson, Sergey Pupyrev, Tim Dwyer, and Ted Hart. Using
MSAGL, we can build trees and graphs, we can label edges and
nodes, and we can even define edge direction. On top of that, it offers
many other facilities that we invite readers to check out.

�What Is a Decision Tree?
A decision tree (DT) is a graphic representation of a decision-making

process that possesses high expressivity and can be easily interpreted

by humans. As occurs with support vector machines, DTs partition the

decision space into different classes using hyperplanes (Figure 10-1).

Figure 10-1.  Partition created using a DT

Chapter 10 Decision Trees

369

As a tree, a DT consists of a root node, multiple internal nodes, and

leaf nodes, which ultimately determine the classification of new incoming

data. Since DTs are data structures obtained from supervised learning

algorithms, these algorithms receive as input a set of training data and

output a function (DTs can be seen as multivariate functions) that

classifies new incoming data.

Unlike other algorithms like SVM or neural networks, DTs consider

and use the set of attribute names in the training data set because they

use them later to construct the tree. Every node in a DT is labeled with

some attribute name, and edges leaving that node are labeled with

the corresponding attribute values (assuming they are discrete and

categorical); leaf nodes are labeled with goal attribute values. Hence, the

set of attributes can be divided into non-goal and goal, where |goal| = 1.

Table 10-1 illustrates several attributes and their corresponding values.

Table 10-1.  Attributes and Their Values

Attribute Type Values

Outlook non-goal sunny, rainy, cloudy

Temperature non-goal warm, cold, temperate

Humidity non-goal high, normal

Wind non-goal strong, weak

Play Baseball Goal yes, no

Chapter 10 Decision Trees

370

A DT derived from applying a learning method such as ID3 that

uses the training data set presented in Table 10-2 could be the following

(Figure 10-2).

Table 10-2.  Training Data Set

Outlook Temperature Humidity Wind Play Baseball

sunny warm high weak no

sunny warm high strong no

cloudy warm high weak yes

rainy temperate high weak yes

rainy cold normal weak yes

rainy cold normal strong no

cloudy cold normal strong yes

sunny temperate high weak no

sunny cold normal weak yes

rainy temperate normal weak yes

sunny temperate normal strong yes

cloudy temperate high strong yes

cloudy warm normal weak yes

rainy temperate high strong no

An example of a training data set is shown in Table 10-2.

Chapter 10 Decision Trees

371

Once we have our DT, the question is, how do we classify new

incoming data? To classify new data we just need to traverse the tree and

match each attribute in the data vector with its corresponding value in the

incoming data vector. For instance, let’s assume x is a new incoming data

and

X = (cloudy, warm, normal, strong)

Then, seeking a classification for X, we start traversing the tree from the

root (Outlook). Because Outlook in X equals “cloudy”, we follow that edge

and end up in the leaf node “Yes,” which means Play Baseball = Yes under

X’s conditions or values.

Thus far, we know the purpose (classification) of DTs, we know what

they look like, and we know how to classify new data once we have it

(traversing the tree from the root, matching incoming data with attribute

names). In the next section, we’ll examine how to generate a DT, and

we’ll also identify some issues (such as overfitting) that could arise when

generating a DT.

Figure 10-2.  Graphic of a DT matching the training data from
Table 10-2 and created using MSAGL

Chapter 10 Decision Trees

372

Note  If we traverse a DT from the root to a leaf we obtain a set
of decision rules that describe the decision-making process; e.g.,
outlook = sunny and humidity = normal => play baseball = yes. Each
decision rule consists of a conjunction of statements.

�Generating a Decision Tree: ID3 Algorithm
Building an optimal decision tree is a key problem in supervised learning.

In general, multiple decision trees can be constructed from a given set

of attributes. While some of the trees are more accurate than others, the

problem of finding the optimal tree is computationally infeasible because

of the exponential size of the search space.

Most algorithms that have been developed for learning DTs are

variations of a core algorithm (Hunt’s) that employs a top-down, greedy

search through the space of possible decision trees. Hunt’s algorithm

grows a decision tree in a recursive fashion by partitioning the training

data set into sequentially more granular subsets. Assuming TrainingData

represents the current training data set (which considers only columns

matching non-goal attributes) at node N, then Hunt’s pseudocode would

follow the following steps:

	 1.	 In case TrainingData contains records that belong

all to the same class, C -> N will be a leaf node

labeled C.

	 2.	 In case TrainingData is an empty set, -> N will be

a leaf node labeled with the most frequent class C.

Remember, TrainingData only contains non-goal

attribute columns; thus, C is taken from the goal-

attribute column.

Chapter 10 Decision Trees

373

	 3.	 In case TrainingData contains records that belong

to more than one class, use a test to select an

attribute for splitting the data into smaller subsets

and continue recursively applying the same

procedure on each subset.

The ID3 algorithm uses the same idea as Hunt’s algorithm; as a matter

of fact, if we were to look at ID3’s pseudocode, it would be almost the same

as Hunt’s pseudocode. The main difference lies in the attribute-splitting

test. ID3 uses the concepts of information gain and entropy to select the

attribute with the highest information gain, and then, as occurs in Hunt’s

algorithm, creates a new node labeled with that attribute name. It then

creates edges going out of that new node, one for each value of the selected

attribute, and continues recursively in each new edge.

Note  Entropy and information gain are concepts drawn from
Information Theory, a scientific field that has its origins in a paper
published in 1948 by Claude Shannon, known as the Father
of the Information Age. It’s the science of operations on data
such as compression, storage, statistical signal processing, and
communication.

A significant point to consider when generating a DT is the size of

the training data set. Recall that learning can be seen as approximating

a function that best describes the training data set. This is not merely

something that occurs in the machine learning area but also in real

life with humans. When we learn to drive, we learn a function that is

being described to us through a set of data that someone (instructor) is

providing; data such as you cannot go over people, you cannot continue

on a red light, you must go by the indicated speed limit, you handle the

steering wheel this way, you brake using this device, and so forth. Making

Chapter 10 Decision Trees

374

use of this data, we eventually learn a procedure or function that allows

us to take an action or output (such as “stop,” “continue”) after receiving

inputs into our “drive” function (such as “red light” or “people on the

street”). Reasonably, the more quality data we receive the better we’ll be

able to learn an approximation of the function to which the training data

set belongs. In Figure 10-3 we can see a graphic that describes the relation

between the training data set size and the prediction quality offered by the

resulting DT. As mentioned before, the larger the size of the training data

set, the higher the chances are of correctly approximating the function to

which it belongs.

Figure 10-3.  Graphic describing how the prediction quality increases
as the training data set size also increases

In the following subsection we’ll examine the ideas behind the use of

entropy and information gain, two notions taken from Information Theory

that constitute the splitting criteria used in algorithms like ID3 and its

descendants.

Chapter 10 Decision Trees

375

�Entropy and Information Gain
Entropy is a measure of chaos and uncertainty; high entropy means high

disorder or chaos, while low entropy means low uncertainty or chaos

(Figure 10-4). The entropy function is usually denoted as H(x) where x is a

vector containing probabilities; i.e., x p p pn= ¼1 2, , , .

Figure 10-4.  Entropy function

Looking at Figure 10-4, we can see what happens when probabilities pi

are midway; i.e., approximately 0.5. In such a case, we have high entropy

(close to 1). Since there’s a high uncertainty on every pi, because their

probabilities are nearly 0.5 (or 50 percent chance), meaning they can

either occur or not uniformly (with the same probability), then the global

uncertainty or chaos will be also high. When each pi approximates 0 or

1 their entropy will be low because element probabilities indicate a low

or high chance of occurrence, hence reducing uncertainty. The entropy

function is the following:

Chapter 10 Decision Trees

376

H X H p p p pn
i

n

i i() = ¼[]() = - *
=
å1

1
2, , log

It satisfies the next set of properties:

	 1.	 H X H p pn() = ¼[]() ³1 0, , .

	 2.	 H X H p pn() = ¼[]() =1 0, , , if it exists some pi =1 .

	 3.	 H X H p p H
n nn() = ¼[]() £ ¼é
ëê

ù
ûú

æ

è
ç

ö

ø
÷1

1 1
, , , , , the greatest

entropy corresponds to the equis probable case.

	 4.	 H X H p p H p p .n n() = ¼[]() = ¼[]()1 10, , , , ,

Going back to the ID3 algorithm, our goal when splitting the tree

will be to select the attribute that achieves the greatest reduction in

entropy (disorder, chaos, uncertainty). How do we measure this expected

reduction? We use a concept drawn from Information Theory known as

information gain that has the following formula:

G S A H S
S

S
H S

v Values A

A v
A v,() = () - * ()

Î ()

=
=å

where S is the training data set for the current node in the DT, Values(A)

represents the set of values corresponding to attribute A, and SA v= is the

subset of S whose value for attribute A equals v.

Chapter 10 Decision Trees

377

Information gain can be defined as the expected reduction of entropy

in S due to sorting on attribute A. It answers the question, How well is the

resulting set going to be formed or ordered if we pick attribute A? Gain is

calculated as the entropy of the entire set S minus the summation of the

probability of A = v in S; i.e. (S

S
A v=), times the entropy of subset SA v= .

This is the test that ID3 uses in order to select an attribute for splitting

the tree, and it will select that attribute which provides the highest gain.

Now that we have gathered all the necessary pieces for building our ID3

algorithm, we’ll start diving, from the next section on, into implementation

issues and develop our ID3 method in C#.

Note  An ideal attribute would divide the training data set into
subsets that are all positive or all negative (with regards to the goal
attribute); i.e., that provide the maximum information gain.

�Practical Problem: Implementing the ID3 Algorithm
To begin the implementation of our ID3 algorithm, we’ll start by creating

two classes (Listing 10-1) to handle attributes and the training data set.

Listing 10-1.  Attribute and TrainingDataSet Classes

public class Attribute

{

 public string Name { get; set; }

 public string[] Values { get; set; }

 public TypeAttrib Type { get; set; }

 public TypeValTypeVal{ get; set; }

 �public Attribute(string name, string [] values,

TypeAttrib type, TypeValtypeVal)

Chapter 10 Decision Trees

378

 {

 Name = name;

 Values = values;

 Type = type;

TypeVal = typeVal;

 }

}

 public enumTypeAttrib

 {

 Goal, NonGoal

 }

 public enumTypeVal

 {

 Discrete, Continuous

 }

public class TrainingDataSet

 {

 public string [,] Values { get; set; }

 public Attribute GoalAttribute{ get; set; }

 public List<Attribute>NonGoalAttributes{ get; set; }

 �public TrainingDataSet(string [,] values,

IEnumerable<Attribute>nonGoal, Attribute goal)

 {

 �Values = new string[values.GetLength(0), values.

GetLength(1)];

 �Array.Copy(values, Values, values.GetLength(0) *

values.GetLength(1));

 NonGoalAttributes = new List<Attribute>(nonGoal);

GoalAttribute = goal;

Chapter 10 Decision Trees

379

 if (NonGoalAttributes.Count + 1 != Values.GetLength(1))

 �throw new Exception("Number of attributes must

coincide");

 }

 }

The Attribute class contains the following fields and properties:

•	 Name: property defining the name of the attribute

•	 Values: property defining the set of values for the

attribute

•	 Type: property defining the type of attribute, either goal

or non-goal

•	 TypeVal: property defining the type of value for the

attribute, either discrete or continuous. We’ll examine

continuous attributes when we look at the C4.5

algorithm.

The TrainingDataSet class includes the following properties and fields:

•	 Values: matrix detailing values of the training data set

•	 GoalAttribute: defines the goal attribute of the

training data set

•	 NonGoalAttribute: defines the set of non-goal

attributes

As we can see, the TrainingDataSet class feeds from the Attribute

class; a first piece of the DecisionTree class is shown in Listing 10-2.

Chapter 10 Decision Trees

380

Listing 10-2.  DecisionTree Class

public class DecisionTree

 {

 public TrainingDataSetDataSet{ get; set; }

 public string Value { get; set; }

 public List<DecisionTree> Children { get; set; }

 public string Edge { get; set; }

 public DecisionTree(TrainingDataSetdataSet)

 {

DataSet = dataSet;

 }

 �public static DecisionTreeLearn(TrainingDataSetdataSet,

DtTrainingAlgorithm algorithm)

 {

 if (dataSet == null)

 throw new Exception("Data Set cannot be null");

 switch (algorithm)

 {

 default:

 �return Id3(dataSet.Values, dataSet.

NonGoalAttributes, "root");

 }

 }

 public DecisionTree(string value, string edge)

 {

 Value = value;

 Children = new List<DecisionTree>();

 Edge = edge;

 }

Chapter 10 Decision Trees

381

 public void Visualize()

 {

var form = new Form();

 //create a viewer object

var viewer = new GViewer();

 //create a graph object

var graph = new Graph("Decision Tree");

 //create the graph content

CreateNodes(graph);

 //bind the graph to the viewer

viewer.Graph = graph;

 //associate the viewer with the form

form.SuspendLayout();

viewer.Dock = DockStyle.Fill;

form.Controls.Add(viewer);

form.ResumeLayout();

 //show the form

form.ShowDialog();

 }

 private void CreateNodes(Graph graph)

{

varqueue = new Queue<DecisionTree>();

queue.Enqueue(this);

graph.CreateLayoutSettings().EdgeRoutingSettings.

EdgeRoutingMode = EdgeRoutingMode.StraightLine;

var id = 0;

Chapter 10 Decision Trees

382

 while (queue.Count> 0)

 {

varcurrentNode = queue.Dequeue();

 Node firstEnd;

 �if (graph.Nodes.Any(n =>n.LabelText ==

currentNode.Value))

firstEnd = graph.Nodes.First(n =>n.LabelText == currentNode.Value);

 else

firstEnd = new Node((id++).ToString()) { LabelText =

currentNode.Value };

graph.AddNode(firstEnd);

foreach (vardecisionTree in currentNode.Children)

 {

varsecondEnd = new Node((id++).ToString()) { LabelText =

decisionTree.Value };

graph.AddNode(secondEnd);

graph.AddEdge(firstEnd.Id, decisionTree.Edge, secondEnd.Id);

queue.Enqueue(decisionTree);

 }

 }

 }

}

 public enumDtTrainingAlgorithm

 {

 Id3,

 }

This class contains the following properties:

•	 Dataset: This is the method receiving the training data

set as input and also the type of learning algorithm

used during the learning phase.

Chapter 10 Decision Trees

383

•	 Value: defines the value of the node representing the

root of this decision tree

•	 Children: defines the set of children for the current

decision tree

•	 Edge: defines, as a string, the label of the edge

connecting this node to its parent

Additionally, the DecisionTree class includes the following methods:

•	 Learn(): This is the method receiving the training data

set as input and also the type of learning algorithm

used during the learning phase.

•	 Visualize(): This method uses the MSAGL graphic

tool to visualize the resulting tree after the learning

phase is complete.

•	 CreateNodes(): This method executes a BFS algorithm

to traverse the decision tree created by the ID3

algorithm, and as it traverses it creates an equivalent

tree labeled using MSAGL facilities.

The ID3 algorithm and its supporting methods, all part of the

DecisionTree class, are illustrated in Figure 10-3.

Listing 10-3.  ID3 Algorithm

 �public static DecisionTree Id3(string [,] values,

List<Attribute> attributes, string edge)

 {

 // All training data has the same goal attribute

vargoalValues = values.GetColumn(values.GetLength(1) - 1);

 if (goalValues.DistinctCount() == 1)

 return new DecisionTree(goalValues.First(), edge);

Chapter 10 Decision Trees

384

 // There are no NonGoal attributes

 if (attributes.Count == 0)

 �return new DecisionTree(goalValues.

GetMostFrequent(), edge);

 �// Set as root the attribute providing the highest

information gain

varattrIndexPair = HighestGainAttribute(values, attributes);

varattr = attrIndexPair.Item1;

varattrIndex = attrIndexPair.Item2;

var root = new DecisionTree(attr.Name, edge);

foreach (var value in attr.Values)

 {

varsubSetVi = values.GetRowIndex(attrIndex, value,

ComparisonType.Equality);

 if (subSetVi.Count == 0)

root.Children.Add(new DecisionTree(goalValues.

GetMostFrequent(), value));

 else

 {

varnewAttrbs = new List<Attribute>(attributes);

newAttrbs.RemoveAt(attrIndex);

varnewValues = values.GetMatrix(subSetVi).

RemoveColumn(attrIndex);

root.Children.Add(Id3(newValues, newAttrbs, attr.Name + " : " +

value));

 }

 }

 return root;

 }

Chapter 10 Decision Trees

385

 �private static Tuple<Attribute, int>HighestGainAttribute

(string [,] values, IEnumerable<Attribute> attributes)

 {

 Attribute result = null;

varmaxGain = double.MinValue;

var index = -1;

vari = 0;

foreach (varattr in attributes)

 {

 double gain = Gain(values, i);

 if (gain >maxGain)

 {

maxGain = gain;

 result = attr;

 index = i;

 }

i++;

 }

 return new Tuple<Attribute, int>(result, index);

 }

 �private static double Gain(string [,] values,

intattributeIndex)

 {

varimpurityBeforeSplit = Entropy(values.

GetFreqPerDistinctElem(values.GetLength(1) - 1).GetProbabilities());

varimpurityAfterSplit= SubsetEntropy(values, attributeIndex);

 return impurityBeforeSplit - impurityAfterSplit;

 }

Chapter 10 Decision Trees

386

 private static double Entropy(IEnumerable<double>probs)

 {

 return -1 * probs.Sum(d =>LogEntropy(d));

 }

 private static double LogEntropy(double p)

 {

 return p >0 ? p * Math.Log(p, 2) : 0;

 }

 �private static double SubsetEntropy(string[,] values,

intcolumnIndex)

 {

varfreqDicc = values.GetFreqPerDistinctElem(columnIndex);

var result = 0.0;

var sum = freqDicc.Values.Sum();

foreach (var key in freqDicc.Keys)

 {

varrowIndex = values.GetRowIndex(columnIndex, key,

ComparisonType.Equality);

varfrequencyPerClass = values.GetFreqPerDistinctElem(values.

GetLength(1) - 1, rowIndex.ToArray());

 �result += (freqDicc[key] / (double) sum) *

Entropy(frequencyPerClass.GetProbabilities());

 }

 return result;

 }

 }

Chapter 10 Decision Trees

387

In Listing 10-3, we are using several extension methods, some

belonging to the Accord .NET package and some others belonging to

an extension class that we created to support some of the operations

that necessarily need to be handled in the ID3 algorithm and that if

were included directly in the code of the method would obscure its

understanding, legibility, and clarity. Furthermore, since every method

in the class is self-descriptive and matches the pseudocode previously

presented, we’ll focus on explaining the extension methods shown in

Listing 10-4; these methods belong to an extension class.

Listing 10-4.  Extension Methods

public static string GetMostFrequent(this string[] values)

 {

vardicc = new Dictionary<string, int>();

foreach (var v in values)

 {

 if (!dicc.ContainsKey(v))

dicc.Add(v, 1);

else

dicc[v] += 1;

 }

varmaxVal = dicc.Max(e =>e.Value);

return dicc.First(p =>p.Value == maxVal).Key;

 }

 �public static Dictionary<string,

int>GetFreqPerDistinctElem(this string [,] values,

intcolumnIndex, int [] rowIndex = null)

{

varfreqDicc = new Dictionary<string, int>();

Chapter 10 Decision Trees

388

 �for (vari = 0; i< (rowIndex == null ?values.

GetLength(0) : rowIndex.Length); i++)

 {

var row = rowIndex == null ?i : rowIndex[i];

 if (!freqDicc.ContainsKey(values[row, columnIndex]))

freqDicc.Add(values[row, columnIndex], 1);

 else

freqDicc[values[row, columnIndex]] += 1;

 }

 return freqDicc;

}

 �public static List<int>GetRowIndex(this string[,]

values, intcolumnIndex, string toCompare,

ComparisonTypecomparisonType)

 {

var result = new List<int>();

 for (vari = 0; i<values.GetLength(0); i++)

 {

 switch (comparisonType)

 {

 case ComparisonType.Equality:

 �if (values[i, columnIndex] ==

toCompare)

result.Add(i);

 break;

 case ComparisonType.NumericLessThan:

 �if (double.Parse(values[i, columnIndex])

<double.Parse(toCompare))

Chapter 10 Decision Trees

389

result.Add(i);

 break;

 case ComparisonType.NumericGreaterThan:

 �if (double.Parse(values[i, columnIndex])

>double.Parse(toCompare))

result.Add(i);

 break;

 }

 }

 return result;

 }

 �public static string[,] GetMatrix(this string[,]

values, List<int>rowIndex)

 {

var result = new string[rowIndex.Count, values.GetLength(1)];

var j = 0;

foreach (vari in rowIndex)

 {

result.SetRow(j, values.GetRow(i));

j++;

 }

 return result;

 }

 �public static IEnumerable<double>GetProbabilities(this

Dictionary<string, int>dicc)

 {

var probabilities = new List<double>();

var sum = dicc.Values.Sum();

Chapter 10 Decision Trees

390

foreach (var e in dicc)

probabilities.Add((e.Value / (double) sum));

 return probabilities;

 }

public enumComparisonType

 {

Equality, NumericGreaterThan, NumericLessThan

 }

The descriptions of the previous extension methods are detailed here:

•	 GetMostFrequent(): returns the most frequent

element from an array of strings received as argument;

extension method of string []

•	 GetFreqPerDistinctElem(): returns the frequency

(number of times it appears) of elements in the

indicated column and in the indicated set of rows

(if any, it’s an optional argument); extension method of

string [,]

•	 GetRowIndex(): returns the set of indices matching

rows whose value at the column index received as

argument satisfy the comparison criteria defined by

ComparisonType and consider the comparison string

detailed as argument; extension method of string [,]

•	 GetMatrix(): returns a new matrix containing only

those rows whose index in the original matrix matches

an integer in the list received as argument. It uses the

SetRow() method belonging to Accord .NET; extension

method of string [,]

Chapter 10 Decision Trees

391

•	 GetProbabilities(): returns the probability of

each element x in the input dictionary as value(x)

/ total(S) where total(S) is the sum of all element

values in the input dictionary; extension method of

Dictionary<string, int>

Now that we have fully detailed every component of our ID3

implementation, let’s see how to test our algorithm in a console

application by including the code shown in Listing 10-5.

Listing 10-5.  Testing Our DecisionTree Class and the ID3 Algorithm

in a Console Application

var values = new [,]

 {

{ "sunny", "warm", "high", "weak", "no" },

{ "sunny", "warm", "high", "strong", "no" },

{ "cloudy", "warm", "high", "weak", "yes" },

{ "rainy", "temperate", "high", "weak", "yes" },

{ "rainy", "cold", "normal", "weak", "yes" },

{ "rainy", "cold", "normal", "strong", "no" },

{ "cloudy", "cold", "normal", "strong", "yes" },

{ "sunny", "temperate", "high", "weak", "no" },

{ "sunny", "cold", "normal", "weak", "yes" },

{ "rainy", "temperate", "normal", "weak", "yes" },

{ "sunny", "temperate", "normal", "strong", "yes" },

{ "cloudy", "temperate", "high", "strong", "yes" },

{ "cloudy", "warm", "normal", "weak", "yes" },

{ "rainy", "temperate", "high", "strong", "no" },

 };

varattribs = new List<Attribute>

 {

Chapter 10 Decision Trees

392

 �new Attribute("Outlook",

new[] { "sunny", "cloudy",

"rainy" }, TypeAttrib.

NonGoal, TypeVal.Discrete),

 �new Attribute("Temperature",

new[] { "warm", "temperate",

"cold" }, TypeAttrib.NonGoal,

TypeVal.Discrete),

 �new Attribute("Humidity",

new[] { "high", "normal" },

TypeAttrib.NonGoal, TypeVal.

Discrete),

 �new Attribute("Wind", new[]

{ "weak", "strong" },

TypeAttrib.NonGoal, TypeVal.

Discrete),

 };

vargoalAttrib = new Attribute("Play Baseball", new[] { "yes",

"no" }, TypeAttrib.Goal, TypeVal.Discrete);

vartrainingDataSet = new TrainingDataSet(values, attribs,

goalAttrib);

vardtree = DecisionTree.Learn(trainingDataSet,

DtTrainingAlgorithm.Id3);

dtree.Visualize();

The result obtained after executing the code presented in Listing 10-5

can be seen in Figure 10-5; the reader can verify it exactly coincides with

the DT shown in Figure 10-2. The same occurs with the training data set of

Listing 10-5 and the one illustrated in Table 10-2.

Chapter 10 Decision Trees

393

At the moment, we have covered the basics of DTs, explained the

functioning of the ID3 algorithm, and introduced a practical problem

where we implemented the ID3 algorithm. In the upcoming sections we’ll

explain some of the difficulties or disadvantages of the ID3 algorithm and

how its improved version, the C4.5 algorithm, overcomes these difficulties

and provides a more efficient DT by applying pruning techniques to

handle missing values and attributes whose values can be continuous

instead of discrete.

�C4.5 Algorithm
The C4.5 algorithm (Quinlan, 1993) represents an extension or

enhancement over ID3’s shortcomings. Its improvement lies in three

main points: handling continuous attributes (remember ID3 deals only

with categorical attributes), handling missing values, and taking care of

overfitting issues by pruning the tree in the end.

Figure 10-5.  DT obtained after executing our console application
program

Chapter 10 Decision Trees

394

Overfitting is the problem that arises when the resulting DT fits too

well the training data set. As a result, the DT ends up poorly predicting

new incoming data because it creates an inappropriate dependency or

overfitting structure on the learned training data set. To understand a bit

better the problem of overfitting, let’s consider an experiment where we

want to predict the outcome of a die, and the training data set consists

of the date, time when the roll occurs and also the die’s color. What may

happen here is that the learner constructs a DT that fits the data but that

considers irrelevant attributes such as color unrelated to the outcome.

This situation can be typically found in data containing lots of attributes

or features. When dealing with training data or objects that possess a large

number of attributes, we could find many meaningless attributes that are

irrelevant when compared to the truly significant attributes that ultimately

decide the outcome of the upcoming data.

How can we approach this problem? There exist two major approaches to

counteracting overfitting problems. First, to stop the growth of the tree in the

early stages of the generation process and before reaching the point at which

it perfectly classifies the training data set. Second, to prune the tree after it has

been generated. The second approach has been more successful than the first,

mainly because knowing when to stop the growth of the tree can be a tricky

task. Once we begin the pruning process, a fundamental question is how to

decide if a subtree is worth pruning; in other words, what criteria should we

use for pruning, and how should we carry out this process?

Even though there are diverse strategies for carrying out the pruning

process of a DT, the most popular approach relies on cross-validation,

a statistical technique that divides the training data set S into subsets

S1, S2 and then uses the first subset for training and generating a DT and

the second subset for testing how well the resulting DT is performing

on classifying data coming from validation set S2. Cross-validation is

combined with a post-pruning measure that gives us an assessment of how

well the resulting DT will do after pruning. The most common measures

are error reduction and rule pruning.

Chapter 10 Decision Trees

395

The pseudocode of the error-reduction criteria would be the following:

•	 Classify training data in the validation set S2using the

DT (Figure 10-6).

•	 For each node X:

•	 Find the sum of errors of the entire subtree rooted at X.

•	 Calculate the error of the same training data but

once X has been transformed into a leaf node

and assigned the most common class of all of its

descendants.

•	 Compare both values and prune the one with the

highest reduction in error.

•	 Repeat until error is no longer reduced.

Figure 10-6 illustrates a subtree where a plus sign indicates a training

data correctly classified and a minus sign represents a training data

incorrectly classified.

Figure 10-6.  Validation set consisting of 16 training data classified by
the DT. A positive number indicates a training data correctly classified
by the DT, and a minus indicates an error in classification

Chapter 10 Decision Trees

396

The error-reduction measure is, at the same time, typically used in

conjunction with a subtree simplification operator or pruning technique

known as subtree replacement where each internal node of the DT happens

to be a candidate node for pruning in a bottom-up approach that prunes

a tree only after examining its subtrees. In this sense, pruning can be

translated as deleting a subtree of the DT and replacing it with a leaf whose

value corresponds to the most frequent class found in all leaves of the

subtree, as the previous pseudocode describes.

A subtree is finally pruned if the resulting DT behaves worse than the

previous one when tested against validation set S2. Nodes in the DT are

pruned iteratively, selecting always those that increase the efficiency of the

resulting DT over the validation set. This will cause any leaf node created

based on coincidental regularities while learning on the training data set

to be pruned when double checking the validation set since the same

coincidental regularities are not likely to also happen on the validation set.

The other criteria, rule pruning, converts the learned DT into a set of

rules, one for each possible path from the root to a leaf node. It involves the

following steps:

•	 Classify training data in the validation set S2 using the

DT (Figure 10-6).

•	 Convert the learned DT into a set of rules, one for each

possible path from the root to a leaf node.

•	 Prune or generalize each rule by pruning preconditions

that result in improving its estimated accuracy.

•	 Sort the pruned rules by their estimated accuracy

and consider them in this order when classifying new

incoming data.

Chapter 10 Decision Trees

397

In this sense, rule preconditions represent attribute tests from the root

to a leaf node, and the value or classification at that leaf becomes the rule

consequence or postcondition. For instance, if (outlook = sunny ^ humidity =

normal) is a precondition and playBaseball = yes is the consequent.

Afterward, each rule is pruned by removing its precondition if its removal

does not affect the estimated accuracy of the DT before pruning.

Another distinguishing feature of the C4.5 algorithm is that it uses a

different measure for selecting the attribute to split on; instead of using

information gain it uses gain ratio, whose formula is as follows:

GainRatio S A
Gain S A

SplitInformation S A
,

,

,
() = ()

()

where

SplitInformation S A
S

S

S

Si

n
i i, log() = - *

=
å

1
2

where Si are the subsets after partitioning S with respect to attribute A

containing n possible values. The gain ratio measure overcomes the

downfalls of information gain, whose main disadvantage is favoring

attributes with the largest number of values. For instance, consider a Date

attribute with the many values it could include; because the size of this

set might be huge it will probably divide the entire set of training data into

smaller subsets whose entropy will be very low; hence, the information

gain will be very high. Gain ratio penalizes those attributes with multiple

values uniformly distributed.

Handling continuous attributes is one of the major advantages that

C4.5 provides over its predecessor ID3. To handle continuous attributes,

C4.5 partitions the set of values into a discrete set of intervals. It creates

a binary decision node that divides the range of possible values into

two subsets, those satisfying < X and those satisfying >= X where X is a

threshold to be decided. This procedure assumes the existence of a total

Chapter 10 Decision Trees

398

order in the set of continuous values. The key point is finding the value

X (threshold) on which the partition will be made. The most common

approach is to sort the values of the training data set in increasing order;

loop through the list of sorted values while comparing goal attributes of

consecutives elements (i, i + 1); calculate (if and only if their goal attributes

differ) the threshold as the average of those two consecutive elements

(i.e., X'=(L[i] + L[i+1])/2); compute the information gain achieved on

partitioning the attribute on the threshold X' (considering subsets of

elements less than X', greater than X'; and select the one providing the

highest information gain. Note that we consider consecutive elements

only when their classes are different. We would never consider elements

L[i], L[i + 1] (where L is the list of sorted values on the continuous

attribute) if they both have the same class C (Figure 10-7).

Figure 10-7.  After incrementally sorting values we examine those
consecutive values whose goal attribute is different

For handling missed values, there exist different strategies, and the

process is usually executed prior to executing any DT learning algorithm.

The simplest strategy is to simply ignore missed values, not considering

them when calculating entropy. A smarter strategy would be to assign the

most common value of that attribute in the training data set to the missing

value. Lastly, a more complex approach would be to assign probabilities for

each possible value of the missing attribute A and then create branches on

that node for each probability calculated. For instance, assuming we have a

binary attribute A whose values are P, Q, ten known values for this attribute,

six for attribute P, four for value Q, then this approach would create two

branches corresponding to the 0.6 probability of the attribute’s having value

P and another one related to the odds of the attribute’s having value Q.

Chapter 10 Decision Trees

399

�Practical Problem: Implementing the C4.5
Algorithm
In this section, we’ll present an implementation of the C4.5 algorithm

that will include different features such as handling continuous attributes

and the gain ratio measure. The pruning techniques and strategies for

handling missed values will be left to the reader as an exercise and as a way

to complement the code herein presented. The main coding task to move

from ID3 to C4.5 lies in the adaptation to handle continuous values; hence,

we present it in this section.

As expected, ID3 and C4.5 share almost the same code. Base

conditions are the same, and the main differences lie within the main

body. Listing 10-6 shows the access point of the C4.5 algorithm; remember

that this method is to be added to the DecisionTree class we have been

developing throughout the chapter.

Listing 10-6.  Main Body of C4.5 Algorithm

public static DecisionTreeC45(string [,] values,

List<Attribute> attributes, string edge)

 {

 // All training data has the same goal attribute

vargoalValues = values.GetColumn(values.GetLength(1) - 1);

 if (goalValues.DistinctCount() == 1)

 return new DecisionTree(goalValues.First(), edge);

 // There are no NonGoal attributes

 if (attributes.Count == 0)

 �return new DecisionTree(goalValues.

GetMostFrequent(), edge);

 �// Set as root the attribute providing the highest

information gain

Chapter 10 Decision Trees

400

varattrIndexPair = HighestGainAttribute(values, attributes);

varattr = attrIndexPair["attrib"] as Attribute;

varattrIndex = (int) attrIndexPair["index"];

var threshold = (int) attrIndexPair["threshold"];

var less = (List<int>) attrIndexPair["less"];

var greater = (List<int>) attrIndexPair["greater"];

var root = new DecisionTree(attr.Name, edge);

varsplittingVals = attr.TypeVal == TypeVal.Discrete ? attr.Values

 �: new [] { "less"

+ threshold,

"greater" +

threshold } ;

foreach (var value in splittingVals)

 {

 List<int>subSetVi;

 if (attr.TypeVal == TypeVal.Discrete)

subSetVi = values.GetRowIndex(attrIndex, value, ComparisonType.

Equality);

 else

subSetVi = value.Contains("less") ? less : greater;

 if (subSetVi.Count == 0)

root.Children.Add(new DecisionTree(goalValues.

GetMostFrequent(), value));

 else

 {

varnewAttrbs = new List<Attribute>(attributes);

newAttrbs.RemoveAt(attrIndex);

varnewValues = values.GetMatrix(subSetVi).

RemoveColumn(attrIndex);

Chapter 10 Decision Trees

401

root.Children.Add(Id3(newValues, newAttrbs, attr.Name + " : " +

value));

 }

 }

 return root;

 }

In this case, TypeVal is an enum attached to the Attribute class that

allows us to know whether an attribute is discrete or continuous. Notice

the code is very similar to that of ID3, but a significant difference can be

found in the HighestGainAttribute() method, which now provides us

with more information, mainly information related to the continuous

attribute handling. Such a method is illustrated in Listing 10-7.

Listing 10-7.  HighestGainAttribute() Method for Continuous Attributes

 �private static Dictionary<string, dynamic>HighestGain

Attribute(string [,] values, IEnumerable<Attribute>attributes)

 {

 Attribute result = null;

varmaxGain = double.MinValue;

var index = -1;

 double threshold = -1.0;

vari = 0;

 List<int>bestLess = null;

 List<int>bestGreater = null;

foreach (varattr in attributes)

 {

 double gain = 0;

 Dictionary<string, dynamic>gainThreshold = null;

Chapter 10 Decision Trees

402

 if (attr.TypeVal == TypeVal.Discrete)

 gain = Gain(values, i);

 if (attr.TypeVal == TypeVal.Continuous)

 {

gainThreshold = GainContinuous(values, i);

 gain = gainThreshold["gain"];

 }

 if (gain >maxGain)

 {

maxGain = gain;

 result = attr;

 index = i;

 if (gainThreshold != null)

 {

 threshold = gainThreshold["threshold"];

bestLess = gainThreshold["less"];

bestGreater = gainThreshold["greater"];

 }

 }

i++;

 }

 return new Dictionary<string, dynamic> {

{ "attrib" , result },

{ "index" , index },

{ "less" , bestLess },

{ "greater" , bestGreater },

{ "threshold" , threshold },

 };

 }

Chapter 10 Decision Trees

403

In this new or continuous version of the HighestGainAttribute()

method, we make a differentiation in regards to the attribute’s being

discrete or continuous. Also note that in this case the method returns a

dictionary containing the selected attribute, its index, and, if the selected

attribute is continuous, two lists of index positions (less, greater), along

with the double-value threshold. For calculating the gain of a continuous

attribute it uses the GainContinuous() method shown in Listing 10-8.

Listing 10-8.  GainContinuous() Method for Calculating the Gain of

Continuous Attributes

 �private static Dictionary<string, dynamic>GainContinuous

(string[,] values, inti)

 {

var column = values.GetColumn(i);

varcolumnVals = column.Select(double.Parse).ToList();

varbestGain = double.MinValue;

varbestThreshold = 0.0;

 List<int>bestLess = null;

 List<int>bestGreater = null;

columnVals.Sort();

 for (var j = 0; j <columnVals.Count - 1; j++)

 {

 �if (columnVals[j] != columnVals[j + 1] &&

values[j, values.GetLength(1) - 1] != values[j

+ 1, values.GetLength(1) - 1])

 {

var threshold = (columnVals[j] + columnVals[j + 1])/2;

var less = values.GetRowIndex(i, threshold.ToString(),

ComparisonType.NumericLessThan);

Chapter 10 Decision Trees

404

var greater = values.GetRowIndex(i, threshold.ToString(),

ComparisonType.NumericGreaterThan);

var gain = Gain(values, i, threshold, less, greater);

 if (gain >bestGain)

 {

bestGain = gain;

bestThreshold = threshold;

bestLess = less;

bestGreater = greater;

 }

 }

 }

 return new Dictionary<string, dynamic>

 {

{ "gain" , bestGain },

{ "threshold" , bestThreshold },

{ "less", bestLess },

{ "greater", bestGreater },

 };

 }

In the GainContinuous() method we partition the set of possible

values of a continuous attribute and create a binary distinction on the

threshold value, which is, as we recall, the average of consecutive pairs (in

the list of sorted values) yielding the highest information gain. Output in

this case is a dictionary holding the gain, threshold double values, and the

less, greater lists.

Remember that in C4.5 we use the GainRatio criteria for selecting

the attribute to split on; the C# method calculating this measure is shown

in Listing 10-9. In the same listing we can see the SplitInformation

procedure on which GainRatio relies, as described in prior sections.

Chapter 10 Decision Trees

405

Listing 10-9.  GainRatio() and SplitInformation()

private static double GainRatio(string[,] values,

intattributeIndex, double threshold = -1, List<int> less =

null, List<int> greater = null)

 {

 �return Gain(values, attributeIndex, threshold,

less, greater) / SplitInformation(values,

attributeIndex);

 }

 �private static double SplitInformation(string[,]

values, intattributeIndex)

 {

varfreq = values.GetFreqPerDistinctElem(attributeIndex);

var total = freq.Sum(t =>t.Value);

var result = 0.0;

foreach (var f in freq)

 �result += (double)f.Value / total * Math.

Log((double)f.Value / total, 2);

 return -result;

 }

Since GainRatio() requires the computation of Gain(), we need to

adapt it a little bit to the continuous case—the case where we have two

sets of values, one less and the other greater than a calculated threshold.

Listing 10-10 shows the adaptation of the Gain() method, which is

enclosed in the if(threshold >= 0) statement.

Chapter 10 Decision Trees

406

Listing 10-10.  Gain() Adaptation to Handle the Continuous Case

 �private static double Gain(string [,] values,

intattributeIndex, double threshold = -1, List<int>

less = null, List<int> greater = null)

 {

varimpurityBeforeSplit = Entropy(values.

GetFreqPerDistinctElem(values.GetLength(1) - 1).GetProbabilities());

 double impurityAfterSplit = 0;

 if (threshold >= 0)

 {

varfreq = new Dictionary<string, int>{ {"less", less.Count},

{"greater", greater.Count} };

 for (vari = 0; i<freq.Count; i++)

impurityAfterSplit += SubsetEntropy(values, attributeIndex,

freq, less, greater);

 }

 else

impurityAfterSplit = SubsetEntropy(values, attributeIndex);

 return impurityBeforeSplit - impurityAfterSplit;

 }

SubsetEntropy() is another method that we need to slightly modify to

make it fit the continuous case and consider the less, greater set of values.

This modification is illustrated in Listing 10-11.

Listing 10-11.  Modification to the SubsetEntropy() Method

private static double SubsetEntropy(string[,] values,

intcolumnIndex, Dictionary<string, int>freqContinous = null,

 List<int> less = null, List<int> greater = null)

 {

Chapter 10 Decision Trees

407

var result = 0.0;

varfreqDicc = freqContinous ?? values.GetFreqPerDistinctElem

(columnIndex);

var total = freqDicc.Values.Sum();

foreach (var key in freqDicc.Keys)

 {

 List<int>rowIndex;

 switch (key)

 {

 case "less":

rowIndex = less;

 break;

 case "greater":

rowIndex = greater;

 break;

 default:

rowIndex = values.GetRowIndex(columnIndex, key, ComparisonType.

Equality);

 break;

 }

varfrequencyPerClass = values.GetFreqPerDistinctElem(values.

GetLength(1) - 1, rowIndex.ToArray());

 �result += (freqDicc[key] / (double) total) *

Entropy(frequencyPerClass.GetProbabilities());

 }

 return result;

 }

Chapter 10 Decision Trees

408

Note  The ?? operator is called the null-coalescing operator. It
returns the left-hand operand if the operand is not null; otherwise, it
returns the right-hand operand.

In order to test our C4.5 algorithm we can add the code from Listing

10-12 to a console application.

Listing 10-12.  Testing Our C4.5 Algorithm in a Console Application

var values = new [,]

{ { "sunny", "12", "high", "weak", "no" },

{ "sunny", "12", "high", "strong", "no" },

{ "cloudy", "14", "high", "weak", "yes" },

{ "rainy", "12", "high", "weak", "yes" },

{ "rainy", "20", "normal", "weak", "yes" },

{ "rainy", "20", "normal", "strong", "no" },

{ "cloudy", "20", "normal", "strong", "yes" },

{ "sunny", "12", "high", "weak", "no" },

{ "sunny", "14", "normal", "weak", "yes" },

{ "rainy", "20", "normal", "weak", "yes" },

{ "sunny", "14", "normal", "strong", "yes" },

{ "cloudy", "20", "high", "strong", "yes" },

{ "cloudy", "20", "normal", "weak", "yes" },

{ "rainy", "14", "high", "strong", "no" }, };

varattribs = new List<Attribute>

 {

 �new Attribute("Outlook", new[]

{ "sunny", "cloudy", "rainy"

}, TypeAttrib.NonGoal,

TypeVal.Discrete),

Chapter 10 Decision Trees

409

 �new Attribute("Temperature",

new[] { "12", "14", "20" },

TypeAttrib.NonGoal, TypeVal.

Continuous),

 �new Attribute("Humidity",

new[] { "high", "normal" },

TypeAttrib.NonGoal, TypeVal.

Discrete),

 �new Attribute("Wind", new[]

{ "weak", "strong" },

TypeAttrib.NonGoal, TypeVal.

Discrete),

 };

vargoalAttrib = new Attribute("Play Baseball", new[] { "yes",

"no" }, TypeAttrib.Goal, TypeVal.Discrete);

vartrainingDataSet = new TrainingDataSet(values, attribs, goalAttrib);

vardtree = DecisionTree.Learn(trainingDataSet,

DtTrainingAlgorithm.C45);

dtree.Visualize();

The result obtained after executing the code from Listing 10-12 can be

seen in Figure 10-8.

Figure 10-8.  Resulting DT after executing the code from Listing 10-12

Chapter 10 Decision Trees

410

We didn’t include any code related to the handling of missing values

feature, but using the very simple strategy of ignoring them, we can create

a C# method that receives the training data set as input, and examines

each cell of the matrix replacing any unknown value with a 0, making it not

count for entropy calculations. As mentioned before, pruning techniques

are left to the reader for implementation and complementary exercise.

�Summary
In this chapter, we examined DTs, an implementation of a classification

model with a treelike data structure where decision rules can be found

traversing the tree from the root to any leaf. We described the basic, most

popular algorithm for generating DTs (ID3), and an implementation in

C# was detailed; such an implementation included a Windows Forms

application that graphically showed the resulting DT using MSAGL.

We also explained the C4.5 algorithm, an improved version of ID3

where continuous attributes, missing values in the training data set, and

overfitting issues are handled. An implementation in C# of this algorithm

included the most significant coding details, which lay mainly on the

handling continuous attributes feature. Implementation of pruning

techniques were left to the reader as an exercise.

Chapter 10 Decision Trees

411© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_11

CHAPTER 11

Neural Networks
In this chapter, we will be discussing artificial neural networks, a family

of algorithms very popular in the area of supervised learning (and also

applicable to unsupervised learning and reinforcement learning) that try

to mimic or model the human brain’s functioning to solve problems that,

as with SVMs and DTs, rely on learning or approximating a function F

defined by a table of training data in the form of pairs (data, classification).

This function F is the result of the learning process and is known as the

approximated or learned function. It is later used to classify or predict the

class of new incoming data.

As we have seen so far, many of the algorithms, methods, and tools

used in artificial intelligence— and especially in supervised learning—are

closely related to other areas of knowledge, such as algebra, mathematical

analysis, and mathematical optimization. Because learning in life relates

to a process in which we “improve” or learn how to do certain things on a

timeline (considering time), and that’s precisely the goal of optimization

algorithms—to optimize (either minimize or maximize) a function through

iterative processes—then neural networks will not be the exception, and

we will keep the same pattern of using optimization techniques to learn

and construct a function that predicts the class of input data.

In this chapter, we’ll introduce neural networks (NNs) and describe

their functioning and how they simulate the way our neurons work all

together. We’ll implement the Perceptron algorithm, one of the oldest

and simplest NN models. We will also implement the Adaline NN model

412

since it will be a useful introduction to the topic of multi-layer NNs; the

optimization technique it uses resembles that of the last algorithm to be

examined in this chapter, the popular backpropagation algorithm for

learning in multi-layer NNs.

Note  NNs can be applied to multiple problems, among which it
would be worth mentioning pattern, shape, face, and handwritten
recognition, autonomous vehicle driving, and many others. The study
of brain-style computation has its roots in the work of McCulloch
and Pitts (1943) and later in Hebb’s famous Organization of Behavior
(1949).

�What Is a Neural Network?
A neuron is a type of cell of the nervous system (Figure 11-1) that possesses

a plasmatic membrane that allows it to receive stimulus from external

elements and transmit signals to other neurons or to different types of

cells of the human brain. The signals they either receive or send are

electrochemical; thus, neurons are responsible for collecting, processing,

and transmitting electrochemical signals. When several neurons are

connected through their synapses they are said to be defining a neural

network. In this network, a neuron fires or sends a signal when the

excitation of all electrochemical signals received from all other neurons

connected to it is high enough.

Chapter 11 Neural Networks

413

Finding an analogous model in the mathematical AI world, a neuron

can be seen as a mathematical object or function that receives numeric

inputs x1, x2, …, xn from all neurons that connect to it and combines these

values, calculating a weighted sum as a way to give a certain “relevance”

to each connection by associating weight values w1, w2, …, wn with them.

Thus, X = w1 * x1 + w2 * x2 + … + wn * xn is the value reaching the body of

the neuron. The final outputted value can be either a signal or nothing (0).

To determine the strength of the signal (output) we typically use something

known as an activation function; this function determines the outputted

value and will vary depending on the type of neuron used.

Hence, a neural network (NN) is a collection of the previously described

neurons; relations between these neurons can be described as forming

a graph where an edge from neuron i to neuron j indicates an input to

neuron j and an output from neuron i going to neuron j (Figure 11-2).

Figure 11-1.  Biological neuron; dendrites represent inputs of signals
coming from other neurons and axons represent outputs for our
neuron. One can think of the structure of a neuron as having input
nodes called dendrites, output nodes called axons, and edges called
synapses.

Chapter 11 Neural Networks

414

In the following sections, we will be examining single-unit NNs,

networks composed of a single neuron. In single-neuron networks, one

can think of the inputs as coming from some unknown neurons and

having values that match those of the vector representing the training data.

The output would then serve as classification for the input training data.

Note A n artificial neuron can be seen as a mathematical function
F = A(x1 * w1 + … + xn * wn) where xi are the inputs; wi the
weights that are meant to strengthen or weaken the connection
to other neurons, and A the activation function that ultimately
determines the strength of the outputted signal.

Figure 11-2.  NN as a graph; neurons 4 and 5 are receiving inputs
from neurons 1, 2, and 3, and neurons 1, 2, and 3 are having output
connections to neurons 4 and 5.

Chapter 11 Neural Networks

415

�Perceptron: Singular NN
The Perceptron is a single-NN unit that follows the same process stated

before: it receives n inputs x1, …, xn, then calculates the weighted sum

x1 * w1 + … + xn * wn and finally applies an activation function to get

an output or classification for the input data. With the Perceptron this

function is usually as follows:

f x() =
³ì

í
î

1

0

x T

otherwise

T is a value known as the threshold; it’s used to compare the weighted

sum with a threshold and determine whether the signal should be sent or

not. Thus, the Perceptron can be represented as shown in Figure 11-3.

Figure 11-3.  The Perceptron computes a weighted sum of the inputs
and weights, submits this value to the activation function F, and
transmits the signal to other neurons if and only if F turns out to be
greater than or equal to a given threshold.

We already know how the flow of information works in the Perceptron;

remember the purpose of the analyzed flow is to provide a classification

for the input data. Now, how can we train it to correctly predict new

incoming data?

Chapter 11 Neural Networks

416

Note  The Perceptron was created in the 1950s by Frank
Rosemblatt in an attempt to model a retina as an artificial NN.

First of all, the Perceptron is a linear classifier (recall from Chapter 9

that support vector machines were also linear classifiers); it tries to find

a weight vector and a threshold value in such a way that the space of

the problem is divided into classes A and B. The weight vector and the

threshold value will define one of the possible classifying hyperplanes. If

we were in 2D then the hyperplane would be a line, if we were in 3D then

the hyperplane would be a plane, and so on. It will always occur that all

points in the training data will lie on one side or the other of the classifying

hyperplane if the training data set is linearly separable.

As we did in Chapter 9, let us consider the equation of a line, y = mx + b,

where m is the slope of the line—or, in more general terms, the gradient of

the line—and b is the bias determining the shift, left or right, of the line—

i.e., the intercept of the line with the y-axis (Figure 11-4).

Figure 11-4.  Considering the equation of a line mx + b = y, then
m defines the slope of the line and b its intercept with the y-axis, or
equivalently its shift left or right

Chapter 11 Neural Networks

417

Therefore, the training or learning process in a Perceptron will consist

of an adjustment (made over time through several iterations) to the

weights (slope of the line) and also to the bias in an attempt to find a line

or hyperplane in the general case that correctly classifies all training data;

in other words, to have a line that divides the training data set into two

classes.

The Perceptron algorithm starts by setting random values for the

weight vector, typically in the range [0, 1], and also for the bias. This will

result in the construction of a random classifying hyperplane, or, in 2D

(weight vector with two components), this scenario will result in the

construction of a line that may or may not correctly classify the training

data set. Then, in order to refine the classifying hyperplane and force it to

correctly classify all examples, a loop through the entire training data set is

made and each error detected in the classification of a single training data

is corrected by increasing or decreasing the weight associated with the

component of that training data; remember that for each component xi in

any training data (x1, …, xn) we have associated some wi, and these are all

combined in a weighted sum x1 * w1 + … + xn * wn.

Note  The Convergence Theorem of the Perceptron states that for
any data set that is linearly separable, the Perceptron learning rule is
guaranteed to find a solution in a finite number of iterations.

As a result, the learning process of a Perceptron is basically an

optimization technique where we improve the classifying hyperplane by

slowly changing its slope or gradient and the bias to move it to a position

where every training data would be correctly classified (Figure 11-5).

Chapter 11 Neural Networks

418

The pseudocode of the Perceptron algorithm is the following:

	 1.	 Initialize weights and bias to a random value in the

range [0, 1].

	 2.	 If the stopping condition is satisfied, end.

	 3.	 Loop through the entire training data set, picking

each training data (x, y) one step at a time, x being

the vector of features and y its classification.

	 4.	 Calculate the output yx of the Perceptron for training

data x.

	 5.	 In case y yx!= then:

Correct each weight following the rule:

w w y y xi i x i= + * -()*a

Figure 11-5.  In the graphic, line number 1 incorrectly classifies two of
the red points; therefore, we modify weights and bias to move it to the
right a little bit; then classifying hyperplane 2 also makes a mistake
classifying one of the red points. Finally, classifying hyperplane 3
makes no mistakes and properly divides red from blue points.

Chapter 11 Neural Networks

419

Correct also the bias using the formula:

b b y yx= + * -()a

	 6.	 Go to step 2.

Step 5 of the pseudocode contains what is known as the learning rule of

the Perceptron; all learning accomplished in the algorithm is encapsulated

in the formula where weights are modified. In order to understand the

learning formula let us reconstruct it from zero.

First, notice that when w · x < 0 (where · represents the dot product, in

this case the weighted sum mentioned so far) and the correct classification

of x is positive, it can be geometrically interpreted as having the angle

between ve ctors w and x with a value greater than 90 degrees, and

consequently we would need to rotate w in x’s direction to bring it to the

positive space. Equivalently, if w · x > 0 and the correct classification of x is

negative (or less than zero), then the angle between vectors w and x is less

than 90 degrees and w must be rotated away from x.

Note  The a • b operation represents the dot product between
vectors a and b. Whenever a and b are perpendicular then a • b = 0.

Thus, we already know that having a weight update of either w + x

or w - x can be geometrically interpreted as moving w in the direction

of x or in the opposite direction; this operation seeks to obtain a correct

classification for training data x. Now, to merge the two previous cases

into one, we will add the term y yx-() as a multiplier of x. Let’s analyze

the possible values of this term to understand that it will always give us the

correct sign for x.

Chapter 11 Neural Networks

420

•	 If y yx= then y yx- = 0 , which implies there’s no

change to the weight since the classification of x is

correct.

•	 If y yx> then y yx- > 0 , which implies the weight

needs to be increased because y yx> ; i.e., we need

to increase the weight so that w · x provides us with

a higher value and the training data classifies it as 1

instead of 0.

•	 If y yx< then y yx- < 0 , which implies the weight

needs to be decreased because y yx< . Analogous

explanation to the previous point.

Accordingly, we now have the update rule justified as w y y xx+ -() * ,

and we conclude we will multiply the last term by α, a value in the range

(0, 1) known as the learning rate.

The learning rate controls how quickly the Perceptron will learn, or,

equivalently, how much we change the weights and bias at each step.

From a geometrical perspective, it can be seen as how much we rotate

the w vector toward or away from training data vector x. To guarantee

convergence and to not step over the solution of the problem, we must

choose small values for the learning rate; 0.05 is typically chosen.

Using a similar approach, we can deduct the formula for updating the

bias, but this is left to the reader as an exercise.

�Practical Problem: Implementing the Perceptron NN
To implement the Perceptron in C#, we’ll create an abstract class named

SingleNeuralNetwork that will allow us to easily develop the Perceptron

and also any single-unit NN that we would need to implement, as they

all share similar features in their structure and significant changes occur

merely in their learning rules. This class is shown in Listing 11-1.

Chapter 11 Neural Networks

421

Listing 11-1.  SingleNeuralNetwork Abstract Class

public abstract class SingleNeuralNetwork

 {

 public List<TrainingSample>TrainingSamples{ get; set; }

 public int Inputs { get; set; }

 public List<double> Weights { get; set; }

 public readonly Random Random = new Random();

 protected readonly double LearningRate;

 protected double Bias= 0.5;

 �protected SingleNeuralNetwork(IEnumerable<TrainingSample>

trainingSamples, int inputs, double learningRate)

 {

TrainingSamples = new List<TrainingSample>(trainingSamples);

 Inputs = inputs;

 Weights = new List<double>();

 for (vari = 0; i< Inputs; i++)

Weights.Add(Random.NextDouble());

LearningRate = learningRate;

 }

 public virtual void Training()

 {

 }

 public virtual double Predict(double[] features)

 {

var result = 0.0;

 for (vari = 0; i<features.Length; i++)

 result += features[i] * Weights[i];

 return result > -Bias ?1 : 0;

 }

Chapter 11 Neural Networks

422

 �public List<double>PredictSet(IEnumerable<double[]> objects)

 {

var result = new List<double>();

foreach (varobj in objects)

result.Add(Predict(obj));

 return result;

 }

 }

The class contains the following fields or properties:

•	 TrainingSamples: It’s the same class used in the SVM

chapter; it contains a vector of features (double values)

representing the training data and an integer defining

the correct classification of that training data.

•	 Inputs: integer representing the number of inputs for

the Perceptron

•	 Weights: list of double values representing the weight

vector of the single-unit NN

•	 Random: field used to obtain random values

•	 LearningRate: the learning rate of the Perceptron

•	 Threshold: the threshold of the Perceptron; initial

value set to 0.5

In the class constructor we initialize the weights to random values in

the range [0, 1]; the constructor is followed by a set of methods, which are

detailed here:

•	 Training(): virtual method that every class inheriting

from SingleNeuralNetwork will implement in order to

provide a training algorithm implementation.

Chapter 11 Neural Networks

423

We mark it as virtual instead of abstract because we

are considering the case in which you would not like to

include a training method for the single-unit NN but

rather just use the fields and properties it includes.

•	 Predict(): calculates the weighted sum S w xi i= * and

checks whether w x bi i* + > 0 or, equivalently, that

w xi i* > -b

•	 PredictSet(): using the previous method, predicts

the classification of each data in the list submitted as

argument

Remember the goal of the Perceptron is to find a classifying

hyperplane that divides the set of data points into classes A and B. This

division must guarantee that every element from class A lies on one side

of the hyperplane and every element from class B lies on the other side.

This hyperplane will satisfy (as it did in Chapter 9) the equation wx + b = 0.

Thus, in the Predict() method, we classify any data point x for which

wx + b > 0 as belonging to class 1; otherwise, we set it to be a member of

class 0.

Finally, the Perceptron class, which inherits from the

SingleNeuralNetwork abstract class, is illustrated in Listing 11-2.

Listing 11-2.  Perceptron Class

public class Perceptron :SingleNeuralNetwork

 {

 �public Perceptron(IEnumerable<TrainingSample>training

Samples, int inputs, double learningRate)

 : base(trainingSamples, inputs, learningRate)

 { }

Chapter 11 Neural Networks

424

 public override void Training()

 {

 while (true)

 {

varmissclasification = false;

foreach (vartrainingSample in TrainingSamples)

 {

var output = Predict(trainingSample.Features);

var features = trainingSample.Features;

 if (output != trainingSample.Classification)

 {

missclasification = true;

 for (var j = 0; j < Inputs; j++)

 �Weights[j] += LearningRate*

(trainingSample.Classification -

output)*features[j];

Bias+= LearningRate * (trainingSample.Classification - output);

 }

 }

 if (!missclasification)

 break;

 }

 }

 }

As we can see, the implementation of the Training() method in

the Perceptron class is almost a direct translation of the pseudocode

previously detailed.

To test our algorithm we will create a console application with the code

seen in Listing 11-3.

Chapter 11 Neural Networks

425

Listing 11-3.  Testing the Perceptron Class in a Console Application

vartrainingSamples = new List<TrainingSample>

 {

new TrainingSample(new double[] {1, 1}, 0, new List<double> { 0 }),

new TrainingSample(new double[] {1, 0}, 0, new List<double> { 0 }),

new TrainingSample(new double[] {0, 1}, 0, new List<double> { 0 }),

 �new TrainingSample

(new double[] {0, 0}, 0,

new List<double> { 0 }),

 �new TrainingSample

(new double[] {1, 2}, 1,

new List<double> { 0 }),

 �new TrainingSample

(new double[] {2, 2}, 1,

new List<double> { 1 }),

 �new TrainingSample

(new double[] {2, 3}, 1,

new List<double> { 1 }),

 �new TrainingSample

(new double[] {0, 3}, 1,

new List<double> { 1 }),

 �new TrainingSample

(new double[] {0, 2}, 1,

new List<double> { 1 }),};

var perceptron = new Perceptron(trainingSamples, 2, 0.01);

perceptron.Training();

vartoPredict = new List<double[]>

 {

 new double[] {1, 1},

 new double[] {1, 0},

Chapter 11 Neural Networks

426

 new double[] {0, 0},

 new double[] {0, 1},

 new double[] {2, 0},

new[] {2.5, 2},

new[] {0.5, 1.5},

 };

var predictions = perceptron.PredictSet(toPredict);

 for (vari = 0; i<predictions.Count; i++)

Console.WriteLine("Data: ({0} , {1}) Classified as: {2}",

toPredict[i][0], toPredict[i][1], predictions[i]);

The result obtained after executing the code in Listing 11-3 can be seen

in Figure 11-6.

Figure 11-6.  Classification outputted by our Perceptron, considering
the data set defined in Listing 11-3

When implementing an NN or any supervised learning method, always

remember that the larger the training data set the better the approximation

or mapping the algorithm will be able to make from the tabular function

defined in the training set to the one being built using the weight vector and

bias. In Listing 11-3, our training data set is very small, so the Perceptron

will most likely make classification mistakes on new incoming data. It did

not happen in this example, but it could happen when adding data that

significantly differs from the type of data in that small training set.

Chapter 11 Neural Networks

427

�Adaline & Gradient Descent Search
Adaline (Adaptive Linear Neuron) is a NN model proposed by Bernard

Widrow in 1960 whose network structure is the same as that of the

Perceptron. The difference between Perceptron and Adaline lies in the

learning rule used. The Adaline algorithm uses a learning rule known by

several names: Delta Rule, Gradient Descent, or Least Mean Square (LMS).

This learning rule is typically incorporated in multi-layer networks

and especially in the backpropagation algorithm. Thus, Adaline serves

as a good introduction to multi-layer networks and to the popular

backpropagation algorithm.

The main idea with the Delta Rule is to minimize the squared error

carried out when classifying a training data x:

E
y y

x
x x=
- ¢()2

2

In this case, yx is the correct classification for training data x and y ' x is

the classification outputted by the NN.

Adaline is an unthresholded NN, meaning it does not consider a bias

or threshold in its learning stage. Therefore, during training, its output

(for a data point x) is simply computed as the sum of wixi. To achieve a

minimization of the squared error carried out when classifying a training

data x, the algorithm relies on the fact that the gradient (vector formed by

all partial derivatives) of a function indicates the direction of the steepest

increase of E (Figure 11-7). Thus, by multiplying the gradient by -1 we will

obtain the direction of the steepest decrement of E from any point, which

will lead us to the minimum error carried out.

Chapter 11 Neural Networks

428

Thus, Adaline’s training method is a type of gradient descent search

(GDS) algorithm that determines the best weight vector by minimizing

the global error E (remember Ex relates to the error carried out just on

classifying training data x). In Adaline, the weight vector will initially

contain random variables, and then these weights will be modified by

taking small steps and moving downhill until we reach a point in the

error surface that we consider “acceptable”; usually a small value for the

maximum error on any training data point is considered acceptable.

A gradient descent search is capable of finding the global minimum of a

differentiable function.

To comprehend a little bit better the gradient descent method, let’s see

how it works by revising the following graphic (Figure 11-8). Also, let us consider

that in a function f R R: ® , or a function of one variable x, the equation for

updating the minimum value sought by the gradient descent method would be

x x
f x

x
= - *

¶ ()
¶

a .

Figure 11-7.  The gradient denotes the direction of maximum
increment of a function; its negation (blue arrow) indicates the
direction of maximum decrement

Chapter 11 Neural Networks

429

In Figure 11-8, the GDS starts at point p1 = f(x). According to the

update formula, it calculates the derivative of f evaluated at point x and

multiplied by the learning rate α. .ecause the derivative indicates the slope

of f—and in this particular case the red line, which is the tangent line to

point p1—has a positive slope, then a*
¶ ()
¶
f x

x
 will be a positive value

(recall a > 0) . Hence, the new value for x, let it be x', will be shifted to the

left, and the new p2 = f(x') will satisfy that p2 < p1. This procedure will

continue until we reach the minimum, assuming α is small enough and

will take smaller steps as it approaches the minimum; in other words, x

will be slowly shifted to the left on new iterations.

Going back to the general case, and in order to find the steepest

decrease of the error, we express E (the sum of all errors upon classifying

each training data) in terms of w (weight vector). Notice that setting E in

terms of w is always possible because ¢ =y w xx i i for any given training data

x; therefore, the function to minimize will be the following:

E w
y y

i

n

i i

() =
- ¢()

=
å

1

2

2

Figure 11-8.  Functioning of the gradient descent method

Chapter 11 Neural Networks

430

Hence, we will find the gradient of E(w)—let it be Ñ ()E w —and we will

consider it in Adaline’s learning rule, which would be the following:

w w E w= - *Ñ ()a

Notice the sign on the rule is a minus and not a plus. That’s because we

must negate the gradient, -Ñ ()E w , in order to minimize E(w). As it was

previously defined in the Perceptron, α is the learning rate that controls

how fast we move toward a solution. The previous formula relates to the

way we update the weight vector w, but how should we update a single

weight? The rule for a single weight would be this:

w w
E

wi i
i

= - *
¶
¶

a

We substituted the gradient with its equivalent, the partial derivatives

with respect to every weight wi. After developing the term ¶
¶
E

wi

 by

calculating some derivatives and applying the chain rule, we will finally

have the complete learning rule for GDS:

¶
¶

= - ¢()* -()
=
åE

w
y y x

i j

n

j j ij
1

As before, yj represents the correct classification of training data j, yj
′

represents the classification outputted by the NN, and xij represents the ith

input value of training data j—the input of training data j associated with

weight wi.

Even though GDS is, from a theoretical or mathematical perspective,

an elegant method for finding a local minimum of a function, in practice

it tends to be quite slow. Notice that to update a single weight you would

need to go over the entire training data set, which could contain tens of

Chapter 11 Neural Networks

431

thousands of training examples, so that would imply a lot of computations.

Thus, for this practical reason, we typically use an approximated variant

of GDS as the learning rule of Adaline; this variant is presented in the

next section.

�Stochastic Approximation
Stochastic gradient descent (SGD) or incremental gradient descent is

an approximation procedure supplemental to GDS where weights are

updated incrementally after the calculation of the error of each training

data. Thus, it saves us from the computational trouble of having to loop

over the entire training data set to compute the value of every weight. This

is, in practice, the method used in Adaline and in other NN algorithms

(backpropagation) that minimize the squared error by considering the

correct classification of a training data and its output in the NN. The

learning rule that uses stochastic approximation is known as the Delta

Rule, the Adaline Rule, or the Widrow-Hoff Rule (after its creators). In

Figure 11-9 we can see a very intuitive idea of the differences between GDS

and SGD. In the first we move directly to the minimum of the error surface

so we follow a straight path, while in the latter we move like a drunk person

would; sometimes we lose balance and move to incorrect positions, but

eventually we end up at the same point as GDS.

Figure 11-9.  To the left the direct path that GDS would follow over
the error surface to get to a minimum; to the right the “unbalanced”
path followed by SGD

Chapter 11 Neural Networks

432

The update rule using SGD would be as follows:

w w y y xi i i i i= + * - ¢()*a

Notice the similarity between this learning rule and the one described

before for the Perceptron—it looks very similar. What’s the main

difference? The main difference is in the output of the NN while training.

In Adaline we do not consider any threshold or activation function;

therefore, ¢ =y w xi i i .

Note W hen you combine several Adalines in a multi-layer network
you obtain what is known as a Madaline.

�Practical Problem: Implementing Adaline NN
After examining the theory behind Adaline’s algorithm, it’s time to finally

implement the procedure in C#. For this purpose, we will create the class

Adaline, shown in Listing 11-4.

Listing 11-4.  Adaline Class

public class Adaline :SingleNeuralNetwork

 {

 �public Adaline(IEnumerable<TrainingSample>training

Samples, int inputs, double learningRate)

 : base(trainingSamples, inputs, learningRate)

 { }

public override void Training()

 {

 double error;

Chapter 11 Neural Networks

433

 do

 {

 error = 0.0;

foreach (vartrainingSample in TrainingSamples)

 {

var output = LinearFunction(trainingSample.Features);

varerrorT = Math.Pow(trainingSample.Classification - output, 2);

 if (Math.Abs(errorT) < 0.001)

 continue;

 for (var j = 0; j < Inputs; j++)

 �Weights[j] += LearningRate *

(trainingSample.Classification - output) *

trainingSample.Features[j];

error = Math.Max(error, Math.Abs(errorT));

}

 }

 while (error > 0.25);

 }

 public double LinearFunction(double [] values)

 {

var summation = (from i in Enumerable.Range(0, Weights.Count)

 select Weights[i]*values[i]).Sum();

 return summation;

 }

 public override double Predict(double[] features)

 {

 return LinearFunction(features) >0.5 ?1 : 0;

 }

 }

Chapter 11 Neural Networks

434

This class inherits from SingleNeuralNetwork and contains three

methods. The second method is LinearFunction(), which simply

computes the weighted sum wixi. Remember, there’s a difference between

the prediction stage and the training stage in an Adaline. In the training

or learning phase we compute the output of the NN as a weighted sum,

but in the prediction phase we must use a categorical function to classify

new incoming data; therefore, the prediction function is different from

the learning function. In this case, our prediction function computes the

weighted sum of the new data and outputs either 1 or 0 depending on

whether the result of the weighted sum outputted a value greater than 0.5

or less than it.

The Training() method consists of a do ... while() statement

where we verify if the maximum error carried out when classifying any

training data exceeds 0.25. If it does, the loop will continue; otherwise,

we will consider ourselves as being satisfied, and the method will end.

Furthermore, we will not alter the weights if the error when classifying a

training data is below 0.001. In Figure 11-10 we can see the result obtained

after executing our Adaline on a small set of data.

Figure 11-10.  Result obtained after executing our Adaline on a small
data set

Chapter 11 Neural Networks

435

If we are curious about the functioning of the algorithm, we could set

a breakpoint on the line while (error > 0.25); and then see how the

maximum error diminishes after each iteration. The following values were

the ones obtained on a series of iterations when we executed Adaline on

the same training data set used in the Perceptron implementation: 3.2386,

1.7957, 1.0569, 0.6973, 0.5822, 0.5050, 0.4523, 0.4144, 0.3861, 0.3640,

0.3463, 0.3315, 0.3189, 0.3078, 0.2980, 0.2891, 0.2810, 0.2735, 0.2676,

0.2614, 0.2552, and 0.2491.

�Multi-layer Networks
A multi-layer network is a type of NN in which we have multiple NNs

grouped in layers and connected from one layer to the other. The NNs we

have described so far (Perceptron, Adaline) were constituted by two layers:

an input layer of multiple nodes and an output layer of a single node. The

multi-layer NN shown in Figure 11-11 is composed of three layers: input,

hidden, and output. It’s also a feed-forward NN; in other words, all signals

go from nodes in one layer to nodes in the next layer. Thus, a multi-layer

NN is constructed by putting together many of our simple “neurons”

arranged into layers and having the output of a neuron as the input of

another neuron in the next layer.

Chapter 11 Neural Networks

436

Except for the input layer, which receives its inputs from the

components (xi) of the training data, all other layers receive their inputs

from the activation function of the previous layer. Every edge in a multi-

layer NN represents a weight, and any edge leaving a node has its weight

value multiplied by the activation function value of the node from which it

originates. Thus, any node from layer L, where L > 0 (not the input layer),

will have its input or activation value computed as follows:

A g w Al i
j

n

l j i l j, , , ,=
æ

è
ç

ö

ø
÷

=
- -å

1
1 1

Figure 11-11.  Multi-layer, feed-forward, fully connected NN
consisting of three layers: one for input units, one for hidden units
(gray) and one for output units (green). Sometimes the input layer is
not considered as a layer.

Chapter 11 Neural Networks

437

where n is the total number of units in layer L - 1, Al,i indicates the activation

value of unit i at layer L, wl j i-1, , is the weight or edge going from unit j of

layer L – 1 to unit i of layer L, and g is the activation function applied in the

NN. Typically, g is chosen as the technically logical sigmoid function whose

values range in the interval [0, 1], and it is computed as follows:

sigmoid x
e x() =

+ -

1

1

A very important property of the sigmoid function is that it’s

differentiable and continuous; remember that this property is significant to

us because we will be calculating gradients and consequently derivatives.

One key element with multi-layer NNs is that they are capable of

classifying non-linearly separable data sets. As a result, functions like

XOR (Figure 11-12) that cannot be classified by linear NNs such as

the Perceptron can be correctly classified by a simple multi-layer NN

containing just one hidden layer.

Figure 11-12.  XOR function; there’s no line that would divide the red
points from the green points

Chapter 11 Neural Networks

438

We could think of multi-layer NNs as powerful mathematical functions

able to approximate any tabular function we may have on the training data

set. Each hidden layer represents a function, and the combination of layers

can be seen as the composition of functions in mathematics. Thus, having

n hidden layers could be seen as having the mathematical function

o(h1, h2 (… hn(i(x)) …)) where o is the output layer, i the input layer, and

hi the hidden layers.

Traditional NNs have a single hidden layer, and when they have more

than one layer we are dealing with deep neural networks and deep learning.

Table 11-1 illustrates the relationship between the number of hidden layers

and the capacity of the resulting NN.

Table 11-1.  Relationship Between Number of Layers and Power of NNs

Number Hidden Layers Result

None Only capable of representing linear separable functions

or decisions

1 Can approximate any function that contains a

continuous mapping from one finite space to another

2 Can represent an arbitrary decision boundary to

arbitrary accuracy with rational activation functions

and can approximate any smooth mapping to any

accuracy

>2 Additional layers can learn complex representations

(sort of automatic feature engineering).

Chapter 11 Neural Networks

439

It has been proven that a multi-layer NN with a single hidden layer

is capable of learning any function. Hence, one may ask the question, if

with a single hidden layer we can learn any function, then why do we need

deep learning? The idea is that while the universal approximation theorem

proves that, indeed, having a single hidden layer is enough for learning any

continuous function, it does not state how easy it would be to complete

this learning. Thus, for efficiency and accuracy reasons, we may need to

add complexity to our NN architecture and include additional hidden

layers in order to get a decent solution in a decent time.

The number of neurons in hidden layers is another important issue

to consider when deciding on our NN architecture. Even though these

layers do not directly interact with the external environment, they do have

a remarkable influence on the final output. Both the number of hidden

layers and the number of neurons in hidden layers must be carefully

thought out.

Using too few neurons in the hidden layers will result in something

called underfitting. Underfitting occurs when there are too few neurons in

the hidden layers to effectively perceive signals in a complicated data set.

Using too many neurons in hidden layers can result in several problems,

the best known of which is overfitting, or when the weights adjust too well

to the training data set and as a result the NN is unable to correctly predict

new incoming data.

Note  The universal approximation theorem states that a feed-forward
network with a single hidden layer containing a finite number of
neurons can approximate any continuous function; this allows NNs to
be considered as universal approximators.

Chapter 11 Neural Networks

440

�Backpropagation Algorithm
As occurs in Adaline NNs, multi-layer NNs using backpropagation

typically rely on the gradient descent method, and more specifically on the

stochastic gradient approximation method, for adjusting the weights of

the NN. They also seek to achieve the same goal as Adaline’s algorithm—

minimizing the error in the quadratic difference between the true

classification of the data and the network output.

The idea with the backpropagation algorithm is that it serves as a

mechanism for transporting the error taking place at the output layer

to the final hidden layer (adjusting weights on the way), and from there

to the previous hidden layer, and so on, backward; in other words, if o

is the output layer and h1, h2, …, hn denote the hidden layers, then the

backpropagation algorithm carries on the error from the output layer

(equivalent to having the weights adjusted or the error minimized), from

o to hn, then from hn to hn-1 , and so on until the error adjustment process

reaches h1. This functioning justifies the name backpropagation, because

the output is computed from the input layer passing through layers

h1, h2, …, hn and ending in the output layer, and then, once an output has

been obtained, the weights are adjusted backward from output to the first

hidden layer.

As mentioned before, the backpropagation algorithm relies on the

gradient descent method, as does the Adaline method. The first difference

we can call out between these two procedures is that with Adaline we

only had one output node, but in multi-layer NNs and therefore in

backpropagation we could be dealing with multiple output nodes arranged

in an output layer; thus, the total error must be calculated as follows:

E w

y y
i

n

j

k

ij ij

() =
- ¢()

= =
åå

1 1

2

2

Chapter 11 Neural Networks

441

where n is the cardinality of the training data set, k the number of units in

the output layer, yij the correct classification of training data i at node and

position j from the output layer, and y'ij the classification outputted for

training data i at node j in the output layer of our NN.

The learning rule for every node in a backpropagation procedure

resembles that of the Perceptron and Adaline. The rule, according to a

stochastic approximation, is as follows:

w w xij ij j ij= + * *a d

In this case, wij indicates a weight going from node i into node j, α is the

learning rate, xij is the activation value going from node i into node j (in the

input layer these values coincide with the input values), and δj is the error

at node j. Learning rules previously described did not have two subindices

(wij) as they do now in the weight update rule of the backpropagation

algorithm. Let’s recall that backpropagation is intended to work on multi-

layer NNs; therefore, we will have many nodes connected to other nodes

so each edge ij has an associated wij.

So, we initially have every variable in the weight update formula

except for δj; this term represents the error on classification and is the one

we need to derivate with respect to the weights to find the gradient, and

as a result the steepest descent with respect to w in the error surface. As

stochastic approximation does, we iterate through every training data one

at a time, which justifies that

dj
d

i
ij ij

E

w x
= -

¶
¶ *å

Chapter 11 Neural Networks

442

where Ed is the error associated with classifying training data d and wij is

the weights associated with unit j. We know the formula for the global error

E(w), but that’s not the formula we derivate to minimize w. Remember that

stochastic approximation works on one training data at a time; therefore,

we derivate the following equation:

E

y y

d
j

k

j j

=
- ¢()

=
å

1

2

2

In this case, k is the total number of nodes in the output layer, yj is

the correct classification for node j, and y'j is the value outputted by our

NN. Applying the chain rule and considering the case where the node on

which we calculate the error term is either an output or a hidden unit, we

can reach the next formulas:

•	 For nodes in the output layer,

dj
d

i
ij ij

j j j j

E

w x
y y y y= -

¶
¶ *

= - ¢()* ¢ * - ¢()å
1

•	 This implies,

w w y y y y xij ij j j j j ij= + * - ¢()* ¢ * - ¢()*a 1

•	 For nodes in the hidden layers,

d dj
d

i
ij ij

j j
k Stream

k kj

E

w x
y y w= -

¶
¶ *

= ¢ * - ¢()* *
å å

Î

1

Chapter 11 Neural Networks

443

•	 Stream, in this case, is the set of nodes whose inputs

correspond to the output of node j. The previous

formula implies that

w w y y w xij ij j j
k Stream

k kj ij= + * ¢ * - ¢()* * *
Î
åa d1

Note that the weight-update formulas obtained assume we have sigmoid

units; in other words, that we are using the sigmoid function as an

activation function in every node of the NN. The general form of the

weight-update rule for output and hidden layers respectively would be as

follows:

w w y y G y xij ij j j j ij= + * - ¢()* ¢()*a

w w G y w xij ij j
k Stream

k kj ij= + * ¢()* * *
Î
åa d

where G(yj
′) represents the derivative of the activation function evaluated

at the value outputted by the activation, as we know this value can be

expressed in terms of w. Recall that the sigmoid function’s derivative is

F(x) * (1 - F(x)); this is very easy to compute and work with and is one of

the main reasons the sigmoid function is the classical activation function

for multi-layer neural networks.

Figure 11-13 illustrates another popular activation function, the

hyperbolic tangent, a symmetrical function whose output is in the range

[-1;1] and that is denoted and calculated as follows:

tanh
sinh

cosh
x

x

x

e e

e e

x x

x x() = ()
()

=
-
+

-

-

Chapter 11 Neural Networks

444

Nowadays, a popular activation function that is replacing the sigmoid

function and other similar smooth functions is the rectified linear unit,

or ReLU (Figure 11-14). Unlike sigmoid and the smooth functions, ReLU

doesn’t have the shortcoming of the vanishing gradient issues seen in

deep learning, such as when training a NN of more than three layers. Its

equation is extremely simple:

ReLU x x() = ()max ,0

In other words, ReLUs let all positive values pass through unchanged,

but just set any negative values to 0. Although newer activation functions

are gaining traction, most deep neural networks these days use ReLU or

one of its closely related variants.

Figure 11-13.  Hyperbolic tangent function, which outputs values in
the range (-1;1)

Chapter 11 Neural Networks

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

445

To comprehend a little bit better the flow backward in the

backpropagation algorithm and the nodes or edges in which our variables

will reside, let’s examine Figure 11-15.

Figure 11-14.  ReLU function

Figure 11-15.  Flow backward in the backpropagation algorithm.
Weight wij is updated by considering the error term residing in node j.

Now that we have a theoretical background on the functioning of

the backpropagation algorithm, in the next section we will implement

a MultiLayerNetwork class representing multi-layer NNs, and we will

develop our backpropagation algorithm as a method of that class.

Chapter 11 Neural Networks

446

�Practical Problem: Implementing
Backpropagation & Solving the XOR Problem
To properly encode the multi-layer NN paradigm, we will create the

class shown in Listing 11-5. We’ll also apply an object-oriented approach

to include a Layer class for representing all nodes arranged as a list of

sigmoid units.

Listing 11-5.  MultiLayerNetwork and Layer Classes

public class MultiLayerNetwork

 {

 public List<Layer> Layers { get; set; }

 public List<TrainingSample>TrainingSamples{ get; set; }

 public intHiddenUnits{ get; set; }

 public intOutputUnits{ get; set; }

 public double LearningRate{ get; set; }

 private double _maxError;

 �public MultiLayerNetwork(IEnumerable<TrainingSample>tra

iningSamples, int inputs, inthiddenUnits, int outputs,

double learningRate)

 {

 Layers = new List<Layer>();

TrainingSamples = new List<TrainingSample>(trainingSamples);

LearningRate = learningRate;

HiddenUnits = hiddenUnits;

OutputUnits = outputs;

CreateLayers(inputs);

 }

Chapter 11 Neural Networks

447

private void CreateLayers(int inputs)

 {

Layers.Add(new Layer(HiddenUnits, TrainingSamples,

LearningRate, inputs, TypeofLayer.Hidden));

Layers.Add(new Layer(OutputUnits, TrainingSamples,

LearningRate, HiddenUnits, TypeofLayer.OutPut));

 }

 public List<double>PredictSet(IEnumerable<double[]> objects)

 {

var result = new List<double>();

foreach (varobj in objects)

result.Add(Predict(obj));

 return result;

 }

 public Layer OutPutLayer

 {

 get { returnLayers.Last(); }

 }

 public Layer HiddenLayer

 {

 get { returnLayers.First(); }

 }

 }

public class Layer

 {

 public List<SigmoidUnit> Units { get; set; }

 public TypeofLayer Type { get; set; }

Chapter 11 Neural Networks

448

 �public Layer(int number, List<TrainingSample>tr

ainingSamples, double learningRate, int inputs,

TypeofLayertypeofLayer)

 {

 Units = new List<SigmoidUnit>();

 Type = typeofLayer;

 for (vari = 0; i< number; i++)

Units.Add(new SigmoidUnit(trainingSamples, inputs, learningRate));

 }

 }

 public enumTypeofLayer

 {

 Hidden, OutPut

 }

The Layer class contains two properties, a List of SigmoidUnit (we

will soon examine this class) and a TypeofLayer Type that is an enum with

two possible values: Hidden and OutPut. In the class constructor we simply

add as many nodes to the layer as the number argument specifies. In the

MultiLayerNetwork class we include properties to obtain the HiddenLayer

or, if there’s more than one, the first hidden layer and the OutputLayer.

The constructor of the MultiLayerNetwork class receives as

arguments the training data set, the number of inputs, hidden nodes,

and outputs; and the learning rate. It creates the set of layers by calling

the CreateLayers() method. Finally, the PredictSet() method

predicts or classifies a set of data received as an argument. The

class also includes some properties or fields, most of which are self-

descriptive. The _maxError field will be used to indicate the maximum

error when classifying any training data in an iteration or epoch of the

backpropagation algorithm.

Chapter 11 Neural Networks

449

Note A n iteration in a NN’s learning algorithm is typically known as
an epoch.

The SigmoidUnit class inherits from SingleNeuralNetwork, and

its code is very simple (Listing 11-6). It merely overrides the Predict()

method to compute the value of the sigmoid function with the features of

the input data and the weight vector.

Listing 11-6.  SigmoidUnit Class, Which Inherits from the

SingleNeuralNetwork Abstract Class

public class SigmoidUnit :SingleNeuralNetwork

 {

 public double ActivationValue{ get; set; }

 public double ErrorTerm{ get; set; }

 �public SigmoidUnit(IEnumerable<TrainingSample>training

Samples, int inputs, double learningRate)

 : base(trainingSamples, inputs, learningRate)

 { }

 public override double Predict(double [] features)

 {

var result = 0.0;

 for (vari = 0; i<features.Length; i++)

 result += features[i] * Weights[i];

 �return ActivationValue = 1/(1 + Math.Pow(Math.E,

-result));

 }

 }

Chapter 11 Neural Networks

450

The Training() method representing the backpropagation algorithm

is illustrated in Listing 11-7. In this method, we iterate over the training data

set until the maximum error when predicting any training data becomes

less than 0.001. We predict the output of the NN, and, because we are using

SigmoidUnit nodes, the resulting value will be stored, as Listing 11-8

indicates, in the public property ActivationValue. Once this value has

been calculated, we loop over the output units, computing their error

terms, and later over nodes in the hidden layers, also computing their error

terms. Recall from the last section that their computation is different. In

the UpdateWeight() method we update the weights, and at the end of the

loop we update the maximum error when classifying any training data.

Listing 11-7.  Training() Method Representing Backpropagation

Algorithm

 public void Training()

 {

 _maxError = double.MaxValue;

 while (Math.Abs(_maxError) > .001)

 {

foreach (vartrainingSample in TrainingSamples)

 {

Predict(trainingSample.Features);

 // Error term for output layer ...

 for (vari = 0; i<OutPutLayer.Units.Count; i++)

 {

OutPutLayer.Units[i].ErrorTerm = FunctionDerivative

(OutPutLayer.Units[i].ActivationValue, TypeFunction.Sigmoid) *

Chapter 11 Neural Networks

451

 �(trainingSample.

Classifications[i] -

OutPutLayer.Units[i].

ActivationValue);

 }

 // Error term for hidden layer ...

 for (vari = 0; i<HiddenLayer.Units.Count; i++)

 {

varoutputUnitWeights = OutPutLayer.Units.Select(u =>u.

Weights[i]).ToList();

var product = (from j in Enumerable.Range(0, outputUnitWeights.Count)

 �select outputUnitWei

ghts[j]*OutPutLayer.

Units[j].ErrorTerm).

Sum();

HiddenLayer.Units[i].ErrorTerm = FunctionDerivative

(HiddenLayer.Units[i].ActivationValue, TypeFunction.Sigmoid) *

product;

 }

UpdateWeight(trainingSample.Features, OutPutLayer);

UpdateWeight(trainingSample.Features, HiddenLayer);

_maxError = OutPutLayer.Units.Max(u =>Math.Abs(u.ErrorTerm));

 }

 }

In order to make our method as flexible as possible and interact easily

with different activation functions, we coded the FunctionDerivative()

method (Listing 11-8), which receives an activation value and a type of

function (encoded as an enum) and outputs the derivative of the activation

function evaluated at the activation value.

Chapter 11 Neural Networks

452

Listing 11-8.  FunctionDerivative() Method and Enum Declaration

with Activation Functions Previously Mentioned

private double FunctionDerivative(double v, TypeFunctionfunction)

 {

 switch (function)

 {

 case TypeFunction.Sigmoid:

 return v*(1 - v);

 case TypeFunction.Tanh:

 return 1 - Math.Pow(v, 2);

 case TypeFunction.ReLu:

 return Math.Max(0, v);

 default:

 return 0;

 }

 }

public enumTypeFunction

 {

 Sigmoid, Tanh, ReLu

 }

By combining the previous method with the following (Listing 11-9)

sibling classes of the SigmoidUnit class (shown in Listing 11-6), we can

effortlessly change our model from one type of unit (Sigmoid, Tanh,

ReLU) to the other and experiment with different types of activation

functions.

Chapter 11 Neural Networks

453

Listing 11-9.  Hyperbolic Tangent and ReLU Units

public class TanhUnit :SingleNeuralNetwork

 {

 public double ActivationValue{ get; set; }

 public double ErrorTerm{ get; set; }

 �public TanhUnit(IEnumerable<TrainingSample>training

Samples, int inputs, double learningRate)

 : base(trainingSamples, inputs, learningRate)

 { }

 public override double Predict(double [] features)

 {

var result = 0.0;

 for (vari = 0; i<features.Length; i++)

 result += features[i] * Weights[i];

ActivationValue = Math.Tanh(result);

 return ActivationValue;

 }

 }

public class ReLu :SingleNeuralNetwork

 {

 public double ActivationValue{ get; set; }

 public double ErrorTerm{ get; set; }

 �public ReLu(IEnumerable<TrainingSample>trainingSamples,

int inputs, double learningRate)

 : base(trainingSamples, inputs, learningRate)

 { }

Chapter 11 Neural Networks

454

 public override double Predict(double [] features)

 {

var result = 0.0;

 for (vari = 0; i<features.Length; i++)

 result += features[i] * Weights[i];

 return Math.Max(0, result);

 }

 }

Note that all “unit” classes can be grouped better depending

on the hierarchy model used. For example, all classes include an

ActivationValue and ErrorTerm properties that could be encapsulated in

an upper class, and as a result we would obtain a better class design. This

object-oriented design task will be left to the reader.

The UpdateWeight() method (Listing 11-10) is a direct translation of

the weight-update rules presented in the last section. This method uses the

ErrorTerm public property that we incorporated in the SigmoidUnit class

to store the error of every node of the NN.

Listing 11-10.  UpdateWeight() Method

 private void UpdateWeight(double[] features, Layer layer)

 {

varactivationValues =

layer.Type == TypeofLayer.Hidden ? features : HiddenLayer.

Units.Select(u =>u.ActivationValue).ToArray();

foreach (var unit in layer.Units)

 {

 for (vari = 0; i<unit.Weights.Count; i++)

Chapter 11 Neural Networks

455

unit.Weights[i] += LearningRate * unit.ErrorTerm *

activationValues[i];

 }

 }

Finally, in order to predict and classify new incoming data in the multi-

layer NN, we code the Predict() method (Listing 11-11), which calculates

the activation values from the nodes of each layer, starting from the input

nodes in a feed-forward manner until it reaches the output layer. Then,

to output a classification, it considers the set of values at the output layer

and either outputs a classification that is mapped to a set of values (0, 1 in

this case, depending on whether or not the outputted value is greater

than 0.5) or simply outputs the index of the node in the output layer with

the highest value; that’s the purpose of the ReturnIndexByHalf() and

ReturnIndexByMax() methods, respectively, also illustrated in Listing 11-11.

Notice that the first method is developed such that it thinks about a NN

with an output layer of a single node.

Listing 11-11.  Classification-related Methods

 public double Predict(double[] features)

 {

 for (vari = 0; i<Layers.Count; i++)

 {

foreach (var unit in Layers[i].Units)

 {

varactivationValues =

i == 0 ? features : HiddenLayer.Units.Select(u =>u.

ActivationValue).ToArray();

Chapter 11 Neural Networks

456

unit.Predict(activationValues);

 }

 }

 return ReturnIndexByHalf();

 }

 private intReturnIndexByHalf()

 {

var unit = OutPutLayer.Units.First();

 return unit.ActivationValue< 0.5 ? 0 : 1;

 }

 private intReturnIndexByMax()

 {

var max = OutPutLayer.Units.Max(u =>u.ActivationValue);

 �return OutPutLayer.Units.FindIndex(0, unit =>unit.

ActivationValue == max);

 }

In order to test our multi-layer NN, we will see how it correctly

classifies data from the XOR problem by having a NN structure composed

of a hidden layer of three nodes and an output layer of a single node.

We will also add a little modification to our TrainingSample class to

contemplate the case where a training data may have a classification

vector instead of a single value. A classification vector could be binary;

for instance, (1, 0, 0) could indicate that the training data with which it

associates is to be classified as red and not green or blue.

Both the new TrainingSample class and the setting for testing a multi-

layer NN on the XOR problem are illustrated in Listing 11-12.

Chapter 11 Neural Networks

457

Listing 11-12.  Slight Modification to TrainingSample Class and

Setting Up for Testing Our MultiLayerNetwork Class for the XOR

Problem

public class TrainingSample

 {

 public int Classification { get; set; }

 public List<double> Classifications { get; set; }

 public double[] Features { get; set; }

 �public TrainingSample(double [] features, int

classification, IEnumerable<double>clasifications = null)

 {

 Features = new double[features.Length];

Array.Copy(features, Features, features.Length);

 Classification = classification;

 if (clasifications != null)

 Classifications = new List<double>(clasifications);

 }

 }

vartrainingSamplesXor = new List<TrainingSample>

 {

 �new TrainingSample

(new double[] {0, 0},

-1, new List<double>

{ 0 }),

 �new TrainingSample

(new double[] {1, 1},

-1, new List<double>

{ 0 }),

Chapter 11 Neural Networks

458

 �new TrainingSample

(new double[] {0, 1},

-1, new List<double>

{ 1 }),

 �new TrainingSample

(new double[] {1, 0},

-1, new List<double>

{ 1 }),

 };

var multilayer = new MultiLayerNetwork(trainingSamplesXor, 2,

3, 1, 0.01);

vartoPredict = new List<double[]>

 {

 new double[] {1, 1},

 new double[] {1, 0},

 new double[] {0, 0},

 new double[] {0, 1},

 new double[] {2, 0},

new[] {2.5, 2},

new[] {0.5, 1.5},

 };

var predictions = multilayer.PredictSet(toPredict);

 for (vari = 0; i<predictions.Count; i++)

Console.WriteLine("Data: ({0} , {1}) Classified as: {2}",

toPredict[i][0], toPredict[i][1], predictions[i]);

The result obtained after executing the code from Listing 11-12 in a C#

console application is shown in Figure 11-16.

Chapter 11 Neural Networks

459

Up to this point we have examined different models of NNs; we

examined the Perceptron model, which is unable to distinguish the

scenario where we have more than two classes that cannot be separated

by a hyperplane. We know Adalines are based on the gradient descent

search method, which allows them to differentiate non-linearly separable

data sets, and their learning rule serves as the learning paradigm for the

backpropagation algorithm. Finally, we learned about multi-layer NNs,

which use a multi-layer structure—which simulates the composition

of mathematical functions——and are considered as universal

approximators. In the next chapter, we will examine a very interesting

application of NNs, one in which an AI will be able to understand our

handwritten digits; such an application is called handwritten digit

recognition.

�Summary
In this chapter, we studied artificial neural networks, a powerful AI device

capable of solving multiple problems by learning patterns acquired

from labeled training data sets and by means of approximating a tabular

function represented by the training data set. We described how learning

is, at its core, highly related to optimization problems since it can be seen

as a continuous improvement of doing some task. Equivalently, it can

be viewed as a way of minimizing the error carried out while being in a

Figure 11-16.  Result obtained after executing the code from Listing 11-12

Chapter 11 Neural Networks

460

learning stage that ends after several epochs or iterations or after having

achieved a suitable learning error that would allow us to eventually

predict, with a small error factor, the classification of new incoming data.

We began by describing the Perceptron, then moved to Adalines, whose

learning rule resembles that of multi-layer NNs, and proposed an

object-oriented approach for implementing all of these NNs

Chapter 11 Neural Networks

461© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_12

CHAPTER 12

Handwritten Digit
Recognition
In Chapter 11 we studied artificial neural networks (NNs), a supervised

learning paradigm that mimics the way neurons in our brain work. The

learning process in NNs consists of approximating a function described

in a tabular manner via a training data set containing features of objects

(inputs to the function to be approximated) and their corresponding

classification (outputs of the function).

As described before, NNs are capable of learning a function described

in a training data set by adjusting the set of weights linking their neurons. At

the same time, neurons can be arranged in different layers, and the purpose

of each layer is to improve the mathematical power of the NN. Recall that

an NN is basically a mathematical function and that the addition of layers is

similar to the operation of the composition of functions in mathematics; in

other words, every layer can be seen as a function, and the NN as

F(L1(L2(… (LN(x)))) where F is the NN and Li the layers within the NN.

NNs can be applied to multiple problems of science. Among these

problems, it is worth mentioning face recognition, which is very popular

nowadays and is being incorporated in mobile phones and other

electronic devices, pattern recognition, shape recognition, autonomous

vehicle driving, and the problem that will be the focus point of this chapter,

optical character recognition (OCR), and, more specifically, a subproblem

of OCR known as handwritten digit recognition (HDR).

462

Why choose HDR over all other possible problems to present as an

illustrative example of NNs? First, HDR is not as far as you might imagine

from the practical problems we examined in Chapter 11. Furthermore, a

training data set for HDR typically consists of low-resolution images that can

be easily reproduced by anyone, and the feature extraction process is very

easy to accomplish. As we shall see soon, the entire image will be considered

as input to the NN, and the image-processing stage will not be complicated

for this problem, so it will not deviate us from our core topic, NNs.

In this chapter, we will implement an application in Windows Forms

that will allow us to “hand paint” a digit and will give us the correct

classification for that drawn digit. For example, if the drawn digit is 1, then

the output should be 1; if it’s 2 then output should be 2, and so on. In the

back end, this application will use a slightly modified version of the multi-

layer NN introduced in Chapter 11.

Note  NNs can be applied not only as supervised learning methods
but also as unsupervised learning and reinforcement learning
methods, which are other paradigms of machine learning.

�What Is Handwritten Digit Recognition?
The recent digital revolution brought a dramatic change to our perspective

of concepts such as communication and connectivity. Today, biometrics,

the science of identifying or verifying the identity of a person based

on physiological or behavioral characteristics, is playing a key role in

authentication problems. Physiological characteristics could include

fingerprints, iris, hand geometry, or facial image. Behavioral characteristics

can be actions carried out by a person in a particular manner and

may include recognition of signature, machine-printed characters,

handwriting, and voice.

Chapter 12 Handwritten Digit Recognition

463

Some of the applications of OCR include postal address system,

signature verification system, recognition of characters from form-filled

applications, and so forth. OCR is basically of two types: offline character

recognition and online character recognition. In the first case, an image

coming from a scanner is typically accepted as input, and the recognition

procedure tends to be more difficult than in the latter case because of the

unavailability of contextual information and lack of prior knowledge such

as text position, size of text, order of strokes, start point, stop point, and

so on. In online character recognition, the system starts accepting input

from the moment a pen from a hardware device, such as a graphic tablet,

light pen, and so on, begins working; lots of information becomes available

during the input process, such as current position, moment’s direction,

start points, stop points, and stroke orders. Handwritten character

recognition usually comes under this category even though applications

for the other one also exist.

Handwriting is the human way of communicating with each other

using written media. With advancements in technology and developments

in science, there have been a lot of changes in technology in terms of

communication with computers through handwriting. Nowadays, a

computer program is typically needed that is capable of receiving and

recognizing an input in the form of handwriting data; this is what is known

as handwritten recognition.

Handwritten digit recognition is a subset of handwritten recognition

whose main purpose is to recognize handwritten digits; thus, the universe

of characters in HDR is exclusively {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and no other

character will be correctly recognized.

Note O ne of the most popular data sets for HDR is MNIST; divided
in two subsets, one of them serves for training your NN and the other
for testing its accuracy. It can be downloaded from http://yann.
lecun.com.

Chapter 12 Handwritten Digit Recognition

http://yann.lecun.com/
http://yann.lecun.com/

464

�Training Data Set
In order to train our multi-layer NN to recognize handwritten digits, we

created the training data set shown in Figure 12-1.

Figure 12-1.  Small training data set consisting of 30 images of 30 x
30 resolution

This self-created training data set consists of merely 30 images

containing handwritten digits in the range [1, 3], ten images for each digit.

In this practical problem, we will not be incorporating the recognition of

all digits; rather, we will focus on recognizing digits 1, 2, and 3. As we shall

see very soon, extending the NN herein detailed to recognize all digits will

not result in any complication to the reader in their future efforts.

We choose to have all images in 30 x 30 resolution because it simplifies

the input layer of our NN, and the color selection (black background, white

font) simplifies our feature-extraction phase.

�Multi-layer NN for HDR
The NN we will be modeling to solve the HDR problem will not differ too

much from the model of the multi-layer NN proposed in Chapter 11. Recall

that because of the universal approximation theorem we know that having

a single hidden layer in a multi-layer NN is always enough for learning or

Chapter 12 Handwritten Digit Recognition

465

approximating any continuous function. Also, recall that deep learning

(NNs involving various hidden layers) does not exist in vain and that its

purpose is to provide more accurate and efficient results in those problems

where having a single hidden layer would not provide accurate or feasible

enough results. Having multiple hidden layers can help us obtain a more

accurate, efficient solution in a shorter time. For the problem at hand, we

will settle for having a multi-layer NN with a single hidden layer.

The input layer will be a direct mapping from the image pixels into the

nodes of this layer; therefore, if we have a 30 x 30 image, our input layer will

contain 900 nodes, one for each pixel, and their values will be 0 if the pixel

color is black and 1 in any other case (Figure 12-2). This is not the most

accurate strategy we can use for extracting features to be fed to our NN,

but it will work for this simple example. Other feature-extraction strategies

consider getting the pixel intensity values and having those values scaled

to the range [0, 1].

Figure 12-2.  Feature extraction by mapping every black pixel to 0
and any other pixel to 1

Chapter 12 Handwritten Digit Recognition

466

The output layer will contain three nodes, one for each of the digits

(1, 2, 3) being considered for recognition. The definitive structure of the

proposed multi-layer NN is illustrated in Figure 12-3.

Figure 12-3.  Structure of the proposed multi-layer NN

At this point, the reader may wonder how we decide from the output layer

the classification of the data being analyzed in the NN. The fact that we have

three nodes in this layer is no coincidence; each of these nodes is supposed

to match a digit out of the three that we will be recognizing. The first node

matches or outputs (if it is activated) digit 1, the second node matches digit 2,

and the third node outputs digit 3. Now, how do we choose a node to be the

output of the network or to be activated for a given training data? Simple—the

node with the highest activation value will be the node chosen as output.

The correct classification of a training data will be represented as

a vector of three components; two of these will have value 0 and one

will have value 1. The component having 1 as its value indicates the

correct classification of the training data. For example, the vector (1, 0, 0)

denotes 1 as the correct classification of a training data, the vector (0, 1, 0)

indicates 2 as the correct classification, and (0, 0, 1) marks 3 as the proper

classification for the training data being analyzed.

Chapter 12 Handwritten Digit Recognition

467

To conclude, it’s essential to mention that in the proposed NN we

will not consider an initialization of weights as random values in the

range [0, 1]; rather, we will set them up as random values in the range

[-0.5, 0.5]. The reasons behind this change are numerical and are also

related to performance. Because we will have an input layer with many

nodes, the weighted sum of these input values will result in sigmoid

activation values very close to 1, which will undermine the performance

of our NN and prevent us from converging toward a minimization of the

error and consequently prevent us from achieving a decent solution. As

a note of advice, remember that even the initialization of weights is an

issue to consider when designing your NN as it can affect the NNs overall

performance.

�Implementation
As mentioned before, we will be developing a Windows Forms application

that will allow us to draw a digit on a picture box, and then by clicking on

a Classification button we will obtain the classification of the drawn digit.

Simply to gain elegance and expressiveness in the code, we will work

with the following class (Listing 12-1), which is a direct descendant of the

MultiLayerNetwork class introduced in Chapter 11.

Listing 12-1.  HandwrittenDigitRecognitionNn Class Representing a

NN for HDR

public class HandwrittenDigitRecognitionNn : MultiLayerNetwork

 {

 �public HandwrittenDigitRecognitionNn(IEnumerable<Training

Sample> trainingDataSet, int inputs, int hiddenUnits,

int outputs, double learningRate)

Chapter 12 Handwritten Digit Recognition

468

 �:base(trainingDataSet, inputs, hiddenUnits,

outputs, learningRate)

 {

 }

 }

An instance of this class will be added to the HandwrittenRecognitionGui

class, inheriting from Windows.Forms.Form and containing most of the code

detailed in this chapter. The part of this class where fields and properties are

declared can be seen in Listing 12-2.

Listing 12-2.  HandwrittenRecognitionGui Class Representing the

Visual Application

public partial class HandwrittenRecognitionGui : Form

 {

 private bool _mouseIsDown;

 private Bitmap _bitmap;

 private const int NnInputs = 900;

 private const int NnHidden = 3;

 private const int NnOutputs = 3;

 �private HandwrittenDigitRecognitionNn _

handwrittenDigitRecogNn;

 private bool _weightsLoaded;

public HandwrittenRecognitionGui()

 {

 InitializeComponent();

 _bitmap = new Bitmap(paintBox.Width, paintBox.Height);

 }

}

Chapter 12 Handwritten Digit Recognition

469

These fields or properties can be described as follows:

•	 _mouseIsDown: used in mouse-related events to

determine whether a mouse button (left click) has been

pressed

•	 _bitmap: bitmap image used to store what the user

draws on the picture box and then submit it to the NN

for classification

•	 NnInputs: number of nodes in the input layer of the NN

•	 NnHidden: number of nodes in the hidden layer of

the NN

•	 NnOutputs: number of nodes in the output layer of

the NN

•	 _handwrittenDigitRecogNn: instance of the NN class

•	 _weightsLoaded: determines whether the set of weights

has been loaded to the application. Once we train

the NN the set of weights found will be saved in a file

for future use; therefore, this variable will control the

reading of the file containing those weights.

The HandRecognitionGui class will be complemented by adding

different methods for handling mouse-related events in the picture-box

control, which we added to the application in Design mode. We will see

how the application looks very soon. These methods linked to mouse

events are shown in Listing 12-3.

Chapter 12 Handwritten Digit Recognition

470

Listing 12-3.  Mouse-Event Methods in the Picture Box Where We

Will Be Drawing Digits to Be Classified

private void PaintBoxMouseDown(object sender, MouseEventArgs e)

 {

 if (e.Button == MouseButtons.Left)

 _mouseIsDown = true;

 }

 �private void PaintBoxMouseMove(object sender,

MouseEventArgs e)

 {

 if (_mouseIsDown)

 {

 �var point = paintBox.PointToClient(Cursor.

Position);

 �DrawPoint((point.X), (point.Y), Color.

FromArgb(255, 255, 255, 255));

 }

 }

 �private void PaintBoxMouseUp(object sender,

MouseEventArgs e)

 {

 _mouseIsDown = false;

 }

 public void DrawPoint(int x, int y, Color color)

 {

 var pen = new Pen(color);

 var gPaintBox = paintBox.CreateGraphics();

 var gImg = Graphics.FromImage(_bitmap);

 gPaintBox.DrawRectangle(pen, x, y, 1, 1);

 gImg.DrawRectangle(pen, x, y, 1, 1);

 }

Chapter 12 Handwritten Digit Recognition

471

From Listing 12-3 we can see that we have captured three mouse

events: MouseDown (when user presses a mouse button on the control),

MouseMove (when user moves the mouse over the control), and MouseUp

(when user stops pressing a button on the control). These three events

combined with the _mouseIsDown variable give us the necessary tools to

construct a simple, straightforward mechanism for determining when the

user is drawing on the control and saving that drawing both on the picture

box and on the auxiliary bitmap image that we eventually submit to the

NN for classification. Once the user has drawn a digit on the picture box

control and clicked on the Classification button (we will soon take a look at

the final GUI) an image-processing stage begins where we extract features

from the image using the next method (Listing 12-4).

Listing 12-4.  Extracting features

private double [,] GetImage(Bitmap bitmap)

 {

 var result = new double[bitmap.Width, bitmap.Height];

 for (var i = 0; i < bitmap.Width; i++)

 {

 for (var j = 0; j < bitmap.Height; j++)

 {

 var pixel = bitmap.GetPixel(i, j);

 �result[i, j] = pixel.R + pixel.G + pixel.B

== 0 ? 0 : 1;

 }

 }

 return result;

 }

Chapter 12 Handwritten Digit Recognition

472

In the GetImage() method, we build a matrix of binary values; a value

of 0 on a given (i, j) coordinate of the resulting matrix will indicate a

pixel of black color in the image associated with the picture box, while a

value of 1 indicates any other color.

In our visual application we will include a Train button whose method

for the click event can be seen in Listing 12-5. In this method, we load

the set of 30 x 30 images forming the training data set; we process each

image and create an equivalent TrainingSample object. Then, we start the

training process and save the resulting set of weights in a weights.txt file.

Listing 12-5.  Load the Training Data Set, Train the NN, and Save

the Resulting Weights

private void TrainBtnClick(object sender, EventArgs e)

 {

 var trainingDataSet = new List<TrainingSample>();

 �var trainingDataSetFiles = Directory.

GetFiles(Directory.GetCurrentDirectory() +

"\\Digits");

 foreach(var file in trainingDataSetFiles)

 {

 �var name = file.Remove(file.LastIndexOf(".")).

Substring(file.LastIndexOf("\\") + 1);

 var @class = int.Parse(name.Substring(0, 1));

 var classVec = new[] {0.0, 0.0, 0.0};

 classVec[@class - 1] = 1;

 var imgMatrix = GetImage(new Bitmap(file));

 �var imgVector = imgMatrix.Cast<double>().

Select(c => c).ToArray();

 �trainingDataSet.Add(new

TrainingSample(imgVector, @class, classVec));

 }

Chapter 12 Handwritten Digit Recognition

473

 �_handwrittenDigitRecogNn = new HandwrittenDigit

RecognitionNn(trainingDataSet, NnInputs, NnHidden,

NnOutputs, 0.002);

 _handwrittenDigitRecogNn.Training();

 �var fileWeights = new StreamWriter("weights.txt",

false);

 �foreach (var layer in _handwrittenDigitRecogNn.Layers)

 {

 foreach (var unit in layer.Units)

 {

 foreach (var w in unit.Weights)

 fileWeights.WriteLine(w);

 fileWeights.WriteLine("*");

 }

 fileWeights.WriteLine("-");

 }

 fileWeights.Close();

 MessageBox.Show("Training Complete!", "Message");

 }

To classify the digit drawn on the picture box, we add the Classify

button. The method triggered when the click event occurs is illustrated in

Listing 12-6. In this method, we check for the existence of the weights.txt

file, load the set of weights if the file exists, or output a warning message

in any other case. If the weights have not been loaded then we run the

ReadWeights() method and eventually execute the Predict() method of

the NN and save the resulting classification in the classBox textbox.

Chapter 12 Handwritten Digit Recognition

474

Listing 12-6.  Method Executed After the Classify Button Has Been

Clicked

private void ClassifyBtnClick(object sender, EventArgs e)

 {

 �if (Directory.GetFiles(Directory.

GetCurrentDirectory()).Any(file => file ==

Directory.GetCurrentDirectory() + "weights.txt")) {

 �MessageBox.Show("Warning", "No weights file,

you need to train your NN first");

 return;

 }

 if (!_weightsLoaded)

 {

 ReadWeights();

 _weightsLoaded = true;

 }

 var digitMatrix = GetImage(_bitmap);

 �var prediction = _handwrittenDigitRecogNn.

Predict(digitMatrix.Cast<double>().

Select(c => c).ToArray());

 classBox.Text = (prediction + 1).ToString();

 }

The ReadWeights() method, acting as an auxiliary mini-parser, is in

charge of reading the file of weights and assigning them to every node

in the NN (Listing 12-7). Weights are stored one per line in the file, and

weights belonging to different units will be separated by a line containing a

“*” symbol, which marks the end of the weights assignment to a given unit

and the start of another one. The same thing occurs with the “-” symbol

but at the layer level.

Chapter 12 Handwritten Digit Recognition

475

Listing 12-7.  ReadWeights() Method

private void ReadWeights()

 {

 �_handwrittenDigitRecogNn = new HandwrittenDigitRe

cognitionNn(new List<TrainingSample>(), NnInputs,

NnHidden, NnOutputs, 0.002);

 var weightsFile = new StreamReader("weights.txt");

 �var currentLayer = _handwrittenDigitRecogNn.

HiddenLayer;

 var weights = new List<double>();

 var j = 0;

 while (!weightsFile.EndOfStream)

 {

 var currentLine = weightsFile.ReadLine();

 // End of weights for current unit.

 if (currentLine == "*")

 {

 �currentLayer.Units[j].Weights = new

List<double>(weights);

 j++;

 weights.Clear();

 continue;

 }

 // End of layer.

 if (currentLine == "-")

 {

 �currentLayer = _handwrittenDigitRecogNn.

OutPutLayer;

 j = 0;

Chapter 12 Handwritten Digit Recognition

476

 weights.Clear();

 continue;

 }

 weights.Add(double.Parse(currentLine));

 }

 weightsFile.Close();

 }

Finally, let’s execute and take a look at our Handwritten Digit

Recognition visual application (Figure 12-4).

Figure 12-4.  HDR visual application

Now that we have completely developed the application, let’s see how

it would perform after different drawings of digits 1, 2, and 3 are presented

to the NN.

�Testing
Going back to Figure 12-4, we can see the drawing space in our application

is the picture box control with a black background; it is in this picture box

that we will draw different digits to eventually obtain a classification by

clicking the Classify button. Let’s examine some tests (Figure 12-5).

Chapter 12 Handwritten Digit Recognition

477

Figure 12-5.  Classification of handwritten digits

In the same way as we can obtain a correct classification for many

handwritten digits in this application, it could happen that for others we

get an incorrect classification. The reason behind this inaccuracy, as the

reader may expect at this point, is the very small training data set used

while training the NN. To obtain higher accuracy we would need many

more samples with different styles of handwriting.

Chapter 12 Handwritten Digit Recognition

478

�Summary
In this chapter we introduced the problem of handwritten digit recognition

and developed a Windows Forms application that allows users to draw

digits in it and eventually obtain a classification for the drawn digit. We

considered only the set of digits {1, 2, 3} but the application can be easily

extended to include all possible digits simply by adding new nodes to

the output layer. We tested the results and, as mentioned before, due

to the small number of training samples the application will probably

misclassify some of the incoming data. Thus, adding new training data was

a recommendation. The visual application presented in this chapter is an

authentic representative of the power and possibilities of neural networks.

Chapter 12 Handwritten Digit Recognition

479© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_13

CHAPTER 13

Clustering &
Multi-objective
Clustering
Thus far, we have discussed several methods related to supervised

learning. In these methods, we approximated a function from a training

data set containing labeled data. In this chapter, we will begin addressing

unsupervised learning, a paradigm of machine learning where we deduce

a function and the structure of data from an unlabeled data set.

Unsupervised learning (UL) methods no longer have a “training”

data set. Consequently, the training phase in UL disappears because data

does not have an associated classification; the correct classification is

considered unknown. Therefore, UL is far more subjective than supervised

learning is, since there is no simple goal for the analysis such as prediction

of a response. The general goal of UL methods, as imprecise as it may

sound, is to find patterns that describe the structure of the data being

analyzed. Because obtaining unlabeled data from a lab instrument or

any measurement device is usually easier than obtaining labeled data,

UL methods are being applied more and more to multiple problems that

require learning the structure of data.

480

In this chapter, we will explore one of the most important learning

tasks associated with UL, which is clustering, as well as a variant of it where

we consider several objective functions to be minimized or maximized at

the same time, which is called multi-objective clustering. A method of the

broad family of clustering algorithms will be described and implemented

throughout the chapter; namely, we will implement the k-means method.

Moreover, some measures for determining object and cluster similarity

will be also implemented.

Note  Both supervised and unsupervised learning algorithms
represent techniques of knowledge extraction frequently used in
data-mining applications.

�What Is Clustering?
Clustering is a broad family of algorithms whose purpose is to partition a

set of objects into groups or clusters, trying to ensure that objects in the

same group have the highest similarity possible and objects in different

groups have the highest dissimilarity possible. Similarity in this case

is related to a property of the objects; it could be height, weight, color,

bravery, or any other quality that our data set includes, typically in a

numeric form. Figure 13-1 illustrates clustering based on object color.

Chapter 13 Clustering & Multi-objective Clustering

481

Clustering finds applications in various areas of science and business,

such as astronomy, psychology, medicine, economics, fraud avoidance,

architecture, demographic analysis, image segmentation, and more.

A clustering algorithm is usually composed of three elements:

•	 Similarity Measure: function used to determine the

similarity between two objects. In the example from

Figure 13-1, a similarity function could be Color(x, y)

outputting an integer that determines the equivalence

between objects x and y in regard to their colors.

Typically, the larger the value outputted the greater the

dissimilarity is between x and y; the smaller the value

outputted the more similar x and y will be.

•	 Criterion or Objective Function: function used to

evaluate the quality of a clustering

•	 Optimization or Clustering Algorithm: an algorithm

that minimizes or maximizes the criterion function

Figure 13-1.  Clustering a set of objects based on their color

Chapter 13 Clustering & Multi-objective Clustering

482

Some of the most popular similarity measures are the following:

•	 Euclidean Distance of n-dimensional vectors a, b:

Euclidean a b
i

n

i i,() = -()
=
å

1

2
a b

This is the ordinary distance between two points in

space.

•	 Manhattan Distance of n-dimensional vectors a, b:

Manhattan a b
i

n

i i,() = -
=
å

1

a b

This is an approximation of the Euclidean Distance,

and it’s cheaper to compute.

•	 Minkowski Distance of cells that belong to an n x m

matrix T; p is a positive integer and is a generalization

of the previously detailed distances:

Minkowski ,p k h
i

m

ki hi
pT T T T() = -()

=
å

1

2

Among the criterion or objective functions used for determining or

evaluating the quality of a clustering we can find the following:

•	 Intra-class Distance, also known as Compactness: as its

name suggests with its “intra” (on the inside, within)

prefix, it measures how close data points in a cluster

(group) are to the cluster centroid. The cluster centroid

is the average vector of all data points in a cluster.

The Sum of Squared Errors is typically used as the

mathematical function to measure this distance.

Chapter 13 Clustering & Multi-objective Clustering

483

•	 Inter-class Distance, also known as Isolation or

Separation: as its name suggests from the “inter”

(between) prefix, it measures how far clusters are from

each other.

The family of clustering algorithms can be divided into hierarchical,

partitional, and Bayesian algorithms. Figure 13-2 illustrates the relation

between the different families of clustering algorithms.

Figure 13-2.  Clustering algorithms family

In this book, we will discuss hierarchical and partitional algorithms;

Bayesian clustering algorithms try to generate a posteriori distribution

over the set of all possible partitions of the data points. This family of

algorithms is highly related to areas such as probability and statistics, so it

will be left to the reader as supplementary research.

Note  Clustering is a well-known NP-hard problem, meaning
no polynomial time solution for the problem can be developed or
designed on a deterministic machine.

Chapter 13 Clustering & Multi-objective Clustering

484

�Hierarchical Clustering
Hierarchical algorithms discover new clusters from previously discovered

clusters; hence, new clusters become descendants of parent clusters after

being nested within them, and the hierarchical relation is established that

way. Hierarchical algorithms can be classified as agglomerative or divisive.

An agglomerative (a.k.a bottom-up) hierarchical algorithm starts with

each object as a separate cluster of size 1 and then begins merging the

most similar clusters into consecutively larger clusters up to the point

where it contains a single cluster with all objects in it.

A divisive (a.k.a top down) hierarchical algorithm starts with the whole

set in one cluster and in every step chooses a group to divide from the

current set of clusters. It stops when each object is a separate cluster.

Hierarchical algorithms can output a dendrogram, a binary tree–like

diagram used to illustrate the arrangement of clusters. In a dendrogram,

every level represents a different clustering. Figure 13-3 shows an

example of an agglomerative clustering being executed over a data set

formed by points a, b, c, d, and e, along with the resulting clusters and the

dendrogram obtained.

Figure 13-3.  Agglomerative clustering example

Chapter 13 Clustering & Multi-objective Clustering

485

Because points a, b and c, d respectively are the nearest ones, they

are clustered together. Afterward, clusters {a, b}, {c, d}, being the nearest

ones, are grouped together and {e} is left as another cluster. Finally, all

data points are merged into a cluster that contains all data points; in this

case, we executed a bottom-up procedure. How do we determine clusters’

similarity or distance? The previously detailed measures or distances

give us the similarity between two data points, but what about cluster

similarity? The measures described in the next lines output the similarity

between clusters:

•	 Average Linkage Clustering: determines the similarity

between clusters C1 and C2 by finding the similarity

or distance between all pairs (x, y) where x belongs to

C1 and y to C2. These values are added and eventually

divided by the total number of objects in both C1 and

C2. Thus, ultimately, what we calculate is an average or

mean of the distance between C1 and C2.

•	 Centroid Linkage Clustering: determines the similarity

between clusters C1 and C2 by finding the similarity or

distance between any pair (x, y) where x is the centroid

of C1 and y the centroid of C2.

•	 Complete Linkage Clustering: determines the similarity

between clusters C1 and C2 by outputting the

maximum similarity or distance between any pair (x, y)

where x is an object from C1 and y is an object from C2.

•	 Single-Linkage Clustering: determines the similarity

between clusters C1 and C2 by outputting the

minimum similarity or distance between any pair (x, y)

where x is an object from C1 and y is an object from C2.

Chapter 13 Clustering & Multi-objective Clustering

486

The pseudocode of an agglomerative hierarchical clustering

demonstrates how easy it is in principle to implement this type of algorithm:

AgglomerativeClustering (dataPoints)

{

Initialize each data point in dataPoints as a single cluster

while (numberClusters> 1)

 �find nearest clusters C1, C2 according to a cluster similarity

measure

merge(C1, C2)

end

}

The agglomerative algorithm represents a more efficient approach

than that of the divisive algorithm, but the latter often provides a more

accurate solution. Notice that the divisive algorithm begins operating with

the whole data set; thus, it’s able to find the best division or partition into

two clusters at the original data set, and from that point on it’s able to find

the best possible division within each cluster. The agglomerative method,

on the other hand, at the moment of merging does not consider the global

structure of data, so it’s restricted to analyzing merely pairwise structure.

Note I n the 1850s during a cholera epidemic, London physician
John Snow applied clustering techniques to plot the locations of
cholera deaths on the map. The clustering indicated that death cases
were located in the vicinity of polluted wells.

�Partitional Clustering
Partitional algorithms partition a set of n objects into k clusters or classes.

In this case, k (number of clusters or classes) can be fixed a priori or be

determined by the algorithm when optimizing the objective function.

Chapter 13 Clustering & Multi-objective Clustering

487

The most popular representative of the family of partitional clustering

algorithms is k-means (MacQueen, 1967).

K-means is one of the simplest unsupervised learning methods for

finding a clustering of a set of objects. It follows a simple procedure to

partition a given data set into k clusters, where k is a number fixed a priori.

In its initialization phase it defines k centroids, one for each cluster. There

are different approaches for defining centroids. We could choose k random

objects from the data set as centroids (naïve approach) or choose them in

a more sophisticated way by selecting them to be as far as possible from

each other. The choice made can affect performance later, as the initial

centroids will influence the final outcome.

The main body of the k-means algorithm is formed by an outer loop

that verifies whether a stopping condition has been reached; this outer

loop contains an inner loop that passes through all data points. Within this

inner loop—and while examining a data point P—we decide the cluster to

which P should be added by comparing the distance of P to the centroid

of every cluster, and ultimately we add it to the cluster with the nearest

associated centroid.

Once all data points have been examined for the first time—in other

words, the inner loop ends for the first time—a primary phase of the

algorithm has been completed and an early clustering has been obtained.

At this point, we need to refine our clustering; therefore, we recalculate

the k centroids obtained in the previous step (recall that centroids are

the average vector of their respective clusters), which will give us new

centroids. The inner loop is executed again if the stopping condition has

not been met, adding every data point to the cluster with the nearest new

associated centroid. This is the main process of k-means; notice that the

k centroids change their location step-by-step until no more changes are

made. In other words, a stopping condition for the algorithm is that the set

Chapter 13 Clustering & Multi-objective Clustering

https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html#macqueen

488

of centroids does not change from one iteration to the next. A pseudocode

of k-means can be seen in the following lines:

K-Means(dataPoints, k)

{

cList = InitializeKCentroids()

 clusters = CreateClusters()

while (!stoppingCondition)

{

foreach (pj in dataPoints)

 {

dj = Calculate distance from pj to every centroid cList_j

Assign pj to clusters_jwhose dj is minimum

 }

UpdateCentroids()

}

}

The objective function being optimized (minimized in this case) is

the Sum of Squared Errors (SSE), also known as Intra-Class distance or

Compactness:

SSE d x centroid
i

k

x C
i

i

= ()
= Î
åå

1

2
,

Where k is the number of clusters, Ci is the ith cluster, centroidi

represents the centroid associated with the ith cluster, and d(a, b) is a

distance or similarity measure (usually Euclidean distance) between x and

centroidi. Thus, another possible stopping condition for k-means is having

reached a very small value for SSE.

In Figure 13-4 we can see the first step of the k-means algorithm—

choosing k centroids. In this graphic, blue points denote data points and

black points denote centroids.

Chapter 13 Clustering & Multi-objective Clustering

489

Figure 13-4.  First step of k-means, choosing k = 3 random objects or
data points as centroids

Figure 13-5 shows the k = 3 clusters that result from having selected

the set of centroids from the first step.

Figure 13-5.  Clustering obtained after choosing the set of centroids
in the first step and considering a distance measure to determine
similarity between data points

Chapter 13 Clustering & Multi-objective Clustering

490

The final step of the loop is to recalculate the centers of the clusters or

centroids; this process is illustrated in Figure 13-6.

Figure 13-6.  Centroids being recalculated as the average vector of the
cluster they represent

The steps represented in the preceding figures are repeated until a

stopping condition is met. To summarize, k-means is a simple, efficient

algorithm that can end up at a local minimum if we use a very small

value of SSE as the stopping condition. Its main disadvantage is its high

sensitivity to outliers (isolated data points), which can be alleviated by

removing data points that are much farther away from the set of centroids

when compared to other data points.

�Practical Problem: K-Means Algorithm
In this section, we will be implementing what is probably the most

popular clustering algorithm ever: k-means. To provide an object-oriented

approach to our implementation, we will create Cluster and Element

classes that will incorporate all actions and properties related to clusters

and objects (data points); the Cluster class can be seen in Listing 13-1.

Chapter 13 Clustering & Multi-objective Clustering

491

Listing 13-1.  Cluster Class

public class Cluster

 {

 public List<Element> Objects { get; set; }

 public Element Centroid { get; set; }

 public intClusterNo { get; set; }

 public Cluster()

 {

 Objects = new List<Element>();

 Centroid = new Element();

 }

 public Cluster(IEnumerable<double> centroid, intclusterNo)

 {

 Objects = new List<Element>();

 Centroid = new Element(centroid);

ClusterNo = clusterNo;

 }

 public void Add(Element e)

 {

Objects.Add(e);

e.Cluster = ClusterNo;

 }

 public void Remove(Element e)

 {

Objects.Remove(e);

 }

Chapter 13 Clustering & Multi-objective Clustering

492

 public void CalculateCentroid()

 {

var result = new List<double>();

vartoAvg = new List<Element>(Objects);

var total = Total;

 if (Objects.Count == 0)

 {

toAvg.Add(Centroid);

 total = 1;

 }

var dimension = toAvg.First().Features.Count;

 for (vari = 0; i< dimension; i++)

result.Add(toAvg.Select(o =>o.Features[i]).Sum() / total);

Centroid.Features = new List<double>(result);

 }

 public double AverageLinkageClustering(Cluster c)

 {

var result = 0.0;

 foreach (var c1 in c.Objects)

 �result += Objects.Sum(c2 =>Distance.

Euclidean(c1.Features, c2.Features));

 return result / (Total + c.Total);

 }

 public int Total

 {

 get { return Objects.Count; }

 }

 }

Chapter 13 Clustering & Multi-objective Clustering

493

The Cluster class contains the following properties:

•	 Objects: set of objects included in the cluster

•	 Centroid: centroid of the cluster

•	 ClusterNo: ID of the cluster to differentiate it from the

rest

•	 Total: number of elements in the group or cluster

The class also contains the following methods:

•	 Add(): adds an element to the cluster

•	 Remove(): removes an element from the cluster

•	 CalculateCentroid(): calculates the centroid of a

cluster

•	 AverageLinkageClustering(): calculates the

AverageLinkageClustering similarity measure

between clusters, as previously detailed

The Element class representing an object to be clustered is shown on

Listing 13-2.

Listing 13-2.  Element Class

 public class Element

 {

 public List<double> Features { get; set; }

 public int Cluster { get; set; }

 public Element(int cluster = -1)

 {

 Features = new List<double>();

 Cluster = cluster;

 }

Chapter 13 Clustering & Multi-objective Clustering

494

 public Element(IEnumerable<double> features)

 {

 Features = new List<double>(features);

 Cluster = -1;

 }

 }

The class contains a Cluster property that indicates the clusterID

of the cluster to which the object belongs; code from both constructors

is self-explanatory. The KMeans class, representing the algorithm of the

same name, is illustrated in Listing 13-3.

Listing 13-3.  KMeans and DataSet Classes

public class KMeans

 {

 public int K { get; set; }

 public DataSetDataSet { get; set; }

 public List<Cluster> Clusters { get; set; }

 private static Random _random;

 private constintMaxIterations = 100;

 public KMeans(int k, DataSetdataSet)

 {

 K = k;

DataSet = dataSet;

 Clusters = new List<Cluster>();

 _random = new Random();

 }

 public void Start()

 {

InitializeCentroids();

vari = 0;

Chapter 13 Clustering & Multi-objective Clustering

495

 while (i<MaxIterations)

 {

 foreach (varobj in DataSet.Objects)

 {

varnewCluster = MinDistCentroid(obj);

varoldCluster = obj.Cluster;

 Clusters[newCluster].Add(obj);

 if (oldCluster>= 0)

 Clusters[oldCluster].Remove(obj);

 }

UpdateCentroids();

i++;

 }

 }

 private void InitializeCentroids()

 {

RandomCentroids();

 }

 private void RandomCentroids()

 {

var indices = Enumerable.Range(0, DataSet.Objects.Count).

ToList();

Clusters.Clear();

 for (vari = 0; i< K; i++)

 {

varobjIndex = _random.Next(0, indices.Count);

Clusters.Add(new Cluster(DataSet.Objects[objIndex].Features, i));

indices.RemoveAt(objIndex);

 }

 }

Chapter 13 Clustering & Multi-objective Clustering

496

 private intMinDistCentroid(Element e)

 {

var distances = new List<double>();

 for (vari = 0; i<Clusters.Count; i++)

distances.Add(Distance.Euclidean(Clusters[i].Centroid.Features,

e.Features));

varminDist = distances.Min();

 return distances.FindIndex(0, d => d == minDist);

 }

 private void UpdateCentroids()

 {

 foreach (var cluster in Clusters)

cluster.CalculateCentroid();

 }

 }

public class DataSet

 {

 public List<Element> Objects { get; set; }

 public DataSet()

 {

 Objects = new List<Element>();

 }

 public void Load(List<Element> objects)

 {

 Objects = new List<Element>(objects);

 }

 }

Chapter 13 Clustering & Multi-objective Clustering

497

The properties or fields are self-explanatory; in this case, we have

decided to use a maximum number of iterations as the stopping condition.

The methods of the class are described in the following points:

•	 InitializeCentroids(): method created considering

the possibility of having different centroid initialization

procedures.

•	 RandomCentroids(): centroid initialization procedure

where we assign k randomly selected objects as

centroids of k clusters

•	 MinDistCentroid(): returns the clusterID of the

cluster to which the input object is closer; i.e., at

minimum distance

•	 UpdateCentroids(): updates the k centroids by calling

the CalculateCentroid() method of the Cluster class

Now that we have all components in place, let’s test our clustering

algorithm by creating a test application where we create a data set;

Listing 13-4 illustrates this code.

Listing 13-4.  Testing the K-Means Algorithm

var elements = new List<UnsupervisedLearning.Clustering.

Element>

 {

 �new UnsupervisedLearning.

Clustering.Element(new

double[] {1, 2}),

 �new UnsupervisedLearning.

Clustering.Element(new

double[] {1, 3}),

Chapter 13 Clustering & Multi-objective Clustering

498

 �new UnsupervisedLearning.

Clustering.Element(new

double[] {3, 3}),

 �new UnsupervisedLearning.

Clustering.Element(new

double[] {3, 4}),

 �new UnsupervisedLearning.

Clustering.Element(new

double[] {6, 6}),

 �new UnsupervisedLearning.

Clustering.Element(new

double[] {6, 7})

 };

vardataSet = new DataSet();

dataSet.Load(elements);

varkMeans = new KMeans(3, dataSet);

kMeans.Start();

 foreach (var cluster in kMeans.Clusters)

 {

Console.WriteLine("Cluster No {0}", cluster.ClusterNo);

 foreach (varobj in cluster.Objects)

Console.WriteLine("({0}, {1}) in {2}", obj.Features[0], obj.

Features[1], obj.Cluster);

Console.WriteLine("--------------");

 }

The result obtained after executing the code from Listing 13-4 is shown

in Figure 13-7. Note that in this case we have three easily distinguished

groups, as the figure illustrates.

Chapter 13 Clustering & Multi-objective Clustering

499

So far, we have examined single-clustering algorithms, or algorithms

where we optimize a single objective function. In the case of k-means,

it was the Sum of Squared Errors, also known as intra-class distance

(minimizes the distance of objects within a group). Another function

that we might try to optimize is the inter-class (maximize distance of

objects from different groups) function. In the next section we will begin

studying multi-objective clustering in which we do not consider only a

single function to optimize but rather several functions, and we attempt to

optimize them all at once.

�Multi-objective Clustering
Nowadays, many real-life problems force us to consider not only the best

possible value for a given function but also the value of several functions

all related to the problem at hand. For instance, zoning, a technique that

belongs to the area of urban studies, appeared for the first time in the

nineteenth century to separate residential areas from industrial ones. The

main idea with this technique, the most popular in urbanization, is to

produce a partition of homogeneous regions according to several variables

or criteria. These variables could be demographic—for instance, number

of people who are older than twenty, number of people younger than ten,

and so on. Finding such a partition is clearly a clustering problem involving

Figure 13-7.  Execution of the k-means algorithm with k = 3

Chapter 13 Clustering & Multi-objective Clustering

500

the optimization of different functions. Therefore, we might try to find a

clustering with the lowest intra-class distance (a.k.a compactness) and

at the same time optimize the inter-class distance or any other function,

which could very well be demographic in nature. A perfect clustering is

that with the minimum intra-class distance and the maximum inter-class

distance; hence, one could say that clustering is by nature a multi-objective

optimization problem. We will begin this section by examining several

relevant concepts or definitions related to multi-objective clustering.

Many optimization problems often involve optimizing multiple

objective functions at the same time; such problems are known as a multi-

objective optimization problems (MOPs). They can be stated as follows:

minimize F x f x f x f x

x A
n() = () () ¼ ()()

Î
1 2, , ,

In this case, A represents the feasible space of the problem—the set of

all feasible solutions, the ones fulfilling every constraint of the problem.

A vector u u u un= ¼()1 2, , is said to be dominated by another vector,

v v v vn= ¼()1 2, , , denoted u < v, if and only if for all of index i we can verify

that u vi i£ . In any other case u is said to be a non-dominated vector.

Notice that “domination” depends on whether we want to minimize

or maximize the objective functions; recall that it’s always possible to

transform a minimization problem into a maximization problem and the

other way around.

Having multiple objectives denotes a significant issue—the

improvement of one objective function could lead to the deterioration

of another. Thus, a solution that optimizes every objective rarely exists;

instead of looking for that solution a trade-off is searched for. Pareto

optimal solutions represent this trade-off.

Chapter 13 Clustering & Multi-objective Clustering

501

A feasible solution x is said to be Pareto optimal if there is no solution

y such that F(x)<F(y). In other words, there is no solution vector y whose

evaluation vector (f1(y), f2(y), … fn(y)) would dominate the evaluation vector

of x, (f1(x), f2(x), … fn(x)). The set of all Pareto optimal solutions is known as

the Pareto Set, and its image is the Pareto Frontier. The goal of most MOPs

algorithms is to build a Pareto Frontier for a given problem; such methods

are typically heuristics or metaheuristics (we shall examine them during

the next chapter).

Note P areto optimality is a concept named after Vilfredo Pareto
(1848–1923), the Italian engineer and economist. Its concept has
been applied in academic fields such as economics, engineering, and
the life sciences.

�Pareto Frontier Builder
Searching through the scientific literature, we can find different methods

for discovering the Pareto Frontier. In this book, we will describe one

of the author’s own creation, named Pareto Frontier Builder. It can be

applied to bi-objective optimization—the case where you are optimizing

two functions. The binary case is ideal for clustering problems since

there are two functions (intra- and inter-class) that can provide us with

the optimum.

For the binary case, the relation between the two functions and the

Pareto Frontier can be represented as illustrated in Figure 13-8.

Chapter 13 Clustering & Multi-objective Clustering

502

The strategy of the Frontier Builder method is divided into different

stages. The main idea is to build the Pareto Frontier by areas, as shown in

Figure 13-9.

•	 Area A: Points in this area will be obtained by

minimizing the second objective function (f2); points

resulting from this optimization will be the closest to

the y-axis.

•	 Area B: Points in this area will be obtained by

minimizing the second objective function (f1); points

resulting from this optimization will be the closest to

the x-axis.

•	 Area C: It’s intended to act as a linking mechanism,

uniting areas A and B and putting together the Pareto

Frontier. A procedure known as Pareto Frontier Linkage

will find the bridge between areas A and B.

Figure 13-8.  Blue points form the Pareto Frontier and red points are
dominated by blue ones; thus, they are not considered as part of the
Pareto Frontier. This would be a minimization problem

Chapter 13 Clustering & Multi-objective Clustering

503

Seeing the strategy in these steps makes it look very simple. We

separate the f2 optimization from the f1 optimization, build areas A and B,

and then link them by finding non-dominated solutions in area C.

Pareto Frontier Linkage is the mechanism applied to construct area C.

It requires a step parameter that defines the desired distance between

non-dominated solutions in the Pareto Frontier. When a distance between

solutions x and y exceeds this step then the linkage mechanism starts a

searching machinery to find non-dominated solutions between x and y

and build a bridge. This machinery consists of making small variations to

the leftmost solution, the one on the left side of the bridge (x, according to

Figure 13-10).

Figure 13-9.  Area A is formed by points obtained after minimizing
objective function f2; area B is obtained after minimizing objective
function f1, and area C is formed using a linkage mechanism
connecting areas A and B

Chapter 13 Clustering & Multi-objective Clustering

504

The variation occurs as follows:

	 1.	 Select the leftmost solution.

•	 Modify the current solution. For the clustering

problem, move an element from its current

cluster to some other cluster, guaranteeing that f2

increases by currentDistance + k, where k <= step,

and evaluate and store this new solution.

	 2.	 Repeat step 2 and move all elements in the leftmost

solution to improve clusters’ chances of finding

non-dominated solutions with f2 values ranging in

[currentDistance,currentDistance + step]; this

strategy slowly builds the bridge and improves the

Pareto Frontier.

Figure 13-10.  Step to join points x, y

Chapter 13 Clustering & Multi-objective Clustering

505

This method was embedded in a Tabu Search metaheuristic (we will

discuss them in the next chapter) and applied to a real-world zoning

problem. The results obtained after selecting different step values can be

seen in Figure 13-11.

After 300 iterations, step = 2.0.

After 500 iterations, step = 2.0

Chapter 13 Clustering & Multi-objective Clustering

506

Step = 1.2 after 500 iterations.

Finally, step = 0.5, 500 iterations.

Figure 13-11.  Frontier Builder mechanism using different steps and
executing a different number of iterations

Chapter 13 Clustering & Multi-objective Clustering

507

From the set of images forming the previous figure, we can see that

the Pareto Frontier is well defined; the smaller the step the better defined

it is and the more holes it will fill out of the Pareto Frontier. An interesting

enhancement to this strategy would be to apply the FrontierBuilder

mechanism not only to execute steps along the f2-axis but also along the

f1-axis, providing a more accurate approximation to the Pareto Frontier.

�Summary
In this chapter, we discussed one of the classic problems of computer

science: of clustering. We described it by providing different measures for

determining object similarity and cluster similarity. We also introduced

the family of clustering methods and presented and developed one of the

most popular and reliable algorithms for clustering, which is k-means.

Throughout the final sections we examined multi-objective clustering as

a particular case of multi-objective optimization problems and detailed a

method of the author’s own creation for constructing the Pareto Frontier;

this method was the Pareto Frontier Builder.

Chapter 13 Clustering & Multi-objective Clustering

509© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_14

CHAPTER 14

Heuristics &
Metaheuristics
So far we have mentioned the word heuristic on numerous occasions.

We used it in the “Mars Rover” chapter to incorporate a method that

seemed logical and simple, used our pragmatic knowledge of reality, and

helped us achieve reasonable movements for the robot. This method was

based primarily on our experience and not on any scientifically proven

procedure.

In computer science we are typically faced with the challenge of

designing algorithms that give us both good time complexity and good

solutions (optimal if possible) to a given problem. A heuristic is a method

that can easily abandon either of the previous premises, or maybe both.

For instance, a heuristic can find many solutions for a problem, and

some of these solutions may be incorrect or unfeasible, and some might

be optimal. Likewise, it could execute in a short time, providing feasible

solutions for a problem, and it could happen that none of those solutions

would be optimal. This type of algorithm is usually applied to problems

that are intrinsically difficult; for instance, NP-Hard problems like the

Traveling Salesman, clustering, vehicle routing, and many others.

Because of the nature of these problems, their high complexity, we must

rely on methods that will output a solution to the problem, or maybe part

of a solution, and aid us in ultimately obtaining a definite solution that

would be as close as possible to an optimal solution.

510

A very special type of heuristic is the metaheuristic, a problem-

independent iterative process where various heuristics are combined

through different strategies or guidelines that try to lead the search toward

finding good solutions. Metaheuristics have become very popular; some

of them base their functioning on biological or chemical processes and

have garnered great interest because of their ability to find good solutions

to complicated problems by applying simple algorithms that execute in a

decent amount of time.

In this chapter, we’ll discuss heuristics, specifically the Hill Climbing

heuristic, and we will present two well-known metaheuristics; namely,

we will study genetic algorithms and Tabu Search. Practical problems in

which we will implement the first two methods will be included.

Note  Multiple algorithms in AI are heuristics by nature or use a
heuristic during their execution. An application determining whether a
given email is spam uses many heuristics rules to eventually make a
decision.

�What Is a Heuristic?
A heuristic is a method drawn from experience, common sense, or an

educated guess that aims at providing or contributing to providing a

practical solution to a problem that is usually very difficult to solve

(NP-Hard), and consequently an optimal or good, feasible solution is too

complicated to obtain. Heuristic methods can be used to speed up the

process of finding a good, feasible solution by providing us with a shortcut.

This speed-up process is usually carried out via search algorithms where

we traverse a tree representing the space of possible solutions. The

application of certain problem-specific heuristics can significantly reduce

Chapter 14 Heuristics & Metaheuristics

511

the tree search. Such is the case of the Sliding Tiles Puzzle (shown in

Figure 14-1), a popular game whose state game space (all possible game

configurations) can be represented by a tree whose nodes indicate different

states or configurations of the game. Each parent has up to four children

representing the four possible movements of a tile into the empty area.

Figure 14-1.  Sliding Tiles Puzzle. The left board shows an unfinished
state of the game and the right board the goal state.

Heuristic methods possess some information about the proximity

of every state to the goal state, which allows them to explore the most

promising paths first. Summarizing, some of the most general features of

heuristic methods are as follows:

•	 They do not guarantee that a solution will be found,

even though it might exist.

•	 If it finds a solution, it does not guarantee that it will be

optimal (minimal or maximal).

•	 Sometimes (not defined a priori) it will find a good

solution in a reasonable time.

Chapter 14 Heuristics & Metaheuristics

512

We usually work with a heuristic through a heuristic function. This

function assigns a numeric value to every state of the problem and defines

how promising that state is as far as attempting to reach a goal state from a

given point (node); it’s usually denoted as H(e). The heuristic function can

have two interpretations. It could indicate how close state e is to the goal

state, meaning states with the lowest heuristic value are preferred, or it

could indicate how far state e is from a goal state, meaning we prefer states

with the highest heuristic values. In such cases, we are either minimizing

or maximizing the heuristic function.

Note  For the tile puzzle the sum of Manhattan distances calculated
between the position of a tile in the current board and the position of
the same tile in the goal board is a heuristic function.

�Hill Climbing
In the Hill Climbing method or heuristic, we begin with an initial random

solution and set it up as the current solution. We find the set of neighbors

of the current solution and execute a step that defines the current solution

as the neighbor providing the maximum decrease (increase) to the

function being minimized (maximized). Hill Climbing is an optimization

technique that can fall into a local minimum; consequently, it can easily

fail to spot the global optimum. Despite its locality issues, it’s widely used

in AI for problems that have tight time constraints and where one could

certainly take advantage of short execution time algorithms.

There exist two types of Hill Climbing approaches:

•	 Irreversible: where we avoid returning to a subset of the

set of states if that path happens to be not beneficial

•	 Tentative: where we can go back to an old path if we

determine that the chosen path is not appropriate

Chapter 14 Heuristics & Metaheuristics

513

In this book, we will focus on the first type of method (irreversible), the

one that closely resembles the description of Hill Climbing presented at

the beginning of this section.

In irreversible Hill Climbing we determine the next step or solution to

be processed using two alternatives:

•	 Simple climbing: We choose to process or expand the

first solution in the current neighborhood that is more

favorable than the current solution. Thus, procedure

stops there, and not all neighbors of the current

solution are scanned.

•	 Maximum slope climbing: We choose to process or

expand the solution from the current neighborhood

that is the most favorable of all. Thus, procedure stops

when all neighbors of the current solution are scanned.

In both scenarios, if every solution in the current neighborhood turns

out to be worse than or equal to the current solution then the procedure

ends.

Note H ill Climbing is an optimization technique of iterative
improvement, a variant of the Best First search algorithm, in the
family of Greedy algorithms.

Figure 14-2 illustrates how the Hill Climbing algorithm would find the

local optimum, denoted by a blue dot.

Chapter 14 Heuristics & Metaheuristics

514

The pseudocode of this algorithm would be as follows:

HillClimbing(function F)

{

currentSolution = RandomSolution();

while (No Improvement)

vicinity = Neighbors(currentSolution);

nextEval = -INF;

nextSolution = null;

 for all x in vicinity

 {

 if (Evaluate(x) >nextEval)

 {

nextSolution= x;

nextEval = Evaluate (x);

 }

 }

 if nextEval<= Evaluate (currentSolution)

return currentSolution;

currentNode = nextSolution;

}

Figure 14-2.  In this case, we minimize the objective function and go
“downhill” through a path of orange points until we reach the blue
point, a local minimum. We are minimizing, thus the blue point is a
local minimum.

Chapter 14 Heuristics & Metaheuristics

515

Hill Climbing is a method that belongs to the family of Local Search (LS)

algorithms. In fact, the terms Hill Climbing and Local Search are

sometimes used indistinguishably, meaning they are considered the same

algorithm, and they represent a class of metaheuristics known as single

solution–based metaheuristics, which includes popular methods such as

simulated annealing, Tabu Search, and others that are based on LS.

Note  Local search is a heuristic method for solving computationally
hard optimization problems; it moves from solution to solution in the
space of candidate solutions (the search space) by applying local
changes until a solution deemed optimal has been found, a maximum
number of iterations has been reached, or a time limit has elapsed.

�Practical Problem: Implementing Hill
Climbing
In this section, we will be implementing a Hill Climbing algorithm that

optimizes (minimizes) a continuous objective function. The neighborhood

in this procedure is calculated by considering the set of points from the

n-sphere of radius R surrounding the current solution (Figure 14-3).

Chapter 14 Heuristics & Metaheuristics

516

Coordinates of an n-sphere (generalization of a sphere) can be

obtained according to the following formulas:

x r

x r

x r

1 1

2 1 2

3 1 2 3

= * ()
= * ()* ()

= * ()* ()*

cos

sin cos

sin sin cos

f
f f

f f f(()
¼

= * ()*¼* ()* ()
= * ()*¼*

- - -x r

x r
n n n

n

1 1 2 1

1

sin sin cos

sin sin

f f f
f ff fn n- -()* ()2 1sin

where r is the radius of the n-sphere and f f f1 2 1, ,¼ -n is the set of angular

coordinates, which has the first n - 2 in the range [0; π] and the last one in

the range [0; 2π].

To ease our labor with mathematical functions, we will be adding

a reference to the MathParserNuget package. By using this package we

will be able to define functions as strings and have them evaluated at

any point we want. Thus, we will have a Function public property in the

HillClimbing class as shown in Listing 14-1.

Figure 14-3.  The neighborhood of the current solution (blue point)
is formed by all the red points of the n-sphere surrounding it. In this
case, n = 1; i.e., the 1-sphere is a circle.

Chapter 14 Heuristics & Metaheuristics

517

Listing 14-1.  HillClimbing Class

public class HillClimbing

 {

 public Function Function{ get; set; }

 public double Step { get; set; }

 public double Radius { get; set; }

 private static readonly Random Random = new Random();

 �public HillClimbing(Function function, double step,

double radius)

 {

 Function = function;

 Step = step;

 Radius = radius;

 }

}

The class contains the following properties or fields:

•	 Function: function to be optimized

•	 Step: double value indicating the step or angle to use

when computing the neighborhood of a solution

•	 Radius: double value indicating the radius of the

n-sphere surrounding (neighborhood) the current

solution

•	 Random: variable used for computing random values

In Listing 14-2 we can see three methods that are in charge of

performing some of the components of the Hill Climbing algorithm.

Chapter 14 Heuristics & Metaheuristics

518

Listing 14-2.  InitialSolution(), Neighborhood(), and

NSpherePoints() Methods of the HillClimbing Class

 private List<double>InitialSolution(int dimension)

 {

var result = new List<double>();

 for (vari = 0; i< dimension; i++)

result.Add(Random.NextDouble()*100);

 return result;

 }

 �private IEnumerable<List<double>> Neighborhood(List

<double>currentSolution, int dimension)

 {

var result = new List<List<double>>();

varnewSolutions = NSpherePoints(currentSolution, dimension);

result.AddRange(newSolutions);

 return result;

 }

 �private IEnumerable<List<double>>NSpherePoints(List

<double>currentSolution, int dimension)

 {

var result = new List<List<double>>();

var angles = Enumerable.Repeat(Step, dimension).ToList();

 while (angles.First() < 180)

 {

 for (vari = 0; i< dimension; i++)

 {

varnewSolution = new List<double>(currentSolution);

var prod = 1.0;

Chapter 14 Heuristics & Metaheuristics

519

 for (var j = 0; j <i; j++)

 prod *= Math.Sin(angles[j]);

newSolution[i] = i == dimension - 1 &&i> 0

 ?

Radius*(prod)*Math.Sin(angles[i])

 :

Radius*(prod)*Math.Cos(angles[i]);

result.Add(newSolution);

 }

 angles = angles.Select(ang => ang + Step).ToList();

 }

 return result;

 }

 }

In the InitialSolution() method we create a random solution

of n-dimension with random values in the range [0, 100]. In the

Neighborhood() method we make use of the NSpherePoints() method

to calculate the new points that form the neighborhood of the current

solution. The last method is a direct translation of the system of coordinate

equations previously presented. Listing 14-3 illustrates the Execute()

method, which puts all the other components together.

Listing 14-3.  Execute() Method of the HillClimbing Class

public List<double>Execute()

 {

varcurrentSolution = InitialSolution(Function.

getArgumentsNumber());

varbestEval = double.MaxValue;

Chapter 14 Heuristics & Metaheuristics

520

 List<double>bestSolution = null;

 while (true)

 {

var neighbors = Neighborhood(currentSolution, Function.

getArgumentsNumber());

varbestCurrentEval = double.MaxValue;

 List<double>bestCurrentSolution = null;

 foreach (var neighbor in neighbors)

 {

vareval = Function.calculate(neighbor.ToArray());

 if (eval<bestCurrentEval)

 {

bestCurrentEval = eval;

bestCurrentSolution = neighbor;

 }

 }

 if (bestCurrentEval == bestEval)

 break;

 if (bestCurrentEval<bestEval)

 {

bestEval = bestCurrentEval;

bestSolution = bestCurrentSolution;

 }

 }

 return bestSolution;

 }

Chapter 14 Heuristics & Metaheuristics

521

We tested the algorithm on a console application by considering the

function f x x() = 2 , a parabolic function whose graphic can be seen in

Figure 14-4.

Figure 14-4.  Parabolic function

Clearly, the minimum value of this function is obtained when x = 0. So,

let’s test our algorithm to see how it goes downhill from a high value that

could be 100 to a value very close to 0 (Listing 14-4).

Listing 14-4.  Testing the Hill Climbing Algorithm

var f = new Function("f", "(x1)^2", "x1");

varhillClimbing = new HillClimbing(f, 5, 4);

var result = hillClimbing.Execute();

Console.WriteLine("Result: {0}", result[0]);

After executing this code and setting up a break point to discover the

initial solution from which the algorithm begins its processing, we obtain

the result seen in Figure 14-5.

Figure 14-5.  Result obtained after executing Hill Climbing algorithm

Chapter 14 Heuristics & Metaheuristics

522

The algorithm started with a value of 95.14 and was able to work

its way downhill until it reached a value that is very close to the global

optimum (0), which in this case coincides with a local optimum.

In the following sections, we will study S-metaheuristics (single

solution based) and P-metaheuristics (population based). The first type is

composed of a family where every member inherits from Local Search (LS)

or Hill Climbing and tries to overcome their difficulties by creating

mechanisms to escape from local optimums and continue the search in

other promising areas of the state space. The latter type is a vast group of

metaheuristics composed of those procedures that include a population in

their execution; their most popular representative without any doubt is the

family of genetic algorithms.

Note S ome of the most popular S-metaheuristics include Tabu
Search (TS), simulated annealing (SA), iterated local search (ILS), and
variable neighborhood search (VNS).

�P-Metaheuristics: Genetic Algorithms
Population-based metaheuristics, a.k.a P-metaheuristics algorithms,

consist of an iterative process of improvement over a set of solutions

grouped in a population. In this type of metaheuristics, we usually

begin by generating an initial population that is later replaced by

another population using some selection criteria. Algorithms such

as evolutionary algorithms (EAs), scatter search (SS), Estimation of

Distribution algorithms (EDAs), particle swarm optimization (PSO),

bee colony (BC), and artificial immune systems (AISs) belong to this

class of metaheuristics. In this section, we will focus on a type of

evolutive algorithm known as a genetic algorithm (GA).

Chapter 14 Heuristics & Metaheuristics

523

Genetic algorithms represent a family of metaheuristics inspired by

the process of natural selection; they were developed by John Holland

in the 1970s and are commonly used to generate high-quality solutions

to optimization and search problems by relying on bio-inspired

operators, such as mutation, crossover, and selection. Concepts such as

chromosomes, genes, and fitness are commonly found in GA literature,

and they try to find analogy with their equivalent in areas like biology,

chemistry, and so on.

Note  GAs are widely used in the fields of computer science and
operations research. In the latter field, GAs deal with the application
of advanced analytical methods to help make better decisions.

In GAs we usually need to encode solutions in a “genetic” manner so

as to later allow us to efficiently apply mutation and crossover operators.

We also need a fitness function that receives as argument an encoded

solution and provides us with an assessment or evaluation of the encoded

solution. A popular encoding for a solution consists of a binary string; this

encoding makes it very easy to apply almost any operator.

Metaheuristics try to optimize on two fronts: by means of the

application of intensification and diversification mechanisms.

Intensification refers to the ability of the algorithm to pursue even further

already discovered and promising areas of the state space. It means to

exploit those areas of the state space where we have already discovered

good solutions.

On the other hand, diversification refers to the ability to explore

unexplored areas of the state space while trying to discover new, high-

quality solutions.

Chapter 14 Heuristics & Metaheuristics

524

The mutation operator tries to alter a solution by creating a new one

that exists in a different area of the state space; thus, it diversifies the search.

The crossover operator usually works on two solutions whose fitness values

are considered among the best found so far. It then mixes their values on a

crossover point; this is an intensification operator, as we try to mix two good

solutions in an attempt to find an even better one. Figure 14-6 shows how

these operators would function on a binary chromosome (solution).

Figure 14-6.  The mutation operator modifies a single bit in the
chromosome (solution), and the crossover operator assigns a breaking
point on the two parent chromosomes, creating a new solution by
taking half the genes from the first chromosome and half the genes
from the second part of the second chromosome.

Chapter 14 Heuristics & Metaheuristics

525

From Figure 14-6 we can easily deduce that the mutation operator is

unary whereas the crossover operator is binary.

Even though the selection, mutation, and crossover methods

can change from one specific implementation to another (problem

dependent), a generic pseudocode for a genetic algorithm is presented in

the following lines:

GA ()

{

InitializePopulation();

EvaluatePopulation();

 while(!stopCondition)

 {

 Select the best-fit individuals for reproduction;

 �Obtain offsprings through mutation, crossover

operators on the previously selected individuals;

 Evaluate offsprings;

 �Obtain new population by selecting best-fit

individuals from offsprings and the current

population;

 }

}

From this pseudocode we can see how GAs can be seen as

optimization methods based on the biological analogy of “survival of the

fittest.” Through biological analogies of genetic reproduction, crossover,

and mutation the quality of the average population and the individuals

is improved over several generations. In principle, the average quality

of the population should increase with each generation. However, this

strongly depends on some of the parameters (for example, the mutation

probability) and the nature of the fitness (quality, probability) function.

Chapter 14 Heuristics & Metaheuristics

526

In the upcoming section we will implement a GA for a very popular

problem in computer science, the Traveling Salesman Problem, also

known as TSP. We will tailor our GA (solution encoding, fitness function,

and so on) to make it fit into the model of the TSP and provide solutions

accordingly.

�Practical Problem: Implementing a Genetic
Algorithm for the Traveling Salesman
Problem
We have already discussed GAs, and we know they are inspired by a

biological process that resembles the evolution of a population over time,

and that better-fitting individuals represent a better solution for us. GAs

alone are merely blueprints waiting to be adapted to a specific problem.

In this section we will be adapting a GA to find solutions and optimize a

Traveling Salesman Problem (TSP).

The Traveling Salesman Problem (TSP) is the problem where we have

a salesman who is given the task of going through n cities while seeking to

minimize the time spent traveling from one city to another and eventually

visiting each and every one of them. Figure 14-7 illustrates a map of the

United States where several cities (black points) must be visited by a

salesman; purple lines indicate a possible minimum cost path.

Chapter 14 Heuristics & Metaheuristics

527

Figure 14-7.  US map showing a possible path to be followed by a
salesman through several cities. In this case, the path ends where it
started.

TSP is an NP-Hard problem, meaning we must rely on approximation

or heuristic methods to obtain solutions in a practical time. The exact

solution would imply developing a combinatorial algorithm that would take

O(n!) to execute—i.e., a factorial time on execution—implying for n = 20

we would have 2,432,902,008,176,640,000 possible solutions to check.

Because in TSP we try to find the permutation of cities yielding the

optimum value for the fitness function, it would seem pretty logical to use

this representation as encoding for our GA, and that’s the strategy we will

follow. Thus, we will have chromosomes as lists of values ranging from

[0, n - 1]; each value in the list will represent a city, and the order defined

on the list is the tour to be followed by the salesman. Figure 14-8 shows an

example of a chromosome for our GA oriented toward finding solutions to

the TSP.

Chapter 14 Heuristics & Metaheuristics

528

In order to be consistent with the object-oriented approach of our design

we will include a Tsp class that will contemplate all operations directly

related to the problem and to problem-specific issues (Listing 14-5).

Listing 14-5.  Tsp Class Contemplating Problem-Specific Issues

 public class Tsp

 {

 public static double[,] Map { get; set; }

 public Tsp(double [,] map)

 {

 Map = map;

 }

 public static void Evaluate(Solution solution)

 {

var result = 0.0;

 for (vari = 0; i<solution.Ordering.Count - 1; i++)

 �result += Map[solution.Ordering[i], solution.

Ordering[i + 1]];

solution.Fitness = result;

 }

 }

Figure 14-8.  Chromosome or solution encoding for TSP

Chapter 14 Heuristics & Metaheuristics

529

In this class we store the double [,] matrix Map representing the map of

distances; in other words, the matrix storing the distance between any two

cities i, j. We coded an Evaluate() method where we calculate the fitness

value of an input solution. Likewise, we also included a Solution class

where all solution-related operations are developed (Listing 14-6).

Listing 14-6.  Solution Class

 public class Solution

 {

 public List<int> Ordering { get; set; }

 public double Fitness { get; set; }

 public Solution(IEnumerable<int> ordering)

 {

 Ordering = new List<int>(ordering);

Tsp.Evaluate(this);

 }

 public Solution Mutate(Random random)

 {

vari = random.Next(0, Ordering.Count);

var j = random.Next(0, Ordering.Count);

 if (i == j)

 return this;

varnewOrdering = new List<int>(Ordering);

var temp = newOrdering[i];

newOrdering[i] = newOrdering[j];

newOrdering[j] = temp;

 return new Solution(newOrdering);

 }

Chapter 14 Heuristics & Metaheuristics

530

 public Solution CrossOver(Random random, Solution solution)

 {

var ordinal = Ordinal();

varordinalSol = solution.Ordinal();

varparentA = new List<int>(ordinal);

varparentB = new List<int>(ordinalSol);

var cut = parentA.Count/2;

varfirstHalf = parentA.GetRange(0, cut);

varsecondHalf = parentB.GetRange(cut, parentB.Count - cut);

firstHalf.AddRange(secondHalf);

 return DecodeOrdinal(firstHalf);

 }

 public List<int>Ordinal()

 {

var result = new List<int>();

var canonic = new List<int>(Canonic);

 foreach (varcurrentVal in Ordering)

 {

varindexCanonical = canonic.IndexOf(currentVal);

result.Add(indexCanonical);

canonic.RemoveAt(indexCanonical);

 }

 return result;

 }

 public Solution DecodeOrdinal(List<int> ordinal)

 {

var result = new List<int>();

var canonic = new List<int>(Canonic);

Chapter 14 Heuristics & Metaheuristics

531

 for (vari = 0; i<ordinal.Count; i++)

 {

varindexCanonical = ordinal[i];

result.Add(canonic[indexCanonical]);

canonic.RemoveAt(indexCanonical);

 }

 return new Solution(result);

 }

 public List<int> Canonic

 {

 get { returnEnumerable.Range(0, Ordering.Count).

ToList(); }

 }

 }

A solution is composed of two main fields or properties, a list

of integers named Ordering, and a double value property Fitness

representing the fitness of the solution. It also includes a Canonic property,

which outputs a list of integers arranged in increasing order {1, …, n}, n

being the total number of cities. For instance, when n = 5 then its canonic

form will be {1, 2, 3, 4, 5}. We use the canonic form to calculate the ordinal

form of a solution. Why do we need the ordinal form of a solution?

To understand why we transform a solution to its ordinal form

consider in Figure 14-9 what might happen if we apply the crossover

operator on two solutions.

Chapter 14 Heuristics & Metaheuristics

532

As we can see from the previous figure, the application of the crossover

operator on the parents gives birth to an unfeasible offspring that contains

a tour that passes twice by the same city—city number 2. To avoid this

issue, we use the ordinal representation of a solution, which can be

calculated as described on Figure 14-10.

Figure 14-9.  After applying the crossover operator to the parents,
the resulting offspring is unfeasible as it represents a tour that passes
twice by city number 2

Figure 14-10.  To calculate the ordinal form we loop through the
canonic form, look for the position of the analyzed value in the
current tour, and save that position in the list forming the ordinal
representation

Chapter 14 Heuristics & Metaheuristics

533

The interesting fact is that while the crossover operator produces

unfeasible solutions when applied to regular TSP representations, when

we transform these representations to ordinal form, the crossover operator

produces a feasible solution (in ordinal form). We would just need to

decode that ordinal solution into regular TSP form (permutation of

integers in the range 1 … n) to continue the GA procedure.

The Solution class contains the following methods:

•	 Mutate(): In this method we mutate a solution by

selecting two random index positions in the solution

ordering and exchanging their corresponding values.

•	 CrossOver(): In this method we apply the crossover

operator on the ordinal form of the input solutions and

eventually decode the obtained ordinal solution into

a regular TSP solution. The cut is executed at half the

length of the ordering.

•	 Ordinal(): In this method we transform a regular TSP

solution into ordinal form.

•	 DecodeOrdinal(): In this method we transform an

ordinal solution into a regular TSP solution.

Finally, in the GeneticAlgorithmTsp class (Listing 14-7) we

incorporated the different phases of the GA. The class includes the

following fields or properties:

•	 Iterations: number of iterations that the algorithm

will be executing

•	 Tsp: instance of the Tsp class previously presented

•	 Population: set of individuals, each an instance of the

Solution class previously described

•	 Size: size of the population

•	 Random: random variable

Chapter 14 Heuristics & Metaheuristics

534

The selection strategy that is coded in the Selection() method shown

in Listing 14-8 consists of sorting the population in increasing order of

their fitness function and selecting the first Size/2 individuals.

Listing 14-7.  GeneticAlgorithmTsp Class

public class GeneticAlgorithmTsp

 {

 public int Iterations { get; set; }

 public Tsp Tsp{ get; set; }

 public List<Solution> Population { get; set; }

 public int Size;

 private static readonly Random Random = new Random();

 public GeneticAlgorithmTsp(int iterations, Tsp tsp, int size)

 {

 Iterations = iterations;

 Tsp = tsp;

 Population = new List<Solution>();

 Size = size;

 }

}

Listing 14-8 shows the main method of execution of the GA. In the

same listing, we can also see the InitialPopulation() method where we

create Size random solutions. In the NewPopulation() method we add

the newly born offspring to the population and sort them according to the

fitness value of individuals, leaving for the next generation the first Size

solutions after having ordered the Population list. In the OffSprings()

method, we mutate a chromosome (solution) with a probability less

than or equal to 0.4 and recombine or apply a crossover operator with a

probability of 0.6.

Chapter 14 Heuristics & Metaheuristics

535

Listing 14-8.  GeneticAlgorithmTsp Class

 public Solution Execute()

 {

InitialPopulation();

vari = 0;

 while (i< Iterations)

 {

var selected = Selection();

varoffSprings = OffSprings(selected as List<Solution>);

NewPopulation(offSprings);

i++;

 }

 return Population.First();

 }

 private void NewPopulation(IEnumerable<Solution>offSprings)

 {

Population.AddRange(offSprings);

Population.Sort((solutionA, solutionB) =>solutionA.Fitness>=

solutionB.Fitness ?1 : -1);

 Population = Population.GetRange(0, Size);

 }

 �private IEnumerable<Solution>OffSprings(List<Solution>

selected)

 {

var result = new List<Solution>();

 for (vari = 0; i<selected.Count - 1; i++)

 {

Chapter 14 Heuristics & Metaheuristics

536

result.Add(Random.NextDouble() <= 0.4

 ? selected[i].Mutate(Random)

 : selected[i].CrossOver(Random,

selected[Random.Next(0, selected.Count)]));

 }

 return result;

 }

 private IEnumerable<Solution>Selection()

 {

Population.Sort((solutionA, solutionB) =>solutionA.Fitness>=

solutionB.Fitness ?1 : -1);

 return Population.GetRange(0, Size / 2);

 }

 private void InitialPopulation()

 {

vari = 0;

 while (i< Size)

 {

Population.Add(RandomSolution(Tsp.Map.GetLength(0)));

i++;

 }

 }

 private Solution RandomSolution(int n)

 {

var result = new List<int>();

var range = Enumerable.Range(0, n).ToList();

 while (range.Count> 0)

 {

Chapter 14 Heuristics & Metaheuristics

537

var index = Random.Next(0, range.Count);

result.Add(range[index]);

range.RemoveAt(index);

 }

 return new Solution(result);

 }

 }

Now that we have all elements of our GA in place we can test it in a

console application as we have done with other algorithms.

Listing 14-9.  Testing Our GA for Solving the TSP

var map = new double[,] {

 {1, 2, 3, 1, 5},

 {5, 1, 1, 1, 8},

 {1, 7, 2, 1, 9},

 {1, 1, 6, 1, 8},

 {1, 1, 4, 1, 2},

 };

varga = new GeneticAlgorithmTsp(100, new Tsp(map), 100);

var best = ga.Execute();

Console.WriteLine("Solution:");

 foreach (var d in best.Ordering)

Console.Write("{0},", d);

Console.WriteLine('\n' + "Fitness: {0}", best.Fitness);

In this case, we have chosen to have 100 iterations or evolution cycles,

and the map consists of five cities with distances as detailed in the matrix

from Listing 14-9. The result obtained can be seen in Figure 14-11.

Chapter 14 Heuristics & Metaheuristics

538

The solution outputted by the algorithm is (4, 1, 2, 0, 3); in other words,

first visit city No. 4, then move to cities No. 1, No. 2, No. 0, and finally No. 3.

This path has a cost of 4, and since the cost of traveling from one city to

the other must be at least 1 we can assert with a high degree of certainty

that the path outputted is optimal. Also notice that the solution outputted

by the algorithm is the first in the population list, which seems pretty

logical as we preserve it sorted in increasing order of the fitness value of

individuals.

In the next section we will be examining S-metaheuristics; we already

discussed the heuristic from which all S-metaheuristics descend—Hill

Climbing, also known as Local Search—and very soon we will address the

topic of how a representative of an S-metaheuristic can escape from the

local optimum by means of intensification and diversification mechanisms

and keep a memory of the search up to a given point.

�S-Metaheuristics: Tabu Search
Single solution–based metaheuristics, a.k.a S-metaheuristics algorithms,

consist of an iterative process where a single solution is improved at each

step. They could be viewed as paths created through neighborhoods or

search trajectories through the state space of a given problem. The paths

or trajectories are built from iterative methods that move from a current

solution to another solution in the state space. S-metaheuristics can

be very efficient and provide good solutions to multiple optimization

problems.

Figure 14-11.  Solution outputted by our GA to the previous TSP

Chapter 14 Heuristics & Metaheuristics

539

Tabu Search (TS) is a metaheuristic first described by Fred Glover

in the 1980s that uses adaptive memory and responsive exploration.

It inherits from Hill Climbing (HC), probably the oldest and simplest

heuristic method ever created. It could be argued that Tabu Search is

just an HC with some considerable improvements or upgrades. Its core

functionality is the same as HC; it starts at a given initial solution (usually

randomly generated), runs until a stopping rule is reached, and in each

iteration the current solution is replaced by another that improves the

objective function and is found in the neighborhood of the current

solution. The stopping rule for HC is met when no neighbor of the current

solution improves the objective function, indicating a local optimum

has been found. As we know from previous sections, this is the main

disadvantage of HC; it can fall into a local optimum, a disadvantage Tabu

Search does not share as it includes mechanisms of diversification that

prevent it from getting stuck in a local optimum.

As the name suggests, TS operates by performing a search in areas of

the state space that are not marked as “tabu” or forbidden. Such a mark

indicates that for some time (iterations) they will not be considered in the

search in an attempt to avoid the consequential waste of time and effort of

trying to find solutions in the same area in short periods of time.

Adaptive memory is probably the most important characteristic of

Tabu Search. It’s the ability to remember the evolution of the search and is

accomplished through the use of data structures. The Tabu List represents

one of these data structures. It’s traditionally employed to save pairs of data

previously swapped, avoiding the possibility of cycling around the same

solutions for some time (the length of this list must be finite since memory

is finite). The term intensification refers to a mechanism that many

metaheuristics implement to favor the exploitation of the best solutions

found so far; in this case, the more promising regions are explored

thoroughly. Diversification, on the other hand, refers to the exploration of

the search space, trying to visit unexplored solutions.

Chapter 14 Heuristics & Metaheuristics

540

On top of the HC-related components (initial solution, neighborhood,

and so forth), TS also includes the following specific components:

•	 Tabu List: also known as short-term memory, its

purpose is to prevent the search from revisiting

previously visited solutions, to prevent cycling. As

mentioned before, storing the list of all visited solutions

is not practical for efficiency issues, thus the Tabu List

usually comprehends a maximum size defined a priori,

and we store at most the number of solutions defined

by that size. Also, we typically don’t store an entire

solution in the Tabu List, but rather moves or solution

attributes, which significantly reduces data storage. A

move remains tabu for a number of iterations, known

as Tabu tenure.

•	 Aspiration criterion: A commonly used aspiration

criteria consists of selecting a tabu move if it generates

a solution that is better than the best found solution;

another aspiration criterion may be a tabu move that

yields a better solution from among a set of solutions

that include a given attribute.

In order to avoid getting stuck at a local optimum, TS includes

intensification and diversification mechanisms; such mechanisms are

represented by medium- and long-term memories:

•	 Intensification (medium-term memory): The medium-

term memory stores the elite (e.g., best) solutions

found during the search. The idea is to give priority

to attributes from the set of elite solutions, usually in

a weighted probability manner. The search is biased

by these attributes. It’s usually represented by a

recency memory in which one records the number of

Chapter 14 Heuristics & Metaheuristics

541

consecutive iterations that various solution features

have been present in the current solution without

interruption.

•	 Diversification (long-term memory): The long-term

memory stores information on the visited solutions

along the search. It explores the unvisited areas of the

solution space. For instance, it will discourage the

attributes of elite solutions in the generated solutions

to diversify the search to other areas of the state space.

It’s usually represented by a frequency memory that

memorizes for each component the number of times

the component is present in all visited solutions.

The pseudocode of the algorithm can be seen in the following lines:

TS ()

{

currentSolution = InitialSolution();

 /* TabuList, Medium-Term and Long-Term memories */

InitDataStructures();

 while (!stopping_criteria_met)

 {

 �neighborhood = GetNeighborhood

(currentSolution);

/∗ Non tabu or aspiration criterion holds ∗/
currentSolution= GetBestNeighbor(neighborhood);

 �/* Updatetabu list, aspiration conditions, medium,

long term memories */

Update();

If (intensificationCriterion)

Intensification();

Chapter 14 Heuristics & Metaheuristics

542

If (diversificationCriterion)

Diversification();

 }

 return bestSolutionFound;

}

Let’s examine a real-life example in order to understand a little bit

better the functioning of the TS algorithm. Consider once again the zoning

problem from Chapter 13 and a multi-objective optimization problem

where we would be minimizing the compactness (intra-class distance)

and homogeneity functions. The latter function involves demographic

variables; hence, it can tell us how similar two regions are in regards to age,

sex, unemployment, or any other demographic variable.

In the zoning problem, a basic geostatical area (BGA) is the manner in

which we refer to a basic or primitive region to be clustered. Any BGA consists

of a pair (position, variablesValues) where position marks the location of the

area in space (usually two coordinates) and variablesValues represents a list of

values for each demographic variable in the problem. These are the elements

or objects that TS will be clustering in the zoning problem.

In mathematics, homogeneity between elements x, y occurs when

|x - y| = 0. If one considers the variables list as a vector in space, one

could measure how similar regions x, y are by taking into account the

EuclideanDistance(x,y) values and how small they are inside a cluster.

The closer EuclideanDistance(x,y) is to 0 the closer regions x, y will be to

each other. This is the approach we will apply to measure homogeneity, as

if variable vectors are vectors in space and their homogeneity is achieved by

how close they are. Therefore, the second function to be optimized is similar

to the intra-class function, but in this case it considers the homogeneity

dissimilarity matrix. Both the compactness and homogeneity functions

will be calculated from dissimilarity matrixes that determine the level of

similarity between any two regions and are associated with any variable.

Chapter 14 Heuristics & Metaheuristics

543

Since we are dealing with a multi-objective problem we will be using

the Pareto Frontier Builder introduced in Chapter 13 to get a decent

approximation of the frontier during a diversification phase.

Solutions are encoded as pairs (elements, centers), where elements

is an n k- array, n being nthe number of BGAs, k the number of

clusters, and xi indicating that object (region in our case) i is located

at cluster xi. The centers array of length k contains every center. The

neighborhood of a given solution x denoted by N(x) is obtained by

swapping all pairs of elements (i, j) where i is any center and j any element,

so having s e e e c c cn k k= ¼() ¼()()-1 2 1 2, , , , , , , as a solution implies

c e e e c c N sn k k1 2 1 2, , , , , , ,¼() ¼()()Î ()- . Each element c e en k1 2, , ,¼()- in

the neighbor solution will be clustered into its closest center or cluster.

The pseudocode of our TS oriented toward the zoning problem (MOP

plus clustering problem) is the following:

TsZoning()

{

 currentSolution = InitialSolution();

 while(!stoppingConditionMet)

 {

neighborhood = GetNeighborhoodSetTabu(currentSolution);

/*Select current solution as the solution with minimum

intra-class value and not tabu in the previously generated

neighborhood set */

currentSolution = BestFittingNeighbor(neighborhood);

If (intensificationTime){

/*generate neighborhood for current solution, minimizing the

second objective */

MinimizeSecondObjective();

 }

Chapter 14 Heuristics & Metaheuristics

544

If (diversificationTime) {

FrontierBuilder();

 }

UpdateParetoFrontier();

 }

}

The initial solution will be generated by taking the first k data-set

elements as centers and then clustering the remaining elements around

their closest center. Notice how, in general, each new clustering or

solution is formed in the neighborhood either by selecting k centers and

then clustering the remaining n - k elements to their closest centers or by

making step variations to already-formed solutions.

The TS proposed in this book uses a Tabu List data structure in the

shape of a hash set list, which stores solution centers as a hash set. If a

solution contains centers c = (1,2,3), and another solution contains centers

c’=(3,4,2), then the Tabu List will contain T = ((1,2,3),(3,4,2)). The list of

hash sets allows for easy handling, insertion, and search. Also, one could

efficiently check whether a solution with centers (1,2,3) is tabu, and since

a set data structure will consider all of these as equals—(1,2,3), (2,3,1),

(1,3,2), (2,1,3)—it prevents duplication. Our Tabu List will prohibit the use

of tuple of centers for some time.

In order to test the algorithm, a real-world problem has been used. It’s

illustrated as follows: the BGAs of the metropolitan area of Toluca Valley

are going to be clustered into five homogeneous groups that only include

elements whose variables have values in the ranges indicated here:

•	 Male Population under 6 years (X001).

•	 Male population between 6 and 11 years (X003).

•	 Male population between 15 and 17 (X007).

Chapter 14 Heuristics & Metaheuristics

545

Homogeneity will be obtained on all three variables. Tabu

Search has run several iterations with intensificationTime = 3,

diversificationTime = 5. In this example, we have obtained the following

results (for simplicity’s sake we have decided not to include the entire

Pareto Frontier found but rather just a subset of it):

(50.5901261076844,32885.0892241763)

(50.5758416315104,33770.2868646186)

(52.0662659720778,32047.9735370572)

(52.6236863193259,31963.3459865693)

(50.9352052335638,32227.1149958513)

(51.7073149394271,32224.293243894)

(50.6297645146784,32796.6211680751)

(50.7327985199368,32648.7098303008)

(63.4052030689118,31953.3511763935)

(31.7646782813892,74764.1984211605)

(32.6995744158722,73074.7519844055)

(31.7734798863389,74355.8623848788)

(31.776816796024,73910.6355371396)

(31.9216141687552,73353.8052604555)

(32.6187235737901,73079.8864057969)

(35.171800392375,71677.0312411241)

(35.1767441367242,71676.5767247979)

(35.1343494585806,71697.8434007592)

(35.147462667771,71697.7558703676)

(35.2879720849387,71676.5396553831)

(35.3225361349416,71541.4393240582)

(35.323587070021,71541.1602760788)

...

Chapter 14 Heuristics & Metaheuristics

546

(35.5212138666,71384.7335594089)

(35.5222648016794,71384.4545114295)

(35.5310228433471,71384.2874695704)

(35.5614827835752,71363.55569029)

...

(40.0890479612853,66076.8575353262)

(40.1225133591276,66076.6462691529)

(40.1281553068144,66056.6499667925)

(40.0820569677191,66076.9379156809)

(40.0951701769095,66076.8503852894)

(40.1358379144876,66056.5493872965)

(40.1373651695288,65921.6511332184)

(40.1384161046082,65921.3720852389)

(40.1471741462759,65921.2050433798)

(40.1806395441182,65920.9937772065)

(40.186281491805,65900.9974748462)

(40.1401831527096,65921.2854237345)

(40.1532963619001,65921.197893343)

(40.21572345198,65900.924086982)

(40.3387179536343,65900.9141882557)

These results match the graphic shown in Figure 14-12.

Chapter 14 Heuristics & Metaheuristics

547

Summarizing, we have applied TS to an interesting clustering-related

problem, and by combining it with the Frontier Builder we have obtained a

pretty decent approximation of the Pareto Frontier.

The use of metaheuristics to solve the zoning problem, as well as

the TSP, quadratic problem, and many others, is mandatory because of

their NP-Complete nature. In fact, most of the time we don’t find optimal

solutions, but rather approximations of these optimal solutions, and

sometimes if we are lucky these approximations might equal some optimal

solution. Metaheuristics such as genetic algorithms can be combined with

other AI methods with the intention of starting some AI procedure with an

already optimized solution, thus obtaining better results in the end.

Figure 14-12.  Pareto Frontier outputted by our TS on the zoning
problem

Chapter 14 Heuristics & Metaheuristics

548

�Summary
Throughout this chapter we studied heuristics and metaheuristics; we

implemented the popular Hill Climbing algorithm, which is the parent

of all single solution–based metaheuristics (S-metaheuristics), and we

also analyzed genetic algorithms as a representative of population-based

metaheuristics (P-metaheuristics). We provided implementations for

both these methods, and at the end we described a representative of

S-metaheuristics; namely, we described Tabu Search and proposed a TS

method embedded in a multi-objective framework and oriented toward

solving the zoning problem introduced in Chapter 13.

Chapter 14 Heuristics & Metaheuristics

549© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_15

CHAPTER 15

Game Programming
Nowadays, the video-game industry is a billion-dollar sector of the U.S.

economy. There are thousands of companies developing and publishing

games in all fifty states, and each game developed involves dozens of

job disciplines, and its component parts employ thousands of people

worldwide. It is truly a global and competitive market. The industry

typically requires professionals with advanced skills in many different

areas. Video-game companies must be leaders in innovation, creativity,

ingenuity, and knowledge of the industry, and must be continuously

adapting and changing markets. Throughout their short history, video

games have seen a tremendous improvement in graphics and realism;

accordingly, modern PCs owe many of their advancements and

innovations to the game industry: sound cards, graphics cards and 3D

graphic accelerators, faster CPUs, and dedicated coprocessors like PhysX

are a few of the most notable contributions.

The industry is continuing to grow, and as it does more and more

jobs are available. According to Forbes magazine, the economic impact

of the gaming industry to the US GDP was over $11 billion in 2016, and

that number is certain to grow for the foreseeable future. Companies

of worldwide reach, like Activision-Blizzard (Call of Duty), Take-Two

Interactive (NBA2K series), Ubisoft (Assassin’s Creed), and Crytek (Far Cry),

are shaping and altering our perspective of reality in the digital world with

realistic, mind-blowing games that impact our social and economic life.

https://en.wikipedia.org/wiki/Job#Job
https://en.wikipedia.org/wiki/Personal_computer#Personal computer
https://en.wikipedia.org/wiki/Sound_card#Sound card
https://en.wikipedia.org/wiki/Graphics_card#Graphics card
https://en.wikipedia.org/wiki/3D_graphic_accelerator#3D graphic accelerator
https://en.wikipedia.org/wiki/3D_graphic_accelerator#3D graphic accelerator
https://en.wikipedia.org/wiki/CPU#CPU
https://en.wikipedia.org/wiki/PhysX#PhysX

550

The game industry employs people experienced in other traditional

lines of business, but most people hired have experience tailored to the

game industry. Some of the disciplines specific to this industry include

game programmer (includes AI), game designer, level designer, game

producer, game artist, and game tester. Most of these professionals are

employed by video-game developers or video-game publishers. A key

element in the video-game development flow is the AI game developer.

The main goal of this chapter is to describe some of the most important

game-related AI methods, specifically those that involve searching in a

domain space, a basic task that must be tackled in almost every game. We

will examine search algorithms such as BFS, DFS, DLS, IDS, bidirectional

search, and A*, and we will see how to make use of them when developing

an AI for a game. Practical problems where we implement all of the

previously detailed algorithms will be included; in case of bidirectional

search and A* we will describe them as being oriented toward solving the

Sliding Tiles Puzzle.

Note  Companies like Sony, Nintendo, and Microsoft have contributed
to keeping gaming fever alive around the globe by improving their
consoles almost every year (PlayStation, Nintendo, Xbox).

Chapter 15 Game Programming

https://en.wikipedia.org/wiki/Game_programmer#Game programmer
https://en.wikipedia.org/wiki/Game_designer#Game designer
https://en.wikipedia.org/wiki/Level_designer#Level designer
https://en.wikipedia.org/wiki/Game_producer#Game producer
https://en.wikipedia.org/wiki/Game_producer#Game producer
https://en.wikipedia.org/wiki/Game_artist#Game artist
https://en.wikipedia.org/wiki/Game_tester#Game tester
https://en.wikipedia.org/wiki/Video_game_developer#Video game developer
https://en.wikipedia.org/wiki/Video_game_publisher#Video game publisher

551

�What Is a Video Game?
As occurs with any other software, a game goes through a process known

as software development in which it’s conceived, specified, designed,

coded, documented, tested, and bug-fixed. Thus, a video game is a

software or computer program (Figure 15-1) that enables one or various

people to interact and play a digital, electronic game in the most realistic

environment possible, which is perceived through a display (screen, lens,

etc.), interacted with through a controller (joystick, game pad, etc.), and

executed by a platform (computer, video console, mobile phone, etc.)—the

machine in charge of sending images and sound to the displayer and

enabling the controller for interaction.

Figure 15-1.  The Halo Series (owned by Microsoft) is one of the most
popular “shooters” (first person) and science fiction games ever

Chapter 15 Game Programming

https://en.wikipedia.org/wiki/Software_documentation#Software documentation
https://en.wikipedia.org/wiki/Software_bugs#Software bugs

552

The platform executes the game engine, a compound of graphics and

animation, physics, controller interaction, AI, sound, networking, and

so forth that follows the logic defined by the video game as coded by its

developers.

The design phase of a video game usually includes the participation of

a multidisciplinary team of computer scientists, historians, psychologists,

musicians, artists, and digital marketers as well as other professionals.

They all work together, looking to provide gamers with the most realistic

game they can have, assuming the game requires this type of realism.

The AI game developer team would be in charge of creating the AI for

the game. What’s the AI for a game? The AI of a game defines how smart

our opponents are in the game; for instance, in a sports game such as

soccer, basketball, or similar, the AI implemented for the computer’s side

would consist of a set of strategies, plays, behaviors, actions, and so on

that ultimately define a level of complexity for the computer player(s) and

makes it challenging and entertaining for us to play and enjoy.

One of the main topics in AI game development is that of creating

algorithms for searching in games. Search in games will be the focus point

of the next section, where we will finally start diving into game-related AI

algorithms.

Note T he Electronic Entertainment Expo (a.k.a.f E3) convention is
one of the biggest gaming fairs in the world. It’s the rendezvous point
where leaders of the gaming industry expose their latest creations.

Chapter 15 Game Programming

553

Figure 15-2.  Sliding Tiles Puzzle; a board game that relies on AI
search methods

�Searching in Games
There are many games that must rely on search procedures to be able to

reach a winning state. Board games are probably the best representatives

of such a scenario; in a board game like the Sliding Tiles Puzzle (Figure 15-2)

we must search in a tree of all possible states for the one that would

actually be a winning or goal state. Trees are very common structures

used to represent the state space (set of all possible states). How the tree

is defined or generated is problem specific; for the Sliding Tiles Puzzle

case, each of the four positions to which the blank tile can be swapped

represents a child of the current node. Therefore, we would have a tree of

all possible states, with subtrees like the one depicted in Figure 15-3.

Chapter 15 Game Programming

554

Figure 15-3.  Searching in the Sliding Tiles Puzzle until a goal state
is found. In this example we use a heuristics (misplaced tiles) to
determine the shortest route (orange boxes) to the goal state.

Chapter 15 Game Programming

555

The tree generated by the search provides us with a sequence of

moves—from the root or start state, all the way down and up to a goal

state—thus it provides us with a solution to the game. In Figure 15-3, the

solution would be represented by moves {right, down, right}; therefore,

a path of length 3 from the root takes us to a goal state. The purpose of

combining a search method with a heuristic, as we will see, is to shorten

the length of the search path to a goal node.

A search strategy can be classified according to the following criteria:

•	 Systematicity: This is a strategy where we structure the

state space as a tree; we consider a strategy systematic

if and only if

•	 the search continues as long as no solution has

been found and there are still candidates to

examine; and

•	 each candidate is examined once.

•	 Information Usage: It refers to whether the search uses

domain-specific knowledge; i.e., knowledge of the

problem during the search. It can be classified as

•	 informed search (Best-First Search, A*); or

•	 uninformed or blind search (BFS, DFS, IDS).

In this book, we will focus on systematic strategies, and we will also

discuss both informed and uninformed search methods. The following

features will be taken into account in future sections when assessing the

performance of a search algorithm:

•	 b (branch factor): maximum number of children of a node

•	 d (depth): maximum length of all paths from the root to

a leaf node

•	 m: minimum length of any path from the root to a goal state

Chapter 15 Game Programming

556

Additionally, we’ll assert that a search is complete if it’s always able to

find a solution and optimal if it’s always able to find the lowest path cost to

a goal state.

Note T he oldest type of sliding puzzle is the fifteen puzzle, invented
by Noyes Chapman in 1880.

�Uninformed Search
In uninformed search methods all non-goal nodes in the frontier look

identical to the algorithm; as a result, this type of search is also known as

a blind search. The procedure cannot determine whether a path followed

from a node X is going to be any better than another path from node Y.

Uninformed search algorithms are essentially graph algorithms;

they operate on trees, and trees are a particular kind of graph. Thus, the

algorithms herein described are also part of the Graph Theory toolbox.

Breadth-first search (BFS) is one of the most popular graph-based

search algorithms. In this method, nodes are discovered by levels;

the algorithm discovers all nodes at distance k from the root before

discovering any nodes at distance k + 1 (Figure 15-4).

BFS is complete when b is finite, both its time and space complexity

are O(bd), and it’s optimal if the edge cost equals 1; i.e., if the cost of taking

a step in the search equals 1.

Chapter 15 Game Programming

557

Depth-first search (DFS) is another very popular graph-based search

algorithm and is the prototype for many other such search procedures.

In DFS, nodes are discovered by their distance downward; the algorithm

begins at a root node and follows a path through the leftmost child node

until it reaches a leaf, then it “backtracks” to the previously visited node N

and continues discovering the next non-visited child of N. Thus, it always

goes in depth building a path that looks for the leftmost, non-visited,

deepest node and repeats this procedure recursively over the entire tree or

graph (Figure 15-5). Notice that in a graph where we can encounter cycles,

DFS must guarantee that visited nodes are marked as “visited.”

Figure 15-4.  Traversing the tree using a BFS procedure; we begin at
node A and then discover all nodes from the next level, i.e. nodes B, C, D.
We continue like this, discovering nodes at the following level, i.e. nodes E,
F, G, H. Finally, we discover nodes I and J at the final level.

Chapter 15 Game Programming

558

Assuming we implement some sort of control mechanism determining

what nodes have been visited along the way, and also assuming we are

dealing with a finite space, we can affirm that DFS will be complete;

otherwise, it’s incomplete because it can fall into infinite loops. Its

time complexity is O(bm), which can be much worse than O(bd) if m is

considerably larger than d. Its space complexity is O(b * m), and it’s not an

optimal search algorithm.

To compare BFS and DFS, the first method is usually applied in

scenarios where we may have possible infinite paths, where solutions can

be reached in short paths, or where we can easily discard unsuccessful

paths. On the other hand, DFS would be preferred in scenarios where the

state space is restricted, where there are many possible solutions with long

paths, or where wrong paths are usually terminated quickly and the search

can be adjusted accordingly.

Figure 15-5.  Traversing the tree using a DFS procedure; we begin at
node A and then follow the path leading to the leftmost, non-visited
node; therefore, we build the path formed by nodes A, B, E, I, then
backtrack all the way up to the root (only node in the built path that
has children pending discovery) and move to the leftmost, non-visited
child, which would be C. It recursively executes the same procedure on
C and eventually on node D, yielding the path seen on the graphic.

Chapter 15 Game Programming

559

BFS and DFS are the main building blocks from which many other

search algorithms have been derived. Many of these derivations try to

diminish some of the shortcomings of their predecessors; such is the case

of depth-limited search and iterative deepening search.

Depth-limited search (DLS) is essentially a DFS where we set a depth

limit L (Figure 15-6); i.e., nodes at depth L have no successors, so it’s

as if we were cutting the tree at depth L, consequently getting rid of the

infinite-path problem. If it occurs that L = d then we will obtain an optimal

solution; if L < d then we will have an incomplete solution, and when L > d

we will have a non-optimal solution.

Iterative deepening search (IDS) is a strategy to discover the best depth

limit L; the main idea is to use DLS as sub-method and gradually increase

the depth limit from 1, up to a maximum predefined depth. This algorithm

is complete and optimal; it always discovers the shallowest goal node.

Another uninformed search procedure that relies on either BFS or

DFS is bidirectional search (BS). In BS we execute two simultaneous

searches: one from the initial state to the goal state and another from the

goal state backward to the initial state. We hope that these searches will

meet at some point. Therefore, in this procedure we must check at each

step if the set of nodes expanded forward intersects with the set of nodes

Figure 15-6.  DLS is a DFS with an imposed depth limit L

Chapter 15 Game Programming

560

expanded backward. The key motivation behind BS is time complexity,

since b bd d/ /2 2+ is less than bd in complexity terms. Thus, this method

can provide us with a more efficient, faster way to find a goal state.

Furthermore, if both searches (forward, backward) are BFS algorithms,

and b is finite, then BS is guaranteed to be both optimal and complete.

�Practical Problem: Implementing BFS, DFS,
DLS, and IDS
To develop our uninformed search strategies, we will make use of the

Tree<T> class, which appears in Listing 15-1. This class, which is a generic

class, contains a State property representing a possible value (integer,

string, array, matrix, and so forth) of the root node and a list of tree

children. Several constructors were also included.

Listing 15-1.  Tree<T> Class

public class Tree<T>

 {

 public T State { get; set; }

 public List<Tree<T>> Children { get; set; }

 public Tree()

 {

 Children = new List<Tree<T>>();

 }

 public Tree(T state, IEnumerable<Tree<T>> children)

 {

 State = state;

 Children = new List<Tree<T>>(children);

 }

Chapter 15 Game Programming

561

 public Tree(T state)

 {

 State = state;

 Children = new List<Tree<T>>();

 }

 public bool IsLeaf {

 get { return Children.Count == 0; }

 }

 }

Trying to achieve a fine object-oriented design, we coded the

UninformedMethod<T> abstract class (Listing 15-2) as the parent and

container of shared fields for all the uninformed search strategies

described in this section.

Listing 15-2.  UninformedMethod<T> Class

public abstract class UninformedMethod<T>

 {

 public Tree<T> Tree { get; set; }

 protected UninformedMethod(Tree<T> tree)

 {

 Tree = tree;

 }

 public abstract List<T>Execute();

 }

In the Bfs<T> class (Listing 15-3), we coded the BFS strategy using

a Queue data structure. This data structure is used to expand nodes by

enqueuing its children and eventually dequeuing the first node enqueued;

hence the FIFO (First-In-First-Out) nature of the Queue gives us the effect

of traversing the tree by levels.

Chapter 15 Game Programming

562

Listing 15-3.  Bfs<T> Class

public class Bfs<T>: UninformedMethod<T>

 {

 public Bfs(Tree<T> tree):base(tree)

 { }

 public override List<T>Execute()

 {

var queue = new Queue<Tree<T>>();

queue.Enqueue(Tree);

var path = new List<T>();

 while (queue.Count> 0)

 {

var current = queue.Dequeue();

path.Add(current.State);

 foreach (var c in current.Children)

queue.Enqueue(c);

 }

 return path;

 }

 }

The DFS implemented in Listing 15-4 relies on a stack data structure

that is used to simulate the intrinsically recursive nature of DFS; thus it

helps us avoid having to use function recursion and allows us to reduce the

coding to a simple loop. Remember: Stacks are LIFO (Last-In-First-Out)

data structures, and therefore we stack children in reverse order, as the

following code illustrates.

Chapter 15 Game Programming

563

Listing 15-4.  Dfs<T> Class

public class Dfs<T> :UninformedMethod<T>

 {

 public Dfs(Tree<T> tree):base(tree)

 {

 }

 public override List<T>Execute()

 {

var path = new List<T>();

var stack = new Stack<Tree<T>>();

stack.Push(Tree);

 while (stack.Count> 0)

 {

var current = stack.Pop();

path.Add(current.State);

 �for (vari = current.Children.Count - 1; i>= 0;

i--)

stack.Push(current.Children[i]);

 }

 return path;

 }

 }

Any other uninformed search strategy is basically a variation of the

previous ones—DFS and BFS. The depth-limited search class illustrated

in Listing 15-5 is a direct descendant of DFS. In this class, we include two

properties:

•	 DepthLimit: defines the maximum depth reached

•	 Value: determines the value to be found in the tree of states

Chapter 15 Game Programming

564

In this case, we implement the recursive version of the DFS algorithm;

it is easier for us to build the path from the root to the Value node if we use

recursion. Notice we have three stopping conditions in the algorithm: the

Value node has been found, we have reached the depth limit, or we have

reached a leaf.

Listing 15-5.  Dls<T> Class

public class Dls<T>: UninformedMethod<T>

 {

 public intDepthLimit{ get; set; }

 public T Value { get; set; }

 �public Dls(Tree<T> tree, intdepthLimit, T value) :

base(tree)

 {

DepthLimit = depthLimit;

 Value = value;

 }

 public override List<T>Execute()

 {

var path = new List<T>();

 if (RecursiveDfs(Tree, 0, path))

 return path;

 return null;

 }

 �private bool RecursiveDfs(Tree<T> tree, int depth,

ICollection<T> path)

 {

 if (tree.State.Equals(Value))

 return true;

Chapter 15 Game Programming

565

 if (depth == DepthLimit || tree.IsLeaf)

 return false;

path.Add(tree.State);

 �if (tree.Children.Any(child =>RecursiveDfs(child,

depth + 1, path)))

 return true;

path.Remove(tree.State);

 return false;

 }

 }

Finally, iterative deepening search, as previously described, uses

depth-limit search as a submethod to find the shallowest depth to a goal

state (Listing 15-6).

Listing 15-6.  Ids<T> Class

public class Ids<T> :UninformedMethod<T>

 {

 public Dls<T>Dls{ get; set; }

 public intMaxDepthSearch{ get; set; }

 public intDepthGoalReached{ get; set; }

 public T Value { get; set; }

 public Ids(Tree<T> tree, intmaxDepthSearch, T value)

 : base(tree)

 {

MaxDepthSearch = maxDepthSearch;

 Value = value;

 }

Chapter 15 Game Programming

566

 public override List<T>Execute()

 {

 for (var depth = 1; depth <MaxDepthSearch; depth++)

 {

Dls = new Dls<T>(Tree, depth, Value);

DepthGoalReached = depth;

var path = Dls.Execute();

 if (path != null)

 return path;

 }

DepthGoalReached = -1;

 return null;

 }

 }

The Ids<T> generic class includes properties that correspond to the

Value searched for in the tree as well as properties for determining the

depth of the goal node found (DepthGoalReached) and the maximum

depth the search will get to (MaxDepthSearch). From the Execute()

method we can see the algorithm consists of a loop that applies DLS on

depths 0, 1, …, MaxDepthSearch.

Let’s test our algorithms in a console application and declare a tree,

like the one illustrated in Listing 15-7.

Chapter 15 Game Programming

567

Listing 15-7.  Testing Uninformed Search Algorithms

var tree = new Tree<string>{ State = "A" };

tree.Children.Add(new Tree<string> { State = "B",

 Children = new List<Tree<string>>

 {

 new Tree<string>("E")

 } });

tree.Children.Add(new Tree<string> { State = "C",

 Children = new List<Tree<string>>

 {

 new Tree<string>("F")

 }

 });

tree.Children.Add(new Tree<string> { State = "D" });

varbfs = new Bfs<string>(tree);

vardfs = new Dfs<string>(tree);

vardls = new Dls<string>(tree, 21, "E");

var ids = new Ids<string>(tree, 10, "F");

var path = bfs.Execute();

 //var path = dfs.Execute();

 // var path = dls.Execute();

 //var path = ids.Execute();

foreach (var e in path)

Console.Write(e + ", ");

Chapter 15 Game Programming

568

Uncommenting the Execute() lines for each method, we would get the

results seen in Figure 15-7, shown in the order BFS, DFS, DLS, IDS.

Notice that in this case, and as it was implemented, both BFS and

DFS traverse the tree in their defined order while DLS and IDS perform

searches on the tree by looking for a specific value.

�Practical Problem: Implementing
Bidirectional Search on the Sliding Tiles
Puzzle
We have mentioned several times the Sliding Tiles Puzzle as an example of a

board game that can be solved using search strategies like the ones discussed

thus far, and in this section we will implement a bidirectional search to solve

the 8-puzzle (3 x 3 grid). The positive aspect of applying bidirectional search

to the Sliding Tiles Puzzle is that it’s very easy to calculate the reverse of the

swap operation; in other words, it’s very easy to calculate the predecessors

of a goal state. We would just need to move the blank tile in every possible

direction. Thus, in order to move from the goal state backward, we wouldn’t

need to implement any extra features, but rather slightly adapt the same

expansion procedure we use for the forward search.

Figure 15-7.  Results obtained after executing BFS, DFS, DLS, and IDS

Chapter 15 Game Programming

569

First of all, let’s examine the SlidingTilesPuzzle and Board classes

we will be using to deal with node expansion and game-related logic

(Listing 15-8). The SlidingTilesPuzzle class is very simple, and its only

purpose is to provide a meaningful way to refer to a “game” and organize

the logic of the program. The key support class for developing the AI is

Board<T>.

Listing 15-8.  Sliding Tiles Puzzle and Board Classes

public class SlidingTilesPuzzle<T>

 {

 public Board<T> Board { get; set; }

 public Board<T> Goal { get; set; }

 �public SlidingTilesPuzzle(Board<T> initial, Board<T> goal)

 {

 Board = initial;

 Goal = goal;

 }

 }

public class Board<T> :IEqualityComparer<Board<T>>

 {

 public T[,] State { get; set; }

 public T Blank { get; set; }

 public string Path { get; set; }

 private readonly Tuple<int, int> _blankPos;

 private readonlyint _n;

 public Board() {}

 �public Board(T[,] state, T blank, Tuple<int,

int>blankPos, string path)

 {

Chapter 15 Game Programming

570

 State = state;

 Blank = blank;

 _n = State.GetLength(0);

 _blankPos = blankPos;

 Path = path;

 }

 public List<Board<T>>Expand(bool backwards = false)

 {

var result = new List<Board<T>>();

var up = Move(GameProgramming.Move.Up, backwards);

var down = Move(GameProgramming.Move.Down, backwards);

varlft = Move(GameProgramming.Move.Left, backwards);

varrgt = Move(GameProgramming.Move.Right, backwards);

 �if (up._blankPos.Item1 >= 0 && (string.IsNullOrEmpty

(Path) || Path.Last() != (backwards ? 'U' : 'D')))

 result.Add(up);

 �if (down._blankPos.Item1 >= 0 && (string.IsNullOrEmpty

(Path) || Path.Last() != (backwards ? 'D' : 'U')))

 result.Add(down);

 �if (lft._blankPos.Item1 >= 0 && (string.IsNullOrEmpty

(Path) || Path.Last() != (backwards ? 'L' : 'R')))

 result.Add(lft);

 �if (rgt._blankPos.Item1 >= 0 && (string.IsNullOrEmpty

(Path) || Path.Last() != (backwards ? 'R' : 'L')))

 result.Add(rgt);

 return result;

 }

Chapter 15 Game Programming

571

 public Board<T>Move(Move move, bool backwards = false)

 {

varnewState = new T[_n, _n];

Array.Copy(State, newState, State.GetLength(0) * State.

GetLength(1));

varnewBlankPos = new Tuple<int, int>(-1, -1);

var path = "";

 switch (move)

 {

 case GameProgramming.Move.Up:

 if (_blankPos.Item1 - 1 >= 0)

 {

 // Swap positions of blank tile and x tile

var temp = newState[_blankPos.Item1 - 1, _blankPos.Item2];

newState[_blankPos.Item1 - 1, _blankPos.Item2] = Blank;

newState[_blankPos.Item1, _blankPos.Item2] = temp;

newBlankPos = new Tuple<int, int>(_blankPos.Item1 - 1,

_blankPos.Item2);

 path = backwards ? "D" : "U";

 }

 break;

 case GameProgramming.Move.Down:

 if (_blankPos.Item1 + 1 < _n)

 {

var temp = newState[_blankPos.Item1 + 1, _blankPos.Item2];

newState[_blankPos.Item1 + 1, _blankPos.Item2] = Blank;

newState[_blankPos.Item1, _blankPos.Item2] = temp;

newBlankPos = new Tuple<int, int>(_blankPos.Item1 + 1,

_blankPos.Item2);

 path = backwards ? "U" : "D";

 }

 break;

Chapter 15 Game Programming

572

 case GameProgramming.Move.Left:

 if (_blankPos.Item2 - 1 >= 0)

 {

var temp = newState[_blankPos.Item1, _blankPos.Item2 - 1];

newState[_blankPos.Item1, _blankPos.Item2 - 1] = Blank;

newState[_blankPos.Item1, _blankPos.Item2] = temp;

newBlankPos = new Tuple<int, int>(_blankPos.Item1,

_blankPos.Item2 - 1);

 path = backwards ? "R" : "L";

 }

 break;

 case GameProgramming.Move.Right:

 if (_blankPos.Item2 + 1 < _n)

 {

var temp = newState[_blankPos.Item1, _blankPos.Item2 + 1];

newState[_blankPos.Item1, _blankPos.Item2 + 1] = Blank;

newState[_blankPos.Item1, _blankPos.Item2] = temp;

newBlankPos = new Tuple<int, int>(_blankPos.Item1,

_blankPos.Item2 + 1);

 path = backwards ? "L" : "R";

 }

 break;

 }

 �return new Board<T>(newState, Blank, newBlankPos,

Path + path);

 }

 public bool Equals(Board<T> x, Board<T> y)

 {

 if (x.State.GetLength(0) != y.State.GetLength(0) ||

x.State.GetLength(1) != y.State.GetLength(1))

 return false;

Chapter 15 Game Programming

573

 for (vari = 0; i<x.State.GetLength(0); i++)

 {

 for (var j = 0; j <x.State.GetLength(1); j++)

 {

if (!x.State[i, j].Equals(y.State[i, j]))

return false;

 }

 }

 return true;

 }

 public intGetHashCode(Board<T>obj)

 {

 return 0;

 }

 }

 public enum Move

 {

 Up, Down, Left, Right

 }

The Board<T> class contains the following properties and variables:

•	 State: matrix of T values; recall T is generic and as a result

it can be of any type, e.g., integer, string, or any other

•	 Blank: determines the blank element to be used in the

board

•	 Path: path built from the root up to the node

representing this board

Chapter 15 Game Programming

574

•	 _blankPos: integer tuple determining the position of

the blank tile on the board

•	 _n: number of rows (columns) of the board

In the Expand() method we generate the neighborhood of the current

node; in other words, we generate the set of neighbor boards (obtained

by moving the blank tile in every possible direction). Because we can

generate a move in either the forward or the backward search, we define

the Boolean variable backward to identify whether the generated move

is forward or backward. Using this variable, we control several aspects of

node generation and contemplate the cases where we execute a search

from the root to the goal node (forward) or from the goal node to the root

node. This is actually the intention of bidirectional search—to execute

two searches and have them meet at some point along the way. This

meeting point determines the path or sequence of moves needed to solve

the puzzle. The statement Path.Last() != (backwards ? 'U' : 'D')

guarantees that, in either the forward or the backward search, we avoid

repeating states on consecutive moves. For instance, if we are moving

forward in the search, we would not want to move the blank tile to the

right and then, when expanding that same node, move it back to the left,

because that would leave us in the same state, thus causing the algorithm

to consume more computational time.

In the Move() method, we make use of the Move enum shown in

Listing 15-8 to develop the logic behind blank tile moves and to determine

whether certain moves are possible given the boundaries of the board.

Again, the statement path = backwards ? "R" : "L" has the purpose of

deciding the type of move executed at the current step and determining

whether we are searching backward or not; this decision is then added

to the Path variable of the generated node as an extension of the path

“walked” so far. Remember that when going backward, right means left,

left means right, up means down, and down means up from the forward

perspective. Because, eventually, we want to concatenate this backward

Chapter 15 Game Programming

575

path with the forward path, we decided to transform it into its “forward”

version from the beginning. To achieve this transformation, we have the

previous statement (path = backwards ? "R" : "L").

Because we need to compare different boards to determine whether

the forward and backward searches have met, we implement the

IEqualityComparer<Board<T>> interface on the Board<T> class, which

forces us to implement the Equals() and GetHashCode() methods. The

last one will be left to the reader as an exercise, and in this book we simply

leave it to return 0. The first one compares the State matrixes of each

board, and if each cell coincides it outputs true; otherwise, it outputs false.

The bidirectional search class is illustrated in Listing 15-9.

Listing 15-9.  Bs<T> Class

public class Bs<T>

{

 public SlidingTilesPuzzle<T> Game { get; set; }

 public Bs(SlidingTilesPuzzle<T> game)

 {

 Game = game;

 }

 public string BidirectionalBfs()

 {

varqueueForward = new Queue<Board<T>>();

queueForward.Enqueue(Game.Board);

varqueueBackward = new Queue<Board<T>>();

queueBackward.Enqueue(Game.Goal);

 while (queueForward.Count> 0 &&queueBackward.Count> 0)

 {

varcurrentForward = queueForward.Dequeue();

Chapter 15 Game Programming

576

varcurrentBackward = queueBackward.Dequeue();

varexpansionForward = currentForward.Expand();

varexpansionBackward = currentBackward.Expand(true);

 foreach (var c in expansionForward)

 {

if (c.Path.Length == 1 &&c.Equals(c, Game.Goal))

 return c.Path;

queueForward.Enqueue(c);

 }

 foreach (var c in expansionBackward)

queueBackward.Enqueue(c);

var path = SolutionMet(queueForward, expansionBackward);

 if (path != null)

 return path;

 }

 return null;

 }

 �private string SolutionMet(Queue<Board<T>>expansion

Forward, List<Board<T>>expansionBackward)

 {

 for (vari = 0; i<expansionBackward.Count; i++)

 {

 �if (expansionForward.Contains

(expansionBackward[i], new Board<T>()))

 {

var first = expansionForward.First(b =>b.Equals(b,

expansionBackward[i]));

Chapter 15 Game Programming

577

Figure 15-8.  The forward search (on the left) and the backward search
(on the right).The point in the middle indicates the current node being
processed in the BFS, and the circles around it represent different levels
of the tree. Blue points indicate nodes that have been discovered and
processed during the search, and gray ones indicate queued nodes. The
green points indicate the node where both searches would meet.

return first.Path + new string(expansionBackward[i].Path.

Reverse().ToArray());

}

 }

 return null;

 }

 }

Our BS algorithm will perform two searches, each consisting of a BFS

procedure that uses a queue to traverse the state tree through levels. We

implement a BFS to search forward and another to search backward, and

the point where these two searches meet is iteratively checked by the

SolutionMet() method. The loop examining whether every expanded

node with Path length 1 matches the goal state acts as a base case for the

scenario where the goal state is a step away from the initial board. Figure 15-8

graphically depicts the functioning of the bidirectional search algorithm.

Chapter 15 Game Programming

578

Both searches meet at the green point. To find this link or relationship

between the forward and backward searches we checked the set of

expanded nodes (gray points in the figure) using the SolutionMet()

method. The purpose of this method is to check all enqueued points from

the forward search against all expanded nodes (points in the nearest

circle to the middle processed node) from the backward search and look

for matches in their state or board. If a full match is found then we output

the path that results from adding the subpaths of the node, forward and

backward, where both searches met.

In order to test our BS we will create the experiment shown in

Listing 15-10.

Listing 15-10.  Testing Our Bidirectional Search Algorithm on the

Hardest 8-Puzzle Configuration

var state = new[,]

 {

 {6, 4, 7},

 {8, 5, 0},

 {3, 2, 1}

 };

vargoalState = new[,]

 {

 {1, 2, 3},

 {4, 5, 6},

 {7, 8, 0}

 };

var board = new Board<int>(state, 0, new Tuple<int, int>(1, 2), "");

var goal = new Board<int>(goalState, 0, new Tuple<int, int>

(2, 2), "");

Chapter 15 Game Programming

579

Figure 15-9.  Solution obtained in 11 seconds

varslidingTilesPuzzle = new SlidingTilesPuzzle<int>(board,

goal);

varbidirectionalSearch = new Bs<int>(slidingTilesPuzzle);

varstopWatch = new Stopwatch();

stopWatch.Start();

var path = bidirectionalSearch.BidirectionalBfs();

stopWatch.Stop();

 foreach (var e in path)

Console.Write(e + ", ");

Console.WriteLine('\n' + "Total steps: " + path.Length);

Console.WriteLine("Elapsed Time: " + stopWatch.

ElapsedMilliseconds / 1000 + " segs");

In this experiment, we are using one of the hardest 8-puzzle

configurations; it requires 31 steps to be solved in the optimal case. We

are also using an object of type Stopwatch to measure the time consumed

by the algorithm while finding a solution. The result after executing the

previous code can be seen in Figure 15-9.

To verify the correctness of the solution we can simply loop through

the path or list of moves obtained and execute the equivalent moves from

the initial board, checking that the last board obtained matches the goal

state.

Chapter 15 Game Programming

580

Note  Before outputting the sequence of moves of the BS algorithm
we must reverse the path string obtained in the backward search.
Remember that this path was built by adding moves to the end, not
the beginning, of the string; therefore, we must reverse it in order to
get the correct path to the goal node.

�Informed Search
In an informed search we use knowledge of the problem apart from

its own definition with the intention of using it in solving a problem as

efficiently as possible. Thus, in an informed search algorithm we try to be

smart about what paths to explore. The general approach for informed

search methods is represented by a family of algorithms known as Best

First Search.

A Best First Search type of method always relies on an evaluation

function F(n) that associates a value with every node n of the state tree.

This value is supposed to represent how close the given node is to reaching

a goal node; hence, a Best First Search method usually chooses a node n

with the lowest value F(n) to continue the search procedure (Figure 15-10).

Even though we refer to this family of algorithms as “Best First,” in reality

there’s no certain way to determine the lowest-cost path to a goal node.

If that were possible then we would always be able to obtain an optimal

solution without the need to put in any extra effort (heuristics and so

forth).

Chapter 15 Game Programming

581

Because informed search strategies search the most promising

branches of the state space first, they are capable of

•	 finding a solution more quickly;

•	 finding solutions even when there is limited time

available; and

•	 finding a better solution, since the more profitable

parts of the state space can be examined while ignoring

the unprofitable parts.

Best First Search is a search strategy and, as mentioned before, a family

of algorithms whose main representatives are Greedy Best First Search and

the A* search.

A Greedy Best First Search is basically a Best First Search in which the

evaluation function F(n) is a heuristic function; i.e., F(n) = H(n). Examples

of heuristic functions for different problems include straight distance on

a map between two points, number of misplaced elements, and so on.

They represent an approach for embedding additional knowledge in the

solution process of a problem. When H(n) = 0 it implies we have reached

a goal node. Greedy Best First Search expands the node that appears to be

closest to goal but is neither optimal nor complete (can fall into infinite

Figure 15-10.  In a Best First Search method we always pick a node n
with the lowest possible F(n) value to continue the search. In this case,
F = 3, so the search continues from that node.

Chapter 15 Game Programming

582

loops). An obvious problem with the method is that it doesn’t take into

account the cost up to the current node, so as mentioned before it isn’t

optimal and can wander into deadends, like DFS. In methods where we

use heuristics we could obtain a drastic reduction of complexity if we use a

smart heuristic that would lead us in the right direction in a few steps.

Note  When the state space is too big, an uninformed blind search
can simply take too long to be practical, or can significantly limit
how deep we’re able to look into the space. Thus, we must look for
methods that reduce the area of the state space by making smart
decisions along the way; i.e., we must look for informed methods.

A* search (Hart, Nilsson, and Raphael, 1968) is a very popular

method and is the best-known member of the Best First Search family of

algorithms. The main idea behind this method is to avoid expanding paths

that are already expensive (considering the cost of traversing through the

root to the current node) and always expanding the most promising first.

The evaluation function in this method is the sum of two functions; i.e.,

F(n) = G(n) + H(n), where

•	 G(n) is the cost (so far) of reaching node n; and

•	 H(n) is a heuristic to estimate the cost of reaching a

goal state from node n.

Because we’re actually looking for the optimal path between the initial

state and some goal state, a better measure of how promising a state is

would be the sum of the cost-so-far and our best estimate of the cost from

that node to the nearest goal state (Figure 15-11).

Chapter 15 Game Programming

583

Figure 15-11.  Diagram showing the relation between G(s) and H(s)

To guide the search through the immense space state, we use

heuristics. The information provided by the heuristic is supposed to help

us find a feasible, short path to the goal state or configuration.

When developing a heuristic it’s important to make sure that it holds

the admissibility criteria. A heuristic is considered admissible if it doesn’t

overestimate the minimum cost of reaching the goal state from the current

state, and if admissible then the A* search algorithm will always find an

optimal solution.

�A* for the Sliding Tiles Puzzle
The tree structure representing the state space for the Sliding Tiles Puzzle

will be the same as was developed for the bidirectional search. The

neighborhood of the current node will consist of boards that have their

blank tile swapped into all possible positions.

The most common heuristic for the Sliding Tiles Puzzle is Misplaced

Tiles, and it is probably also the simplest heuristic for this puzzle. The

Misplaced Tiles heuristic, as the name suggests, returns the number of tiles

that are misplaced—whose position in the current board does not match

their position in the goal state or board. It’s admissible since the number

returned does not overestimate the minimum number of moves required

to get to the goal state. At the very least you have to move every misplaced

tile once to swap them to their goal position; hence, it is admissible.

Chapter 15 Game Programming

584

It’s important to point out that when calculating any heuristic for the

Sliding Tiles Puzzle we should never take into account the blank tile. If

we consider the blank tile in the heuristic calculation then we could be

overestimating the real cost of the shortest path to the goal state, which

makes the heuristic non-admissible. Consider what would happen if we

took into account the blank tile in a board that is just a step away from

reaching the goal state, as shown in Figure 15-12.

The A* algorithm with the Misplaced Tiles heuristic takes about

2.5 seconds to find the goal state. In reality, we can do much better than

that, so let’s try to find a more clever heuristic that will lower the timeframe

and the number of nodes visited.

Note  For a full code in C# of this problem, refer to the following
article by the author: https://visualstudiomagazine.com/
Articles/2015/10/30/Sliding-Tiles-C-Sharp-AI.aspx.

Figure 15-12.  If we consider the blank tile, our path to a goal state
would be 2, but in reality it is 1; thus, we are overestimating the real
cost of a shortest path toward a goal state

Chapter 15 Game Programming

https://visualstudiomagazine.com/Articles/2015/10/30/Sliding-Tiles-C-Sharp-AI.aspx
https://visualstudiomagazine.com/Articles/2015/10/30/Sliding-Tiles-C-Sharp-AI.aspx

585

The Manhattan Distance, or Block Distance, heuristic between points

A=(x1, y1) and B=(x2, y2) is defined as the sum of the absolute difference

of their corresponding coordinates:

MD x x y y= - + -1 2 1 2

Manhattan Distance is admissible because for each tile it returns the

minimum number of steps required to move that tile to its goal position.

Manhattan Distance is a more accurate heuristic than Misplaced Tiles;

therefore, the reduction in time complexity and nodes visited will be

substantial. We are providing better information to guide the search and

so the goal is found much more quickly. Using this heuristic, we get an

optimal solution in 172 milliseconds (refer to the previously detailed

article for the complete code in C#).

The Linear Conflict heuristic provides information on necessary moves

that are not counted by the Manhattan Distance. Two tiles tj and tk are said

to be in a linear conflict if tj and tk are in the same line, the goal positions

of tj and tk are both in that line, tj is to the right of tk, and the goal position

of tj is to the left of the goal position of tk.

To get them to their goal positions we must move one of them down

and then up again; these moves are not considered in the Manhattan

Distance. A tile cannot appear related in more than one conflict, as solving

Figure 15-13.  Tiles 3 and 1 are in the correct row but in the wrong
column

Chapter 15 Game Programming

586

a determined conflict might imply the resolution of other conflicts in

the same row or column. Hence, if tile 1 is related to tile 3 in a conflict

then it cannot be related to a conflict with tile 2, as this may become an

overestimation of the shortest path to a goal state and could turn our

heuristic into a non-admissible one.

To test the Linear Conflict + Manhattan Distance heuristic

combination, we’ll use the 4 × 4 board seen in Figure 15-14; this board

requires 55 moves to reach the goal state. The value of a node n will be

given by F(n) = Depth(n) + MD(n) + LC(n). It’s possible to combine these

heuristics as the moves they represent do not intersect, and consequently

we will not be overestimating the cost of the shortest path to a goal state.

After completing an execution that traversed over a million nodes and

consumed a time of 124199 milliseconds (little over 2 mins), the algorithm

provided us with a solution.

The pattern database heuristic is defined by a database containing

different states of the game. Each state is associated with the minimum

number of moves required to take a pattern (subset of tiles) to its goal

position. In this case, we built a small pattern database by making a BFS

backward, starting at the 8-tile goal state. The results were saved in a

Figure 15-14.  4 × 4 board for testing Manhattan Distance + Linear
Conflict heuristic. A 15-tile problem has a much broader state space
than the 8-tile problem.

Chapter 15 Game Programming

587

.txt file of merely 60,000 entries. The pattern chosen for the database is

typically known as the fringe, and in this case it contains tiles from the top

row and the leftmost column.

The pattern database heuristic function is computed by a table

look-up function. In this case, it’s a dictionary lookup that has 60,000

stored patterns. It philosophically resembles those of the Divide and

Conquer and Dynamic Programming techniques.

Using the pattern database technique, we can obtain a time of

50 milliseconds for solving the hardest 8-tile problem or configuration.

The more entries we add to the database the lower the time consumed

by the algorithm in finding a goal state. In this case, the trade-off between

memory and time favors the former and helps us obtain a good running

time. This is how it usually works; you use more memory in order to

reduce the execution time of your algorithms. The pattern database

heuristic represents the definitive alternative when you want to solve

4 x 4 puzzles or m x n puzzles where n and m are greater than 3. A final

suggestion to the reader would be to combine the A* search and heuristics

presented in this section with a bidirectional search and compare results.

Figure 15-15.  Pattern used in 3 × 3 board

Chapter 15 Game Programming

588

�Summary
In this chapter we introduced game programming and, more specifically,

searching in games. We analyzed the fundamental methods for searching

in state space, including those that classify as uninformed search—BFS,

DFS, DLS, IDS, and BS—and those that classify as informed search: Best-

First Search and A*. We implemented a bidirectional search tailored to

the Sliding Tiles Puzzle and using BFS as a sub-procedure. Ultimately,

we showed how to develop an A* search for the Sliding Tiles Puzzle using

different heuristics, combining some of those heuristics, and assessing

their performance in regards to time complexity through the use of the C#

Stopwatch class.

Chapter 15 Game Programming

589© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_16

CHAPTER 16

Game Theory:
Adversarial Search &
Othello Game
The most relevant figure associated with game theory is, without any

doubt, John von Neumann, the Hungarian-American mathematician—

one of the greatest of the twentieth century. Although others preceded

him in formulating concepts connected to game theory (notably Emile

Borel), it was von Neumann who in 1928 published the paper that laid

the foundation for the theory of two-person zero-sum games. His work

culminated in an essential book on game theory written in collaboration

with Oskar Morgenstern and titled Theory of Games and Economic

Behavior (1944).

The theory developed by von Neumann and Morgenstern is highly

associated with a class of games called two-person zero-sum games, or

games where there are only two players and in which one player wins what

the other player loses. Their mathematical framework initially made the

theory applicable only under special and limited conditions. Over the past

six decades this situation has dramatically changed, and the framework

has been strengthened and generalized. Since the late 1970s it has been

possible to assert that game theory is one of the most important and useful

590

tools in many fields of science, particularly in economics. In the 1950s and

1960s, game theory was broadened theoretically and applied to problems

of war and politics. Additionally, it has found applications in sociology and

psychology and established links with evolution and biology. Game theory

received special attention in 1994 with the awarding of the Nobel Prize in

Economics to John Nash, John Harsanyi, and Reinhard Selten.

John Nash, the subject of the 2001 Oscar-winning movie A Beautiful

Mind, transformed game theory into a more general tool that enabled the

analysis of win-win and lose-lose scenarios, as well as win-lose situations.

Nash enabled game theory to address a central question: should we

compete or cooperate?

In this chapter, we will discuss various concepts and ideas drawn

from game theory. We will address a sub-branch of game theory known as

adversarial search, and we will describe the Minimax algorithm, which is

typically applied in two-player zero-sum games of perfect information in a

deterministic environment.

Note  In 1950, John Nash demonstrated that finite games always
have an equilibrium point at which all players choose actions that are
best for them given their opponents' choices. The Nash equilibrium,
also called strategic equilibrium, is a list of strategies, one for each
player, that has the property that no player can unilaterally change his
strategy and get a better payoff.

�What Is Game Theory?
A game is a structured set of tasks defined in an entertaining environment

and manner so as to attract players (1 or more) to comply with logical rules

that if properly fulfilled result in the game’s being completed.

Chapter 16 Game Theory: Adversarial Search & Othello Game

591

Game theory is the mathematical theory of how to analyze games and

how to play them optimally; it’s also a way of looking at multiple human

behaviors as if they were part of a game. Some of the most popular games

that can be analyzed in game theory are Othello, blackjack, poker, chess,

tic-tac-toe, backgammon, and so on. In reality, not only games as we

know them or think about them are the topic of analysis in game theory.

Rather, there are many other situations that can be formulated as games.

Whenever rational people must make decisions within a framework of

strict and known rules, and when each player gets a payoff based on the

decisions of other players, we have a game. Examples include auctions,

negotiations, military tactics, and more. The theory was initiated by

mathematicians in the first half of the last century, but since then much

research in game theory has been done outside of the mathematics area.

The key aspects of game theory revolve around the identification of

process participants and their various quantifiable options (choices), as

well as the consideration of their preferences and subsequent reactions.

If all these factors are carefully thought of, then the task of modeling the

problem by game theory—along with the identification of all possible

situations—becomes easier.

One of the classic examples presented in the scientific literature

to describe how games are analyzed in game theory is the Prisoner’s

Dilemma (PD). The name of the game derives from the following

situation, typically used to exemplify it.

Suppose the police have arrested two people they know have committed

an armed robbery together. Unfortunately, they lack enough admissible

evidence to get a jury to convict them. They do, however, have enough

evidence to send each prisoner away for two years for theft of the getaway car.

The police chief now makes the following offer to each prisoner: If you will

confess to the robbery, implicating your partner, and he does not also confess,

then you’ll go free and he’ll get ten years. If you both confess, you’ll each get

five years. If neither of you confesses, then you’ll each get two years for the

auto theft. Table 16-1 illustrates the payoff or benefit matrix in this problem.

Chapter 16 Game Theory: Adversarial Search & Othello Game

592

The cells of the matrix define payoffs for both players and for each

combination of actions. In every pair (a, b), player A’s payoff equals a and

player B’s payoff equals b.

•	 If both players stay silent then they each get a payoff of 2.

This appears in the upper-left cell.

•	 If neither of them stays silent, they each get a payoff of 5;

this appears as the lower-right cell.

•	 If player A betrays and player B remains silent then

player A gets a payoff of 10 (going free) and player B

gets a payoff of 0 (ten years in prison); this appears in

the lower-left cell.

•	 If player B betrays and player A stays silent then player

B gets a payoff of 10 and player A gets 0; this appears in

the upper-right cell.

Each player evaluates his or her two possible actions here by

comparing their personal payoffs in each column, since this shows which

of their actions is preferable, just to themselves, for each possible action

by their partner. Therefore, if player B betrays then player A gets a payoff

of 5 by also betraying and a payoff of 0 by staying silent. If player B stays

silent then player A gets a payoff of 2 by also staying silent or a payoff of

10 by betraying player B. Consequently, player A is better off betraying

regardless of what player B does. Player B, on the other hand, evaluates his

actions by comparing his payoffs down each row, and he comes to exactly

Table 16-1.  Prisoner’s Dilemma Payoff Matrix

Prisoner B, stays silent Prisoner B, betrays

Prisoner A, stays silent 2, 2 0, 10

Prisoner A, betrays 10, 0 5, 5

Chapter 16 Game Theory: Adversarial Search & Othello Game

593

the same conclusion that player A does. Whenever an action for a player is

superior when compared to each possible action by an opponent we say

that the first action strictly dominates the second one (recall terms such as

Pareto set and Pareto optimality from Chapter 13). In the PD, confessing

strictly dominates refusing for both players. Both players know this about

each other, entirely eliminating any temptation to depart from the strictly

dominated path. Hence, both players will betray, and both will go to prison

for five years.

These days, AIs capable of defeating human champions for games such as

chess, checkers, and backgammon have been created. Most recently (March

2016), the Google DeepMind’s AlphaGo program, using a self-learning

algorithm (we’ll look into this in Chapter 17, “Reinforcement Learning”), was

able to defeat the world champion of Go, Lee Sedol (Figure 16-1).

�Adversarial Search
In this book, we will focus on a sub-branch of game theory known as

adversarial search, which is usually applied to board games. In adversarial

search, we examine problems that arise when we try to plan ahead or look

into the future of a world where other agents are planning against us. Thus,

adversarial search becomes necessary in competitive environments where

there are conflicting goals and more than one agent.

Board-game analysis is one of the oldest branches of AI (Shannon,

Turing, Wiener, and Shanon 1950). Such games present a very abstract

and pure form of competition between two opponents and clearly require

a form of “intelligence.” The states of a game are easy to represent, and

the possible actions of the players are well defined. The world states are

fully accessible even though it’s a contingency problem, because the

characteristics of the opponent are not known in advance. Board games

are not only difficult because of their contingency, but also because the

search trees can become astronomically large.

Chapter 16 Game Theory: Adversarial Search & Othello Game

https://en.wikipedia.org/wiki/Lee_Sedol#Lee Sedol

594

Concepts from the area of game theory for which we will need to find a

common ground of understanding are presented in the following points:

•	 Deterministic Game Environment: A game is said to be

deterministic if it does not involve any random process

like the throwing of a dice; i.e., a player’s actions lead

to completely predictable outcomes. Games such as

checkers, chess, and Othello are deterministic.

•	 Stochastic Game Environment: A game is said to be

stochastic if it involves some random process like the

throwing of a dice. Games such as backgammon and

dominoes are stochastic.

•	 Utility Function: is a mapping from states of the world

to real numbers. These numbers are interpreted as

measures of an agent’s level of happiness in the given

states.

Figure 16-1.  Lee Sedol vs AlphaGo, March 2016

Chapter 16 Game Theory: Adversarial Search & Othello Game

595

•	 Constant-Sum Game: A two-player game is constant-

sum if there exists a constant c such that for each

strategy s ∈ A1 × A2 it is the case that u1(s) + u2(s) = c

being A1 is the set of actions of one of the players and

A2 the set of actions of the other player.

•	 Zero-Sum Game: a constant-sum game where c = 0; i.e.,

utility values at the end of the game are always equal in

absolute value and opposite in sign.

•	 Imperfect Information Game: a game where the players

do not have all information regarding the state of other

players. Games such as poker, Scrabble, and bridge are

imperfect in their information.

•	 Perfect Information Game: a game whose environment

is fully observable by all players; i.e., every player is

aware of other players’ state. Games such as Othello,

checkers, and chess are of perfect Information.

Considering previously detailed concepts, we can create Table 16-2,

which details by row and column headers what method would be required

to solve a game that depends on conditions defined.

Table 16-2.  Methods for Solving Different Types of Games

Zero-Sum Non-Zero Sum

Perfect Information Minimax, Alpha-Beta Backward induction, retrograde

analysis

Imperfect Information Probabilistic Minimax Nash equilibrium

Chapter 16 Game Theory: Adversarial Search & Othello Game

596

In this book, we will focus on two-player zero-sum games—games

where the value achieved by a player is lost, in the same quantity, by the

other. Thus, from the next section onward, we’ll be discussing the most

relevant algorithm that is applied to this type of game.

Note A n international program known as “Prism” run by the US
Secret Service agencies uses a software model based on game
theory to determine the predictability of terrorist activities, identities,
and possible locations.

�Minimax Search Algorithm
Minimax search is an algorithm applied in two-player, zero-sum,

deterministic, perfect information games to determine the optimal

strategy for a player (MAX) at a given stage of the game and assuming the

other player will also make optimal plays (MIN). It’s applied in games such

as chess, Othello, tic-tac-toe, and more. When executing this algorithm,

we traverse the state space tree and represent each move in terms of

losses or gains for one of the players. Therefore, this method can only be

used to make decisions in zero-sum games, where one player’s loss is the

other player’s gain. Theoretically, this search algorithm is based on Von

Neumann’s Minimax theorem, which states that in these types of games

(zero-sum, deterministic, perfect information) there is always a set of

strategies that leads to both players’ gaining the same value, and that

seeing as this is the best possible value one can expect to gain, one should

employ this set of strategies.

Chapter 16 Game Theory: Adversarial Search & Othello Game

597

Note A Minimax player (MAX) is a player that plays optimally,
assuming its opponent (MIN) is also playing optimally but in a
different direction; i.e., one maximizes and the other minimizes
results.

Hence, in the Minimax algorithm we assume there are two players;

namely, MAX and MIN. A search tree is generated in a depth-first style,

starting with the current game position and going all the way up to an

end-game position. An end-game position could be reached when we

get to either a leaf node (node representing an actual end of the game) or

a node at MaxDepth, the maximum depth the search will go to. Because

most games possess a gigantic state search, we typically cannot make it to

a leaf node. Thus, it is usually the node at MaxDepth where the DFS stops

and starts backtracking. Before backtracking, the procedure gets a utility

value from the end-game position node. This value is obtained from a

heuristic that tells us how close we are to winning from that point onward.

Afterward, the utility value is backtracked, and, depending on whether

the parent node N belongs to a tree level or a depth corresponding to a

MAX player or a MIN player, the utility value of N is obtained from its

children c1, c2, … ,cm as Max(c1, c2, …, cm), where Max() is a function

returning the maximum value of its arguments, or as Min(c1, c2, …, cm),

where Min() is a function returning the minimum value of its arguments.

Figure 16-2 illustrates the functioning of the algorithm.

Chapter 16 Game Theory: Adversarial Search & Othello Game

598

A pseudocode of the algorithm would be the following:

Minimax(Node n): output Real-Value

{

 if (IsLeaf(n)) then return Evaluate(n);

 if (MaxDepth) then return Heuristics(n);

 if (n is a MAX node) {

 v = NegativeInfinity

 foreach (child of n)

 {

 v' = Minimax (child)

 if (v' > v) v= v'

 }

return v

 }

Figure 16-2.  Execution of a Minimax algorithm where MaxDepth = 2.
The method first calculates the values of nodes at MaxDepth and then
moves those values up according to whether a node is a Max node or
a Min node. Nodes denoted in orange are the ones selected to have
their values elevated in the tree.

Chapter 16 Game Theory: Adversarial Search & Othello Game

599

 if (n is a MINnode) {

 v = PositiveInfinity

 foreach (child of n)

 {

 v' = Minimax (child)

 if (v' < v) v= v'

 }

 return v

 }

}

Notice in the pseudocode that we distinguish two methods for

evaluating end-game nodes (leaf or MaxDepth reached). If we reached a leaf

node, the evaluation procedure would output H or L depending on whether

the root player is MAX or MIN. These values correspond to the range [L; H]

of possible values a node can take. H indicates a win for MAX and L a win

for MIN; because this is a zero-sum game we know that L + H = 0; i.e., L = -H.

If we reach a node at MaxDepth then we output a value in the range [L; H]

indicating how good that path would be from that point onward.

Note E very single-agent problem can be considered as a special
case of a two-player game by making the environment one of the
players, with a constant utility function; e.g., always 0.

�Alpha-Beta Pruning
A Minimax algorithm can potentially explore many nodes of the generated

tree whose paths would eventually be dismissed by the algorithm as they

would be overtaken (in terms of higher or lower values) by the value of

other nodes. Let’s consider this scenario in the Minimax tree shown in

Figure 16-3.

Chapter 16 Game Theory: Adversarial Search & Othello Game

600

In this Minimax tree we have a subtree that can be pruned. Remember:

Minimax executes a DFS for traversing the tree; therefore, at some point it

will backtrack to the MIN node colored green—let it be G from now on. Once

at G, it would have already discovered and updated values for MIN nodes 2

and 3. All discovered nodes whose values would have been updated at the

moment of updating G are colored orange. Because when updating G the

algorithm would already be aware of sibling nodes and their corresponding

utility values 2 and 3, and considering that it already knows that because G is

a MIN node its value will be always lower than the value it already discovered

(1), then by simple logic facts, it must be that the final value of the root at

MAX node must be 3. Thus, any further exploration of children of G would be

in vain, and those branches can be dismissed, pruned in the search.

For determining which branches or subtrees can be pruned, the

Minimax algorithm suffers a slight modification where two values are

added; namely, Alpha and Beta. The first will continuously update the

highest value found on a level of the tree, while the latter will continuously

update the lowest value. Using these values as reference, we will be able

to decide whether a subtree should be pruned. A pseudocode of the

algorithm can be seen in the next lines:

Figure 16-3.  Pruning child nodes of MIN node with utility value 1

Chapter 16 Game Theory: Adversarial Search & Othello Game

601

MinimaxAlphaBetaPruning(Node n, Real beta, Real alpha): output

Real-Value

{

if (IsLeaf(n)) then return Evaluate(n);

if (MaxDepth) then return Heuristics(n);

 if (n is a max node) {

v = beta

 foreach (child of n) {

v' = minimax (child,v, alpha)

if (v' > v) v = v'

if (v >alpha) return alpha

}

return v

 }

if (n is a min node) {

v = alpha

foreach (child of n) {

v' = minimax (child,beta, v)

if (v' < v) v = v'

if (v <beta) return beta

}

return v

}}

How can Alpha-Beta pruning influence our Minimax search? That

depends on the order in which children are visited. If children are

visited in the worst possible order, then it could occur that no pruning

is ever done. For Max nodes, we want to visit the best child first. For Min

nodes, we want to visit the worst child first (from our perspective, not the

opponent’s).

Chapter 16 Game Theory: Adversarial Search & Othello Game

602

When the optimal child is selected at every opportunity, Alpha-Beta

pruning causes the rest of children to be pruned away at every other level

of the tree; only that child is explored. This means that on average the

tree can be searched twice as deeply as before, which represents a very

significant increase in searching performance.

�Othello Game
Othello (a.k.a. Reversi, Yang) is a board game created in London during

the late nineteenth century and modified in 1971 by Japanese inventor

Goro Hasegawa (Figure 16-4), who registered the game as Othello (for

Shakespeare’s play of the same name), changing several rules in the process.

Othello is played on an 8 x 8 board (Figure 16-5), and there are two

players. One controls the set of white pieces, and the other controls the

set of black pieces. The total number of pieces is 64, and once the game

has ended, the player with the higher number of pieces of its color on the

board wins the game. This is a strategic, abstract game, as is the case with

other board games such as Go.

Figure 16-4.  Goro Hasegawa, creator of Othello as we know it today

Chapter 16 Game Theory: Adversarial Search & Othello Game

603

The initial configuration of the board is depicted in Figure 16-6.

Figure 16-5.  Othello board

Figure 16-6.  Initial configuration of Othello board and GUI of the
Windows Forms application we’ll be developing throughout this
chapter

Chapter 16 Game Theory: Adversarial Search & Othello Game

604

The player controlling the black pieces starts the game by making

the first move. Available moves for this player are denoted in Figure 16-6

as yellow squares on the board. A move in Othello consists of setting a

piece on the board in a cell where it would flank the opponent’s pieces in

a horizontal, vertical, or diagonal direction. In Figure 16-7, we can see an

imaginary arrangement of pieces on the board.

Assuming it’s white pieces’ turn, a possible play would be to set a

piece on row 6, column 2, numbered starting at 0 and going top-to-bottom

(according to Othello’s move rules); it is illustrated in Figure 16-8.

Figure 16-7.  Imaginary Othello board setting

Figure 16-8.  Resulting board after setting a white piece on (6, 2)

Chapter 16 Game Theory: Adversarial Search & Othello Game

605

After setting a white piece on (6, 2), all black pieces will be flanked in

all directions (horizontal, vertical, diagonal); thus, these pieces are flipped

and become white pieces.

If a player cannot move any of their pieces (cannot flank any of the

opponent’s pieces), their turn passes to the other player. If neither of the

players has a move available, then it'’ game over, and the winner is the

player with the highest number of pieces on the board; likewise for the

case where all 64 pieces are on the board. This is clearly a deterministic,

perfect information, zero-sum game. Therefore, one can develop an AI

under a Minimax search.

Heuristics applied to this game seek to improve the performance of the

search (Minimax); some of these heuristics are as follows:

•	 Piece Difference: A basic feature to analyze and build

a heuristic from in Othello is piece difference; i.e., the

difference between black and white pieces. Ultimately,

the value obtained is the percentage of black (B) or

white (W) pieces on the board, except when W = B. The

calculation goes as follows:

•	 (B > W): 100 * B / (W + B)

•	 (B < W): 100 * W / (W + B)

•	 (B = W): 0

•	 Corner Occupancy: Corners are key positions in an

Othello game; the player controlling corners controls a

big part of the game. Corner occupancy measures how

many corners are owned by each player. To compute

the corner occupancy, we count the number of black

pieces in corners, B, and the number of white pieces in

corners, W. We then let the corner occupancy score be:

•	 25B − 25W

Chapter 16 Game Theory: Adversarial Search & Othello Game

606

•	 Corner Closeness: Squares contiguous to corners can

be deadly if the corner is empty; they can create an

opportunity for the opponent to capture the corner.

Therefore, corner closeness measures those “deadly”

pieces adjacent to empty corners. To compute the

corner closeness score, we count the number of black

pieces adjacent to corners and the number of white

pieces adjacent to corners. The final score would be:

•	 -12.5B + 12.5W

•	 Mobility: One of the worst scenarios in Othello occurs

when a player is out of moves and misses their turn;

thus, this heuristic measures how many moves a

player has. As with the Piece Difference heuristic, it’s

calculated as a percentage, as follows:

•	 (B > W): 100 * B / (W + B)

•	 (B < W): 100 * W / (W + B)

•	 (B = W, W = 0, B = 0): 0

There are other heuristics, but we’ll settle for the ones just described

in this book. Notice all of them output a value in the range [-100; 100]. This

is the range of values we’ll contemplate for our Othello implementation,

so a leaf node (assuming we can reach it at some point) with B > W will be

rewarded with a value of 100, and a leaf node with W > B will be rewarded

with a value of -100; a draw will return a value of 0.

To combine the previous heuristics, we can formulate a weighted sum

that has weights in the range [0, 1], as if they would represent a percentage

of priority given to every heuristic. The final utility value of a node would be

UtilityValue
n

h w
i

n

i i= *
=
å1

1

Chapter 16 Game Theory: Adversarial Search & Othello Game

607

where n is the number of heuristics combined, wi is the weight associated

with the ith heuristic, and hi is the value of the ith heuristic. Notice we

guarantee with the previous formulation that the utility value of a node

will always be in the range [-100, 100]. In the following section, we will

begin coding the Othello game in Windows Forms as well as the Minimax

algorithm representing its AI component.

�Practical Problem: Implementing
the Othello Game in Windows Forms
In this section, we will implement the Othello game in Windows Forms.

We’ll boost this program later with a Minimax AI that follows the ideas

described thus far and that should make it easy for us to test and improve

the code. First, we’ll examine the OthelloBoard class shown in Listing 16-1.

Listing 16-1.  OthelloBoard Class, Properties, and Constructors

public class OthelloBoard

 {

 public int[,] Board { get; set; }

 public int N { get; set; }

 public int M { get; set; }

 public int Turn { get; set; }

 public List<Tuple<int, int>> Player1Pos { get; set; }

 public List<Tuple<int, int>> Player2Pos { get; set; }

 public Tuple<int, int>MoveFrom{ get; set; }

 internal double UtilityValue{ get; set; }

 internal readonly Dictionary<Tuple<int, int>,

List<Tuple<int, int>>> Flips;

Chapter 16 Game Theory: Adversarial Search & Othello Game

608

 public OthelloBoard(int n, int m)

 {

 Board = new int[n, m];

 Turn = 1;

 �Flips = new Dictionary<Tuple<int, int>, List<Tuple

<int, int>>>();

 Player1Pos = new List<Tuple<int, int>>

 {

 �new Tuple<int, int>(n / 2 - 1,

m / 2),

 �new Tuple<int, int>(n / 2,

m / 2 - 1)

 };

 Player2Pos = new List<Tuple<int, int>>

 {

 �new Tuple<int, int>(n / 2 - 1,

m / 2 - 1),

 �new Tuple<int, int>(n / 2,

m / 2)

 };

 // Initial Positions

Board[n / 2 - 1, m / 2 - 1] = 2;

Board[n / 2, m / 2] = 2;

Board[n / 2 - 1, m / 2] = 1;

Board[n / 2, m / 2 - 1] = 1;

 N = n;

 M = m;

 }

 private OthelloBoard(OthelloBoardothelloBoard)

 {

Chapter 16 Game Theory: Adversarial Search & Othello Game

609

 Board = new int[othelloBoard.N, othelloBoard.M];

 M = othelloBoard.M;

 N = othelloBoard.N;

 Turn = othelloBoard.Turn;

 Flips = new Dictionary<Tuple<int, int>,

List<Tuple<int, int>>>(othelloBoard.Flips);

Array.Copy(othelloBoard.Board, Board, othelloBoard.N *

othelloBoard.M);

 �Player1Pos = new List<Tuple<int, int>>

(othelloBoard.Player1Pos);

 �Player2Pos = new List<Tuple<int, int>>

(othelloBoard.Player2Pos);

 }

}

In the OthelloBoard class we included two constructors; one is

intended to act as an initialization of the game and the other as a way

to clone an Othello game received as argument. The class contains the

following properties:

•	 Board: represents the Othello board

•	 N: number of rows

•	 M: number of columns

•	 Turn: player who should make the next move on the

board; black player equals 1, white player equals 2

•	 Player1Pos: list of black pieces’ positions on the board

detailed as pairs (x, y)

•	 Player2Pos: list of white pieces’ positions on the board

detailed as pairs (x, y)

Chapter 16 Game Theory: Adversarial Search & Othello Game

610

•	 MoveFrom: represents the move that generated the

current board. It can serve as a way to build the entire

path from the root up to the current node.

•	 UtilityValue: represents the utility value of the board

on a Minimax tree. Recall that this value is updated as

the algorithm backtracks and has values calculated at

lower levels of the tree.

•	 Flips: dictionary containing as key a pair (x, y)

representing a position on the board where the

player in turn can set one of their pieces and a value

(f 1, f 2, .., fm) of the pieces that will have to be flipped

after setting a piece at (x, y)

The class also includes the methods seen in Listing 16-2.

Listing 16-2.  Methods EmptyCell(), Expand(), AvailableMoves(),

and IsLegalMove()

 public bool EmptyCell(inti, int j)

 {

return Board[i, j] == 0;

 }

 public List<OthelloBoard>Expand(int player)

 {

var result = new List<OthelloBoard>();

var moves = AvailableMoves(player);

 foreach (var m in moves)

 {

varnewBoard = SetPieceCreatedBoard(m.Item1, m.Item2, player);

newBoard.MoveFrom = m;

result.Add(newBoard);

Chapter 16 Game Theory: Adversarial Search & Othello Game

611

 }

 return result;

 }

 public List<Tuple<int, int>>AvailableMoves(int player)

 {

var result = new List<Tuple<int, int>>();

varoppPlayerPositions = player == 1 ? Player2Pos : Player1Pos;

 foreach (varoppPlayerPos in oppPlayerPositions)

result.AddRange(AvailableMovesAroundPiece(oppPlayerPos, player));

 return result;

 }

 private bool IsLegalMove(inti, int j)

 {

 �return i>= 0 &&i< N && j >= 0 && j < M &&EmptyCell

(i, j);

 }

A description of the previous methods is given in the following points:

•	 EmptyCell(): determines whether a cell on the board is

empty

•	 Expand(): this method is mainly used in the Minimax

algorithm. It expands the current board, returning a list

of boards representing the execution of every possible

move for the player in turn.

•	 AvailableMoves(): outputs a list of available moves for

the player in turn

•	 IsLegalMove(): returns true if a move to cell (i, j) is

valid according to board specifications

Chapter 16 Game Theory: Adversarial Search & Othello Game

612

Both Expand() and AvailableMoves() rely in their implementations

on other methods; these methods are described in Listing 16-3.

Listing 16-3.  Methods AvailableMovesAroundPiece() and

SetPieceCreatedBoard()

 �private IEnumerable<Tuple<int, int>>AvailableMovesAroun

dPiece(Tuple<int, int>oppPlayerPos, int player)

 {

var result = new List<Tuple<int, int>>();

vartempFlips = new List<Tuple<int, int>>();

 // Check Down

 �if (IsLegalMove(oppPlayerPos.Item1 + 1,

oppPlayerPos.Item2))

 {

var up = CheckUpDown(oppPlayerPos, player, (i =>i>= 0), -1,

tempFlips);

 if (up)

 {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 + 1,

oppPlayerPos.Item2), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 + 1,

oppPlayerPos.Item2));

 }

 }

 // Check Up

 �if (IsLegalMove(oppPlayerPos.Item1 - 1,

oppPlayerPos.Item2))

Chapter 16 Game Theory: Adversarial Search & Othello Game

613

 {

tempFlips.Clear();

var down = CheckUpDown(oppPlayerPos, player, (i =>i< N), 1,

tempFlips);

 if (down)

 {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 - 1,

oppPlayerPos.Item2), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 - 1,

oppPlayerPos.Item2));

 }

 }

 // Check Left

 �if (IsLegalMove(oppPlayerPos.Item1, oppPlayerPos.

Item2 - 1))

 {

tempFlips.Clear();

varrgt = CheckLftRgt(oppPlayerPos, player, (i =>i< M), 1,

tempFlips);

 if (rgt)

 {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1,

oppPlayerPos.Item2 - 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1,

oppPlayerPos.Item2 - 1));

 }

 }

 // Check Right

 �if (IsLegalMove(oppPlayerPos.Item1, oppPlayerPos.

Item2 + 1))

Chapter 16 Game Theory: Adversarial Search & Othello Game

614

 {

tempFlips.Clear();

varlft = CheckLftRgt(oppPlayerPos, player, (i =>i>= 0), -1,

tempFlips);

 if (lft)

 {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1,

oppPlayerPos.Item2 + 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1,

oppPlayerPos.Item2 + 1));

 }

 }

 // Check Up Lft

 �if (IsLegalMove(oppPlayerPos.Item1 - 1,

oppPlayerPos.Item2 - 1))

 {

tempFlips.Clear();

vardownRgt = CheckDiagonal(oppPlayerPos, player, (i =>i< N),

(i =>i< M), 1, 1, tempFlips);

 if (downRgt)

 {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 - 1,

oppPlayerPos.Item2 - 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 - 1,

oppPlayerPos.Item2 - 1));

 }

 }

 // Check Down Lft

 �if (IsLegalMove(oppPlayerPos.Item1 + 1,

oppPlayerPos.Item2 - 1))

Chapter 16 Game Theory: Adversarial Search & Othello Game

615

 {

tempFlips.Clear();

varupRgt = CheckDiagonal(oppPlayerPos, player, (i =>i>= 0),

(i =>i< M), -1, 1, tempFlips);

 if (upRgt)

 {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 + 1,

oppPlayerPos.Item2 - 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 + 1,

oppPlayerPos.Item2 - 1));

 }

 }

 // Check Up Rgt

 �if (IsLegalMove(oppPlayerPos.Item1 - 1,

oppPlayerPos.Item2 + 1))

 {

tempFlips.Clear();

vardownLft = CheckDiagonal(oppPlayerPos, player, (i =>i< N),

(i =>i>= 0), 1, -1, tempFlips);

 if (downLft)

 {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 - 1,

oppPlayerPos.Item2 + 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 - 1,

oppPlayerPos.Item2 + 1));

 }

 }

 // Check Down Rgt

 �if (IsLegalMove(oppPlayerPos.Item1 + 1,

oppPlayerPos.Item2 + 1))

Chapter 16 Game Theory: Adversarial Search & Othello Game

616

 {

tempFlips.Clear();

varupLft = CheckDiagonal(oppPlayerPos, player, (i =>i>= 0),

(i =>i>= 0), -1, -1, tempFlips);

 if (upLft)

 {

UpdateFlips(new Tuple<int, int>(oppPlayerPos.Item1 + 1,

oppPlayerPos.Item2 + 1), tempFlips);

result.Add(new Tuple<int, int>(oppPlayerPos.Item1 + 1,

oppPlayerPos.Item2 + 1));

 }

 }

 return result;

 }

 �public OthelloBoardSetPieceCreatedBoard(inti, int j,

int player)

 {

varnewOthello = new OthelloBoard(this);

newOthello.Board[i, j] = player;

FlipPieces(i, j, player, newOthello);

newOthello.Flips.Clear();

 return newOthello;

 }

Chapter 16 Game Theory: Adversarial Search & Othello Game

617

As has been the model so far, we describe the set of methods from

Listing 16-3 in the following points:

•	 AvailableMovesAroundPiece(): This method starts at

the position of an opponent’s piece and checks all of its

adjacent cells, seeking to set a piece that would flank

various opponent pieces.

•	 SetPieceCreatedBoard(): sets a piece on the board

and flips all opponent’s pieces that are flanked by the

new piece

To process and analyze every possible direction from an opponent’s

piece, we have included methods CheckUpDown(), CheckLftRgt(), and

CheckDiagonal(). To avoid or minimize any duplicated code, we have

condensed searches up and down in a single method. These searches

are very similar in their coding; their only difference lies in the condition

and direction of the loop (increase or decrease). Therefore, we coded the

CheckUpDown() method using anonymous functions and a “direction”

integer defining the direction the loop will take. Similar approaches were

applied for CheckLftRgt() and CheckDiagonal(), as shown in Listing 16-4.

You can check the conditions set for these methods in Listing 16-3.

Listing 16-4.  Methods CheckUpDown(), CheckLftRgt(),

CheckDiagonal(), UpdateFlips(), SetPiece(), FlipPieces(), and

UpdatePiecePos()

 �private bool CheckUpDown(Tuple<int, int>oppPlayerPos,

int player, Func<int, bool> condition, int direction,

List<Tuple<int, int>>tempFlips)

 {

 �for (vari = oppPlayerPos.Item1; condition(i);

i+=direction)

 {

Chapter 16 Game Theory: Adversarial Search & Othello Game

618

 if (Board[i, oppPlayerPos.Item2] == player)

 {

UpdateFlips(oppPlayerPos, tempFlips);

 return true;

 }

 if (EmptyCell(i, oppPlayerPos.Item2))

 {

tempFlips.Clear();

 break;

 }

tempFlips.Add(new Tuple<int, int>(i, oppPlayerPos.Item2));

 }

 return false;

 }

 �private void UpdateFlips(Tuple<int, int>oppPlayerPos,

IEnumerable<Tuple<int, int>>tempFlips)

 {

 if (!Flips.ContainsKey(oppPlayerPos))

Flips.Add(oppPlayerPos, new List<Tuple<int, int>>(tempFlips));

 else

 Flips[oppPlayerPos].AddRange(tempFlips);

 }

 �private bool CheckLftRgt(Tuple<int, int>oppPlayerPos,

int player, Func<int, bool> condition, int direction,

List<Tuple<int, int>>tempFlips)

 {

 �for (vari = oppPlayerPos.Item2; condition(i);

i+= direction)

 {

 if (Board[oppPlayerPos.Item1, i] == player)

Chapter 16 Game Theory: Adversarial Search & Othello Game

619

 {

UpdateFlips(oppPlayerPos, tempFlips);

 return true;

 }

 if (EmptyCell(oppPlayerPos.Item1, i))

 {

tempFlips.Clear();

 break;

 }

tempFlips.Add(new Tuple<int, int>(oppPlayerPos.Item1, i));

 }

 return false;

 }

 �private bool CheckDiagonal(Tuple<int, int>oppPlayerPos,

int player, Func<int, bool>conditionRow, Func<int,

bool>conditionCol, intdirectionRow, intdirectionCol,

List<Tuple<int, int>>tempFlips)

 {

vari = oppPlayerPos.Item1;

var j = oppPlayerPos.Item2;

 while(conditionRow(i) &&conditionCol(j))

 {

 if (Board[i, j] == player)

 {

UpdateFlips(oppPlayerPos, tempFlips);

 return true;

 }

 if (EmptyCell(i, j))

 {

Chapter 16 Game Theory: Adversarial Search & Othello Game

620

tempFlips.Clear();

 break;

 }

tempFlips.Add(new Tuple<int, int>(i, j));

i += directionRow;

 j += directionCol;

 }

 return false;

 }

 public void SetPiece(inti, int j, int player)

 {

Board[i, j] = player;

FlipPieces(i, j, player, this);

 }

 �private void FlipPieces(inti, int j, int player,

OthelloBoardothello)

 {

varpiecesToFlip = Flips[new Tuple<int, int>(i, j)];

UpdatePiecePos(new Tuple<int, int>(i, j), player, othello);

 foreach (var pair in piecesToFlip)

 {

othello.Board[pair.Item1, pair.Item2] = player;

UpdatePiecePos(pair, player, othello);

 }

 }

Chapter 16 Game Theory: Adversarial Search & Othello Game

621

 �private void UpdatePiecePos(Tuple<int, int> pair, int

player, OthelloBoardothello)

 {

varremoveFrom = player == 1 ? othello.Player2Pos : othello.

Player1Pos;

varaddTo = player == 1 ? othello.Player1Pos : othello.

Player2Pos;

 if (!addTo.Contains(pair))

addTo.Add(pair);

removeFrom.Remove(pair);

 }

Some of the methods just listed have not been discussed thus far;

therefore, they are described in the following points:

•	 UpdateFlips(): adds the coordinate of an opponent’s

piece that must be flipped after a piece of the opposite

color has been set on the board

•	 SetPiece(): sets a piece on the board and flips all

opponent’s pieces that are flanked by the new piece

•	 FlipPieces(): flips the set of opponent pieces

using the Flips dictionary previously described and

considering the coordinate of the new piece set on the

board

•	 UpdatePiecePos(): updates properties Player1Pos and

Player2Pos as pieces are flipped or added to the board

Chapter 16 Game Theory: Adversarial Search & Othello Game

622

Finally, to assign a UtilityValue to every node in the Minimax tree, we

will be relying on the set of methods illustrated in Listing 16-5.

Listing 16-5.  Methods for Obtaining a Utility Value for a Game-End

Node (Either a Leaf or a Maximum Depth Reached)

 internal double HeuristicUtility()

 {

 return PieceDifference();

 }

 private intPieceDifference()

 {

 if (Player1Pos.Count == Player2Pos.Count)

 return 0;

 if (Player1Pos.Count > Player2Pos.Count)

 �return 100 * Player1Pos.Count / (Player1Pos.

Count + Player2Pos.Count);

 �return -100 * Player2Pos.Count / (Player1Pos.Count

+ Player2Pos.Count);

 }

internal double LeafNodeValue()

 {

 if (Player1Pos.Count > Player2Pos.Count)

 return 100;

 if (Player1Pos.Count < Player2Pos.Count)

 return -100;

 return 0;

 }

Chapter 16 Game Theory: Adversarial Search & Othello Game

623

HeuristicUtility() is the method we call when we want to

calculate a heuristic for a given board. Other methods are representatives

of the heuristics explained before (in this case we will include

onlyPieceDifference) and the leaf-node evaluation, which was also

detailed before.

The OthelloBoard class assumes much of the lifting regarding game

functionality, but we are still missing a component—the GUI (graphical

user interface) that Othello requires to make it easier and more enjoyable

for users to play. As mentioned before, this GUI will be coded in a

Windows Forms application whose main class can be seen in Listing 16-6.

The GUI will include controls such as turnBoxColor, a picture box whose

background will be set to black or white depending on the current turn;

board, a picture box representing the Othello board; aiPlayTimer, a

timer used for the AI to check whether its turn is up; blackCountLabel and

whiteCountLabel, two labels showing the number of pieces on the Othello

board for the black and white players, respectively; and blacksList and

whiteList, which are rich-text boxes displaying the cells occupied by each

player. All these controls will be seen in future listings.

Listing 16-6.  OthelloGui Class Representing the Visual Application

of the Othello Game

public partial class OthelloGui : Form

 {

 private readonlyint _n;

 private readonlyint _m;

 private readonlyOthelloBoard _othelloBoard;

 private List<Tuple<int, int>> _availableMoves;

 private int _cellWidth;

 private int _cellHeight;

 private Minimax _minimax;

Chapter 16 Game Theory: Adversarial Search & Othello Game

624

 public OthelloGui(OthelloBoardothelloBoard)

 {

InitializeComponent();

 _othelloBoard = othelloBoard;

 _n = _othelloBoard.N;

 _m = _othelloBoard.M;

 �_availableMoves = _othelloBoard.AvailableMoves

(_othelloBoard.Turn);

turnBox.BackColor = _othelloBoard.Turn == 1 ?Color.Black

:Color.White;

 _minimax = new Minimax(3, false);

aiPlayTimer.Enabled = true;

 }

}

The constructor of the class receives the OthelloBoard instance to be

visualized using Windows Forms facilities. Its fields are also initialized in

the constructor; these fields are as follows:

•	 _n: number of rows of the board

•	 _m: number of columns of the board

•	 _othelloBoard: instance of the OthelloBoard class

•	 _availableMoves: list of pairs (x, y) representing the

available moves of the player in turn

•	 _cellWidth: cell width of the board as it will be

represented graphically

•	 _cellHeight: cell height of the board as it will be

represented graphically

•	 _minimax: instance of the Minimax class (to be

described in the next section)

Chapter 16 Game Theory: Adversarial Search & Othello Game

625

In this class we also implemented methods for handling paint and

mouse-click events (Listing 16-7); the first draws all graphical elements

(lines defining board, black and white pieces) and the second allows users

to interact with the board by putting a piece of their color on the cell where

the click occurred and assuming that cell matches an available move.

Listing 16-7.  Methods for Handling Paint and Mouse-Click Events

 private void BoardPaint(object sender, PaintEventArgs e)

 {

var pen = new Pen(Color.Wheat);

 _cellWidth = board.Width / _n;

 _cellHeight = board.Height / _m;

 for (vari = 0; i< _n; i++)

e.Graphics.DrawLine(pen, new Point(i * _cellWidth, 0),

new Point(i * _cellWidth, i * _cellWidth + board.Height));

 for (vari = 0; i< _m; i++)

e.Graphics.DrawLine(pen, new Point(0, i * _cellHeight), new

Point(i * _cellHeight + board.Width, i * _cellHeight));

 for (vari = 0; i< _n; i++)

 {

 for (var j = 0; j < _m; j++)

 {

 if (_othelloBoard.Board[i, j] == 1)

e.Graphics.FillEllipse(new SolidBrush(Color.Black), j *

_cellWidth, i * _cellHeight, _cellWidth, _cellHeight);

 if (_othelloBoard.Board[i, j] == 2)

e.Graphics.FillEllipse(new SolidBrush(Color.White), j *

_cellWidth, i * _cellHeight, _cellWidth, _cellHeight);

 }

 }

Chapter 16 Game Theory: Adversarial Search & Othello Game

626

 foreach (varavailableMove in _availableMoves)

e.Graphics.DrawRectangle(new Pen(Color.Yellow, 5),

availableMove.Item2 * _cellWidth, availableMove.Item1 *

_cellHeight, _cellWidth, _cellHeight);

 }

 �private void BoardMouseClick(object sender, MouseEventArgs e)

 {

 if (e.Button == MouseButtons.Left)

 {

var click = new Tuple<int, int>(e.Y / _cellWidth, e.X / _cellHeight);

 if (_availableMoves.Contains(click))

 {

 �_othelloBoard.SetPiece(click.Item1, click.

Item2, _othelloBoard.Turn);

UpdateBoardGui();

 }

 }

 }

Notice that cells matching available moves are denoted on the board

as yellow squares. The UpdateBoardGui() method (Listing 16-8), which is

called in the mouse-click event, takes care of updating different GUI and

game elements; for example, changing a label’s text, modifying a rich-text

box to show position of black and white pieces, changing the turn back to

the other player, clearing the flips dictionary for a new play, calculating

new available moves, and checking whether is empty. If there are no

moves available for the player who just received the turn, then its turn is

passed to the other player. If no player has any available move then the

game has ended; determining that scenario is the goal of the final loop

of length 2.

Chapter 16 Game Theory: Adversarial Search & Othello Game

627

Listing 16-8.  UpdateBoardGui() Method and AiPlayTimerTick()

Method for Handling the Timer Tick Event

 private void UpdateBoardGui()

 {

blackCountLabel.Text = "Blacks: " + _othelloBoard.Player1Pos.Count;

whiteCountLabel.Text = "Whites: " + _othelloBoard.Player2Pos.Count;

var blacks = "";

var whites = "";

 foreach (var black in _othelloBoard.Player1Pos)

 �blacks += "(" + black.Item1 + "," + black.Item2

+ ")" + '\n';

 foreach (var white in _othelloBoard.Player2Pos)

 �whites += "(" + white.Item1 + "," + white.Item2

+ ")" + '\n';

whitesList.Text = whites;

blacksList.Text = blacks;

board.Invalidate();

 for (vari = 0; i< 2; i++)

 {

 �_othelloBoard.Turn = _othelloBoard.Turn ==

1 ?2 : 1;

 _othelloBoard.Flips.Clear();

 _availableMoves = _othelloBoard.

AvailableMoves(_othelloBoard.Turn);

turnBox.BackColor = _othelloBoard.Turn == 1 ?Color.Black

:Color.White;

Chapter 16 Game Theory: Adversarial Search & Othello Game

628

 if (_availableMoves.Count> 0)

 return;

 }

MessageBox.Show("Game Ended", "Result");

 }

 private void AiPlayTimerTick(object sender, EventArgs e)

 {

 if (_othelloBoard.Turn == 2)

 {

var move = _minimax.GetOptimalMove(_othelloBoard, false);

 _othelloBoard.SetPiece(move.Item1, move.Item2,

_othelloBoard.Turn);

UpdateBoardGui();

 }

 }

In order to allow the AI to play, we use a timer that checks every 1.5

secs if it’s the AI’s turn; if it is then we execute the Minimax algorithm,

which will be coded in the following section, set the outputted move on

the board, and update the game components as just detailed using the

UpdateBoardGui() method.

�Practical Problem: Implementing
the Othello Game AI Using Minimax
At this point we have a complete, functional Othello game like the one

depicted in Figure 16-9.

Chapter 16 Game Theory: Adversarial Search & Othello Game

629

We are missing a fundamental component: the AI of the game. As

mentioned before, our AI will consist of a Minimax player—a player that

tries to play optimally assuming the other player is also playing optimally.

The Minimax class, along with its properties, fields, and constructor, is

shown in Listing 16-9.

Listing 16-9.  Minimax Class, Properties, and Fields

public class Minimax

{

 public intMaxDepth{ get; set; }

 public bool Max { get; set; }

 private Tuple<int, int> _resultMove;

 public Minimax(intmaxDepth, bool max)

 {

MaxDepth = maxDepth;

 Max = max;

 }

}

Figure 16-9.  Othello game developed using Windows Forms

Chapter 16 Game Theory: Adversarial Search & Othello Game

630

The Minimax class contains only three properties or fields. The

MaxDepth property indicates how deep we’ll go into the search tree, Max

defines whether we want to maximize or minimize the outcome, and

_resultMove is a private variable we use for storing the first move of the

best path found when executing the Minimax algorithm. Furthermore, we

will include the following methods (Listing 16-10).

Listing 16-10.  GetOptimalMove() and Execute() Methods of the

Minimax Class

 �public Tuple<int, int>GetOptimalMove(OthelloBoard

board, bool max)

 {

Execute(board, max, 0);

 return _resultMove;

 }

private double Execute (OthelloBoard board, bool max, int depth)

 {

 if (depth == MaxDepth)

 return board.HeuristicUtility();

var children = board.Expand(max ? 1 : 2);

 if (children.Count == 0)

 return board.LeafNodeValue();

var result = !max ? double.MaxValue : double.MinValue;

 foreach (varothelloBoard in children)

 {

var value = Execute(othelloBoard, !max, depth + 1);

othelloBoard.UtilityValue = value;

 �result = max ?Math.Max(value, result) :Math.

Min(value, result);

 }

Chapter 16 Game Theory: Adversarial Search & Othello Game

631

 if (depth == 0)

 �_resultMove = children.First(c =>c.UtilityValue

== result).MoveFrom;

 return result;

 }

The Minimax algorithm is coded in the Execute() method. The

GetOptimalMove() method is the simplified, public face of the algorithm

used in the GUI. It is a simple design issue as it saves us from having to

include the initial depth as well as other arguments in the public method;

these arguments are unnecessary information for the GUI component.

It’s now up to the reader to complement the code herein provided. You

can add more heuristics, combine them in a weighted sum, experiment

with weight values, optimize the Minimax algorithm (by means of an

Alpha-Beta pruning technique), and create the strongest AI for the Othello

game—the foundations have already been created throughout this chapter.

�Summary
In this chapter, we briefly mentioned and studied some of the basic

elements and problems of game theory. We ultimately submerged

ourselves in a sub-branch of game theory known as adversarial search

and examined one of its most popular representatives: the Minimax

algorithm. We described an optimization technique for the algorithm—the

Alpha-Beta pruning technique. Then, we introduced the famous Othello

game and presented multiple heuristics for it. A full implementation

of the Othello game in Windows Forms was also included, and the

implementation of a very simple AI for this game using a single heuristic

(PieceDifference) was included as well.

Chapter 16 Game Theory: Adversarial Search & Othello Game

633© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3_17

CHAPTER 17

Reinforcement
Learning
So far in this book we have examined both supervised and unsupervised

learning algorithms. In this chapter, we will discuss reinforcement

learning algorithms. Remember: In supervised learning we had a dataset

composed of samples (x, y) where x was usually a vector of features of

some object (house, plane, person, city, and so on) and y was the correct

classification of x. Thus, supervised learning was the process of learning

or approximating a function from tabular data. This approach more

closely resembles the way computers analyze data than the way humans

do. Supervised learning simulates the process where you teach someone

about different kinds of objects available in the world; for instance, you

could show someone the image of an object with all its properties (color,

size, etc.) and assign a name to it (y), so something like (yellow, 10cm,

eatable, fruit) is a banana.

In unsupervised learning we don’t have labeled data as we do in

supervised learning. In this case, we don’t use any external information

(correct label of data). In unsupervised learning our goal is to learn the

structure of data using the information that the data itself provides or

intrinsically possesses, without the use of any external help as we did

in supervised learning. In this sense, one could say that unsupervised

learning is more independent of external entities or information and

634

more attached to data structure or data relations. Clustering, which was

discussed in Chapter 13, is a clear example of unsupervised learning

algorithms.

In this chapter we will study reinforcement learning, the machine

learning paradigm that is considered the best approximation of the human

way of thinking. This paradigm allows us to create AIs that evolve over

time; this evolution of the “mind” is accomplished by means of penalties

and rewards given to the agent for executing incorrect or correct actions.

Thus, during this chapter, we will describe Markov decision processes

(MDP), describe reinforcement learning methods such as Q learning and

temporal difference (TD), and provide a coding example of a situation

where RL allows us to design an agent that improves its performance over

time and learns how to solve a maze in the shortest number of steps.

Note  AlphaGo, the AI created by Google’s Deep Mind that defeated
the world champion of the complex game of GO, Lee Sedol, in March
2016, learned the game through a reinforcement learning algorithm.

�What Is Reinforcement Learning?
Reinforcement learning (RL), as with supervised learning and

unsupervised learning, is not a method or algorithm but rather a broad

family of algorithms that follow a common idea or paradigm. In reality,

the three just mentioned represent paradigms for building AI methods;

they represent the blueprint, and algorithms represent the realization of a

procedure that resembles what the blueprint detailed.

In the RL paradigm, learning occurs by trial-and-error, having as the

outcome either a reward or a punishment (negative reward), and the goal

is to achieve the highest reward in the long term. One could say that RL is a

continuous evolution or optimization over time. Figure 17-1 illustrates the

Chapter 17 Reinforcement Learning

635

basic flow of an RL algorithm. The agent interacts with the environment

acting over it, then the environment updates the state of the agent and

assigns a reward (which could be negative) to the agent for having moved

to this new state.

It’s important to consider that rewards do not have to always be

immediate; there might be states with reward 0, which is the same

as saying no reward. When developing an RL method, we model the

environment, states, agent actions, and rewards; hence, the entire problem

is a Markov decision process (we’ll soon discuss this topic).

RL is based on the Reward Hypothesis, which states that all goals can

be described by the maximization of expected cumulative reward.

A RL agent may implement different components—a policy that

defines an agent’s behavior, a value function defining how good each state

and/or action is, and a model as a representation of the environment.

Note  Like a human, RL agents can construct and learn their own
knowledge directly from raw inputs, such as vision, without any
hardwired features or domain-specific heuristics.

Figure 17-1.  Basic flow of a RL algorithm. The agent observes the
environment, executes an action to interact with the environment,
and receives positive, negative, or zero reward.

Chapter 17 Reinforcement Learning

636

�Markov Decision Process
Markov decision processes (MDPs) are the most common approach to

formally describing an environment in RL, and many problems can be

modeled as MDPs. An MDP is a discrete state–time transition system that

includes a set of possible world states s, a set of possible actions a, a real

valued reward function R(s, a), a description T of the effect of each action

in each state, and an initial state s0.

In order to understand what an MDP is in a real-life problem, let’s

consider an environment where a robot mouse is trapped and must find its

way out of a maze, as Figure 17-2 illustrates.

Assume the robot mouse is trying to reach the ultimate reward of

cheese at the end of the maze (+10000 points) or the less significant reward

of water along the way (+100 points), and at the same time it wants to

avoid locations that deliver an electric shock (-1000 points). The mouse’s

Figure 17-2.  The robot mouse must find a way out of the maze.
Finding a water location rewards him with +100, finding the cheese
has a reward of +10000, and electricty spots result in a punishment or
negative reward of -1000.

Chapter 17 Reinforcement Learning

637

wandering through the maze can be formalized as an MDP, which is a

process with specified transition probabilities from state to state. An MDP

for this problem could be modeled as follows:

•	 Finite set of states: possible positions of the mouse

within the maze

•	 Set of actions available in each state: all possible moves

of the mouse at each state, i.e., {up, down, left, right},

and when available; e.g., if on a corner it would have

only two moves available

•	 Transitions between states: combination of a current

state (given cell on the maze) and some action (move

left) that leaves the mouse robot in a new position

(state). Transitions can be associated with a set of

probabilities that relate to more than one possible state.

•	 Rewards associated with transitions: in the maze scenario

and for the mouse robot; most of the rewards are 0, but

they’re positive if you reach a point that has water or

cheese and negative if you reach a cell with electricity

•	 Discount factor γ in the range [0, 1]: quantifies the

difference in importance between immediate rewards

and future rewards. For instance, when γ equals .7, and

there's a reward of 5 after three steps, the present value

of that reward is .73 * 5.

•	 Memorylessness or Markov Property: Once the current

state is known, the history of the mouse’s travels

through the maze can be erased because the current

Markov state contains all useful information from the

history. In other words, “the future is independent of

the past given the present.” This is also known as the

Markov Property.

Chapter 17 Reinforcement Learning

638

Now, our goal in RL is to maximize the sum of rewards in the long term,

which is given by the following formula:

t

t

=

=¥

å * () ()()
0

g t r x t a t,

where t is a time step, r(x, a) is the reward function, x(t) represents the state of

the agent at time t, and a(t) the action executed when at that state and also at

time t. This is the main problem RL algorithms try to solve, and it’s basically an

optimization problem where we optimize time. The sooner we get a reward,

the more it will mean to us, because the discount factor will decrease the value

of rewards over time. We use a discount factor for several reasons:

•	 To prefer earlier rewards

•	 To represent the uncertainty of the future

•	 Animal/human behavior shows preference for

immediate reward

•	 Avoids infinite returns (we will soon define what a

return is) in cyclic Markov processes

•	 When dealing with financial rewards an immediate

reward may earn more interest than a delayed reward.

Other types of rewards we might find in different textbooks could be

the following:

•	 Total Reward:

t
tr

=

¥

å
1

•	 Average Reward:

lim
n

nr r r

n®¥

+ +¼+1 2

Chapter 17 Reinforcement Learning

639

We could also see an MDP as a combination of a Markov reward

process (MRP) and decisions. A Markov reward process consists of a set of

states S, a state transition matrix T (as earlier), a reward function R, and a

discount factor γ.

At the same time, an MRP) can be seen as a Markov chain with values.

A Markov chain (a.k.a. Markov process) consists of a set of states S and a

state transition matrix T. Figure 17-3 illustrates an MRP where we briefly

model the working day of an android (it checks Facebook). Real numbers

in the range [0.0; 1.0] indicate the probabilities of having a transition

from one state to the other; circles indicate states, and rows indicate the

transition from one state to the other. In this case, the leftmost state is the

initial state.

In this figure, all actions are either stochastic— i.e., T : S x A -> Prob(S)

where Prob(S) is a probability distribution—or deterministic, where

T : S x A -> S.

Note  Both planning and MDPs are considered search problems,
with the difference being that in the first we deal with explicit
actions and subgoals and in the latter we deal with uncertainty
and utilities.

In MDPs, a horizon determines whether our decision-making process

will have an infinite time, a finite time, or an indefinite time (until some

criteria is met). MDPs with infinite horizons are easier to solve as they

do not have a deadline; furthermore, because in many cases it’s not clear

how long a process will execute, it’s popular to consider infinite-horizon

models of optimality.

Chapter 17 Reinforcement Learning

640

An infinite-horizon return vt is the total discounted reward from time

step t up to infinity:

v rt t= + * +¼= *+ +
=

¥

+ +å1 2
0

1g gr rt
k

k
t k

Notice again the convenience of the discount factor. If we were to add

up all the rewards out into infinity, the sums would be infinite in general.

To keep the math nice, and to put some pressure on the agent to get

rewards sooner rather than later, we use a discount factor.

�Value/Action–Value Functions & Policies
Having rewards in MRPs and MDPs permits us to define values for states

depending on the associated rewards. These tabular values are part of the

value function, state–value function, or simply value of a state in an MRP.

It’s the expected return starting from state s:

V s R s() = () + * []* ()¢ ¢
¢Î ()

()

åg
s N s

N s

T s s V s,

Figure 17-3.  MRP modeling the working day of an android

Chapter 17 Reinforcement Learning

641

In the preceding formula, we compute the expected long-term value

of the next state by summing over all possible next states or neighbor

states, s′, the product of the probability of making a transition from s to s′,
and the infinite horizon expected discounted reward; i.e., value of s’. This

formulation is based on Bellman’s Equation (1957), a.k.a. the Dynamic

Programming Equation, and its Principle of Optimality, which states that

an optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy

with regard to the state resulting from the first decision. In this case, the

value function can be decomposed into an immediate reward R and a

discounted value of a successor, neighbor state s′; i.e., γ * V(s′).

Note  In computer science, a problem that can be divided into
subproblems that produce an overall optimal solution (such as using
Bellman’s Principle) is said to have optimal substructure.

To see how to calculate this equation, let’s assume a discount factor

g = 0 9. and the MDP shown on a prior figure; we can calculate the value of

the leftmost state (Wash Face) as follows:

V('Wash Face') = 1 + 0.9 * (0.7 * V('Have Breakfast') +

0.3 * V('Get Dressed'))

Notice that if we were to set g = 0 then the values associated with each

state would match its reward. To fully compute V(s), for all s, we would

need to solve n equations in n unknowns, considering n is the number of

states in the MRP.

In classical planning, we created a plan that was either an ordered

list of actions or a partially ordered set of actions (we discussed it in prior

chapters) meant to be executed without reference to the state of the

environment. In an MDP, the assumption is that you could potentially go

from any state to any other state in one step. And so, to be prepared, it is

typical to compute a whole policy rather than a simple plan.

Chapter 17 Reinforcement Learning

642

A policy is a mapping from states to actions that defines a course of

action or sequence of actions that the agent will follow in the environment.

It’s usually denoted by the Greek letter pi: π(s). Because of the Markov

property, we’ll find that the choice of action only needs to be dependent

on the current state (and possibly the current time) and not on any of the

previous states. We’ll try to find the policy that maximizes, for each state,

the expected reward of executing the policy in that state. We will call such a

policy an optimal policy and denote it as π*(s).

A policy can be deterministic and output a single action for each state

or stochastic and output an action dependent on various probabilities.

Note  Since a policy is a sequence of actions, when you take an
MDP and fix a policy then all actions have been chosen and what you
have left is a Markov chain.

The state–value function V. at follows policy π in an MDP is the

expected return starting from state s and then following policy π:

V s R sp p p pg() = () + * []* ()¢ ¢
¢Î ()

()

å
s N s

N s

T s s V s,

An optimal state–value function is the maximum value function over all

policies, as follows:

V s V sp p p
* max() = ()

The action–value function Q(s, a), or simply Q-function, is the expected

return starting from state s, taking action a, and then following policy π, as

follows:

Q s a R s ap p pg, , ,() = () + * []* ()¢ ¢
¢Î ()

()

å
s N s

N s
aT s s V s

Chapter 17 Reinforcement Learning

643

Note that Q(s, a) can be expressed in terms of V(s) and that it considers

not only states but also actions leading to states.

Note T he Q-function represents the quality of a certain action given
a state.

An optimal action–value function is the maximum action–value

function over all policies, as follows:

Q s a Q s ap p p
* , max ,() = ()

What would be the goal of an RL agent? Its goal should be to learn

an optimal policy by optimizing either V(s) or Q(s, a); it has been proven

that all optimal policies achieve the optimal state–value and action–value

functions, as follows:

V s Q s s V Qp p p* * * *,() = ()() = =

where V*, Q* represent the optimal values of V(s) and Q(s, a) respectively.

Thus, it would seem logical to try to optimize one of these functions to

obtain an optimal policy for the agent. Remember that this is our main

goal in MDP and specifically in RL.

If the reward and transition values are known to the agent, then he can

use a model-based algorithm known as value iteration to calculate V* and

obtain an optimal policy.

Another approach for obtaining an optimal policy and solving MDPs

is the policy iteration algorithm. This is also a model-based method that

manipulates the policy directly rather than finding it indirectly via the

optimal value function. As occurs with the value iteration method, it

assumes the agent is aware of the reward and transition functions.

Chapter 17 Reinforcement Learning

644

Later, we will discuss Q-learning, a model-free learning method

that can be used in situations where the agent initially knows only that

certain states and actions are possible but is unaware of the transition

and reward probability functions. In Q-learning the agent improves

its behavior by learning from the history of interactions with the

environment. It only discovers that there is a reward for going from

one state to another via a given action when it does so and receives a

reward. Similarly, it only figures out what transitions are available

from a given state by ending up in that state and looking at its

options. If state transitions are stochastic, it learns the probability of

transitioning between states by observing how frequently different

transitions occur.

Note  In a model-based method, the agent has a built-in model
(reward and transition functions) of the environment and therefore
can simulate it so as to find the right decision. In a model-free
method, the agent knows how to act, but doesn’t explicitly know
anything about the environment.

�Value Iteration Algorithm
In value iteration we will compute V*(s) for all states s by applying an

iterative procedure in which our current approximation for V*(s) gets

closer to the optimal value over time. We start by initializing V(s) to 0

for all states. We could actually initialize to any values we want, but it’s

Chapter 17 Reinforcement Learning

645

easiest to just start at 0. This algorithm uses the updating rule for V(s); a

pseudocode of the method is shown in the following lines:

A common stopping condition for this problem is having a change in

value from step t to step t + 1 less than or equal to a predefined epsilon

multiplied by a discount factor variable, as shown in the previous

pseudocode. In this case, δ represents the maximum change of V(s) in

some iteration. V and V′ represent utility vectors and ε the maximum error

allowed in the utility of a state. This algorithm converges to the correct

utilities over time.

Chapter 17 Reinforcement Learning

646

�Policy Iteration Algorithm
In the policy iteration algorithm we search for optimal policy and utility

values at the same time; thus, we manipulate the policy directly rather

than finding it indirectly via the optimal value function. A pseudocode of

the algorithm is shown in the following lines:

Chapter 17 Reinforcement Learning

647

where V is the utility vector and π. presents the policy outputted by the

algorithm, initialized with random values. The PolicyEvaluation()

subroutine solves the following:

system of linear equations:

R s si i() + * ()éë ùû * ¢()¢ ¢
¢Î ()

()

åg max T s s V sa
s N s

N s

i

i

i

, ,p

PI picks an initial policy, usually just by taking rewards on states

as their utilities and computing a policy according to the maximum

expected utility principle. Then, it iteratively performs two steps: value

determination, which calculates the utility of each state given the current

policy, and policy improvement, which updates the current policy if

any improvement is possible. The algorithm terminates when the policy

stabilizes. Policy iteration often converges in a few iterations, but each

iteration is expensive; recall the method has to solve large systems of linear

equations.

�Q-Learning & Temporal Difference
The value iteration and policy iteration algorithms work perfectly for

determining an optimal policy, but they assume our agent has a great

deal of problem-specific knowledge. Specifically, they assume the agent

accurately knows the transition function and the reward for all states in the

environment. This is actually quite a bit of information; in many cases, our

agent may not have access to this.

Fortunately, there is a way to learn this information. In essence, we can

trade learning time for a priori knowledge. One way to do this is through a

form of reinforcement learning known as Q-learning. Q-learning is a form

of model-free learning, meaning that an agent does not need to have any

model of the environment; it only needs to know what states exist and

Chapter 17 Reinforcement Learning

648

what actions are possible in each state. The way this works is as follows: we

assign each state an estimated value, called a Q value. When we visit a state

and receive a reward, we use this to update our estimate of the value of that

state. (Since our rewards might be stochastic, we may need to visit a state

many times.)

Considering that V (s) max Q(s,a)
a

*

¢
= ¢ , we can rewrite the previously

detailed formula for Q(s, a) only in terms of the Q function.

Q s a R s ap p pg, , , ,() = () + * []* ()¢ ¢
¢Î ()

()

å
s N s

N s
aT s s Q s a

The previous formula is the update rule used in the Q-learning

algorithm, described in the following lines:

For Q-learning to converge we must guarantee that every state is

visited infinitely often; one cannot learn from that which it does not

experience, and therefore it must infinitely visit every state in order to

guarantee convergence and find an optimal policy.

Chapter 17 Reinforcement Learning

649

Q-learning belongs to a class of methods known as temporal

difference algorithms. In a temporal difference algorithm (TDA) we

learn by reducing the difference between estimates at different time

frames (t, t′). Q-learning is a particular case of TDA where we reduce

the estimate of Q for a state and its consecutive states, also known as

neighbors or successors. We could just as well design an algorithm that

reduces discrepancies between this state and more distant descendants

or ancestors.

The most popular TD algorithm is probably TD(λ) (Sutton 1988), a

general version of TDA that relies on the idea that we can calculate Q as

follows:

Q s a r ,n
t t t, max() = + * +¼+ + ()* *+

-
+ - +g g gr r Q s at

n
t n

n

a
t n1

1
1

Notice in the previous formulation that we do not only include a one-

step lookahead as we did in Q-learning, but rather we are considering n

steps into the future. TD(λ) mixes various lookahead distances using a

0 1£ £l parameter in the following manner:

Q s a Q s a Q s a Q s at t t t t t t t
l l l l, , , ,() = -()* () + * () + () +¼éë ùû*1 1 2 2 3

When considering l = 0 we end up with the Q-learning rule, the

one where we simply look one step ahead. As we increase λ, he

algorithm places more emphasis on discrepancies based on more-

distant lookaheads. When we reach the value l =1, only the observed

rt i+ values are considered, with no contribution from the current Q

estimate value. The motivation for the TD(λ) method is that in some

settings training will be more efficient if more-distant lookaheads are

considered.

Chapter 17 Reinforcement Learning

650

�Practical Problem: Solving a Maze Using
Q-Learning
In this practical problem we will demonstrate the application of the

Q-learning method through a very simple and intuitive situation: solving a

maze. In the maze, the agent starts at cell (0, 0) and must find a way out at

cell (n - 1, m - 1) where n represents the number of rows and m the number

of columns in a zero index–based matrix. Figure 17-4 illustrates the maze

to be solved in this chapter.

Notice how in the previous maze there are several policies the agent can

follow to reach the exit cell, but there’s only one optimal policy (Figure 17-5).

Because learning will occur over time (as occurs in real life) we must

guarantee a continuous visit of every state (cell) in each episode; this is the

necessary condition for Q-learning to converge. An episode is how we’ll refer

to an agent’s completing the maze, and whenever the maze is completed

we’ll say that the agent will move from episode E to episode E + 1.

Figure 17-4.  Maze to be solved

Chapter 17 Reinforcement Learning

651

The Q-learning agent, which we will call Qagent, is represented by the

class shown in Listing 17-1.

Listing 17-1.  Properties, Fields, and Constructor of the QAgent

Class

public class QAgent

{

 public int X { get; set; }

 public int Y { get; set; }

 �public Dictionary<Tuple<int, int>, List<double>>

QTable { get; set; }

 public double Randomness { get; set; }

 public double[,] Reward { get; set; }

 private readonly bool[,] _map;

 private readonly int _n;

 private readonly int _m;

Figure 17-5.  Optimal policy followed by the agent to solve the
maze

Chapter 17 Reinforcement Learning

652

 private readonly double _discountFactor;

 private static readonly Random Random = new Random();

 �private readonly Dictionary<Tuple<int, int>,

int> _freq;

 �public QAgent(int x, int y, double discountFactor, int

n, int m, double [,] reward, bool [,] map,

double randomness)

 {

 X = x;

 Y = y;

 Randomness = randomness;

 InitQTable(n, m);

 _n = n;

 _m = m;

 Reward = reward;

 _map = map;

 _discountFactor = discountFactor;

 �_freq = new Dictionary<Tuple<int, int>, int>

{{new Tuple<int, int>(0, 0), 1}};

 }

}

This class contains the following properties or fields:

•	 X: represents the row of the agent’s position on the

board

•	 Y: represents the column of the agent’s position on the

board

Chapter 17 Reinforcement Learning

653

•	 QTable: matrix representing the Q function in tabular

form, i.e., the Q(s, a) function where rows indicate

states and columns indicate actions. It’s coded as a

dictionary of Tuple<int, int> (states) and a list of

four (actions up, down, left, right) double values for

each tuple.

•	 Randomness: Because from time to time we need to

wander around to try to get the agent to visit every

state, we use the Randomness variable to indicate a

value in the range [0; 1] corresponding to the chance of

generating a random action.

•	 Reward: represents the reward matrix for every state

•	 _ map: variable that represents the map of the

environment (maze)

•	 _n: number of rows in the environment

•	 _m: number of columns in the environment

•	 _discountFactor: discount factor as previously

detailed and used in the Q-learning update rule

•	 _freq: dictionary detailing the frequency of visit of

every state; it will be used in the strategy applied to

guarantee the agent visits every state infinitely often

and seeking to obtain an optimal policy

The InitQTable() method (Listing 17-2) included in the class

constructor was created with the purpose of initializing the QTable; i.e., the

dictionary of (state, {actionUp, actionDown, actionLeft, actionRight})

entries. At the beginning it will be that Q(s, a) = 0 for every possible action a.

Chapter 17 Reinforcement Learning

654

Listing 17-2.  InitQTable() Method

private void InitQTable(int n, int m)

{

 �QTable = new Dictionary<Tuple<int, int>, List<double>>();

 for (var i = 0; i < n; i++)

 {

 for (var j = 0; j < m; j++)

 �QTable.Add(new Tuple<int, int>(i, j), new

List<double> { 0, 0, 0, 0});

 }

}

The Q-learning process occurs in the following method (Listing 17-3);

the actionByFreq parameter will determine if we use the strategy of

visiting states by frequency + randomness or if we will rely only on Q values

to complete the maze. Since every learning process requires some time,

we will need to rely merely on the frequency + randomness strategy to

try to “learn”—i.e., visit every state frequently enough to learn from these

experiences and be able to learn in the end an optimal policy that would

lead us to the exit of the maze in the shortest time and in the shortest

number of steps.

Listing 17-3.  InitQTable() Method

public void QLearning(bool actionByFreq = false)

{

 var currentState = new Tuple<int, int>(X, Y);

 var action = SelectAction(actionByFreq);

 if (!_freq.ContainsKey(ActionToTuple(action)))

 _freq.Add(ActionToTuple(action), 1);

Chapter 17 Reinforcement Learning

655

 else

 _freq[ActionToTuple(action)]++;

 ActionToTuple(action, true);

 �var reward = Reward[currentState.Item1,

currentState.Item2];

 �QTable[currentState][(int) action] = reward +

_discountFactor * QTable[new Tuple<int, int>(X, Y)].Max();

}

The very important action-selection strategy that will lead the agent

into learning an optimal policy is coded in the SelectAction() method

shown in Listing 17-4. In case the actionByFreq variable has been

activated (set to True), the agent will perform an action according to a

frequency + randomness strategy; otherwise, it will always choose the

Q(s', a) with the highest value.

Listing 17-4.  SelectAction() Method

private QAgentAction SelectAction(bool actionByFreq)

{

 var bestValue = double.MinValue;

 var bestAction = QAgentAction.None;

 var availableActions = AvailableActions();

 if (actionByFreq)

 return FreqStrategy(availableActions);

 for (var i = 0; i < 4; i++)

 {

 �if (!availableActions.Contains(Action

Selector(i)))

 continue;

Chapter 17 Reinforcement Learning

656

 var value = QTable[new Tuple<int, int>(X, Y)][i];

 if (value > bestValue)

 {

 bestAction = ActionSelector(i);

 bestValue = value;

 }

 }

 return bestAction;

}

The previous method uses the FreqStrategy() method seen in

Listing 17-5. In this method, we apply a random action with probability

0.5 or a frequency-based visit; i.e., visit the adjacent state least visited

according to the _freq dictionary.

Listing 17-5.  FreqStrategy() Method

�private QAgentAction FreqStrategy(List<QAgentAction>

availableActions)

{

 �var newPos = availableActions.Select(availableAction =>

ActionToTuple(availableAction)).ToList();

 var lowest = double.MaxValue;

 var i = 0;

 var bestIndex = 0;

 if (Random.NextDouble() <= Randomness)

 �return availableActions[Random.Next

(availableActions.Count)];

 foreach (var tuple in newPos)

 {

Chapter 17 Reinforcement Learning

657

 if (!_freq.ContainsKey(tuple))

 {

 bestIndex = i;

 break;

 }

 if (_freq[tuple] <= lowest)

 {

 lowest = _freq[tuple];

 bestIndex = i;

 }

 i++;

 }

 return availableActions[bestIndex];

}

To determine the set of available actions for the agent (the one that

does not make the agent stumble against a wall) we included in the QAgent

class the AvailableActions() method, as Listing 17-6 illustrates.

Listing 17-6.  AvailableActions() Method

private List<QAgentAction> AvailableActions()

{

 var result = new List<QAgentAction>();

 if (X - 1 >= 0 && _map[X - 1, Y])

 result.Add(QAgentAction.Up);

 if (X + 1 < _n && _map[X + 1, Y])

 result.Add(QAgentAction.Down);

 if (Y - 1 >= 0 && _map[X, Y - 1])

 result.Add(QAgentAction.Left);

Chapter 17 Reinforcement Learning

658

 if (Y + 1 < _m && _map[X, Y + 1])

 result.Add(QAgentAction.Right);

 return result;

}

We adopted the convention of matching actions in the order

{up, down, left, right} with integers starting from 0; hence, up = 0,

down = 1, left = 2, right = 3. The ActionSelector() method shown in

Listing 17-7 mutates an integer into its equivalent action (we’ll soon see

the QAgentAction enum).

In Listing 17-7 we can also see the ActionToTuple() method, which

converts a QAgentAction into a Tuple<int,int> representing the resulting

state after executing that action.

Listing 17-7.  ActionSelector() and ActionToTuple() Methods

public QAgentAction ActionSelector(int action)

{

 switch (action)

 {

 case 0:

 return QAgentAction.Up;

 case 1:

 return QAgentAction.Down;

 case 2:

 return QAgentAction.Left;

 case 3:

 return QAgentAction.Right;

 default:

 return QAgentAction.None;

 }

}

Chapter 17 Reinforcement Learning

659

�public Tuple<int, int> ActionToTuple(QAgentAction action,

bool execute = false)

{

 switch (action)

 {

 case QAgentAction.Up:

 if (execute) X--;

 return new Tuple<int, int>(X - 1, Y);

 case QAgentAction.Down:

 if (execute) X++;

 return new Tuple<int, int>(X + 1, Y);

 case QAgentAction.Left:

 if (execute) Y--;

 return new Tuple<int, int>(X, Y - 1);

 case QAgentAction.Right:

 if (execute) Y++;

 return new Tuple<int, int>(X, Y + 1);

 default:

 return new Tuple<int, int>(-1, -1);

 }

}

To conclude the QAgent class, we add the Reset() method (Listing 17-8),

which resets or prepares the agent for a new episode by setting it to the start

position and cleaning the _frequency dictionary. The QAgentAction enum

describing possible agent actions is shown in Listing 17-8.

Listing 17-8.  Reset() Method and QAgentAction Enum

 public void Reset()

 {

 X = 0;

 Y = 0;

Chapter 17 Reinforcement Learning

660

 _freq.Clear();

 }

public enum QAgentAction

{

 Up, Down, Left, Right, None

}

We already presented the machine learning code of the program, but

we are missing a component: the GUI on Windows Forms.

The inheritor of the Form class that will visually represent the maze

is MazeGui, illustrated in Listing 17-9. Remember that we are coding a

Windows Forms application.

Listing 17-9.  Fields and Constructor from MazeGui Class

public partial class MazeGui : Form

 {

 private readonly int _n;

 private readonly int _m;

 private readonly bool[,] _map;

 private readonly QAgent _agent;

 private Stopwatch _stopWatch;

 private int _episode;

 �public MazeGui(int n, int m, bool [,] map, double [,]

reward)

 {

 InitializeComponent();

 timer.Interval = 100;

 _n = n;

 _m = m;

 _map = map;

 _�agent = new QAgent(0, 0, 0.9, _n, _m, reward,

map, .5);

Chapter 17 Reinforcement Learning

661

 _stopWatch = new Stopwatch();

 }

}

The class contains the following properties or fields:

•	 _n: number of rows in the maze

•	 _m: number of columns in the maze

•	 _map: matrix with Boolean values indicating whether a

cell is a wall or not

•	 _agent: instance of the QAgent class

•	 _stopWatch: stopwatch used to measure the time taken

in every episode of the Q-learning process

•	 _episode: number of episodes carried out so far in the

Q-learning process

To draw all elements on the maze, we implement the Paint event for

the drawing control (Picture Box) as shown in Listing 17-10.

Listing 17-10.  Paint Event of the Picture Box Representing the Maze

�private void MazeBoardPaint(object sender, PaintEventArgs e)

{

 var pen = new Pen(Color.Wheat);

 var cellWidth = mazeBoard.Width / _n;

 var cellHeight = mazeBoard.Height / _m;

 for (var i = 0; i < _n; i++)

 �e.Graphics.DrawLine(pen, new Point(i * cellWidth, 0),

new Point(i * cellWidth, i * cellWidth +

mazeBoard.Height));

Chapter 17 Reinforcement Learning

662

 for (var i = 0; i < _m; i++)

 �e.Graphics.DrawLine(pen, new Point(0, i * cell

Height), new Point(i * cellHeight + mazeBoard.Width,

i * cellHeight));

 for (var i = 0; i < _map.GetLength(0); i++)

 {

 for (var j = 0; j < _map.GetLength(1); j++)

 {

 if (!_map[i, j])

 �e.Graphics.FillRectangle(new Solid

Brush(Color.LightGray), j * cellWidth,

i * cellHeight, cellWidth, cellHeight);

 }

 }

 for (var i = 0; i < _map.GetLength(0); i++)

 {

 for (var j = 0; j < _map.GetLength(1); j++)

 {

 if (_map[i, j])

 �e.Graphics.DrawString(String.Format("{0:0.00}",

_agent.QTable[new Tuple<int, int>(i, j)][0].

ToString(CultureInfo.GetCultureInfo

("en-US"))) + "," +

 �String.Format("{0:0.00}", _agent.QTable[new

Tuple<int, int>(i, j)][1].ToString(CultureInfo.

GetCultureInfo("en-US"))) + "," +

 �String.Format("{0:0.00}", _agent.QTable[new

Tuple<int, int>(i, j)][2].ToString

(CultureInfo.GetCultureInfo("en-US"))) + "," +

Chapter 17 Reinforcement Learning

663

 �String.Format("{0:0.00}", _agent.QTable[new

Tuple<int, int>(i, j)][3].ToString(CultureInfo.

GetCultureInfo("en-US")))

 �,new Font("Arial", 8, FontStyle.Bold),

new SolidBrush(Color.White), j * cellWidth,

i * cellHeight);

 }

 }

 �e.Graphics.FillEllipse(new SolidBrush(Color.

Tomato), _agent.Y * cellWidth, _agent.X *

cellHeight, cellWidth, cellHeight);

 �e.Graphics.DrawString("Exit", new Font("Arial", 12,

FontStyle.Bold), new SolidBrush(Color.Yellow),

(_m - 1) * cellWidth + 15, (_n - 1) * cellHeight + 15);

}

We will draw the agent as an ellipse and the walls as gray cells; we will

also draw four values on each walkable cell: the values Q(s, a) for state s

and all possible actions.

To get and execute an action from the agent we included a timer

that triggers every second and calls upon the QLearning() method of

the agent using the frequency + randomness strategy while the current

episode is less than 20. It’s also in the method that handles the tick event

(Listing 17-11) that we reset the stopWatch and the agent’s state and

write the episode elapsed time in a file.

Note  When in a goal state s, we do not apply the Q-learning rule to
update Q(s, a); on the contrary, we take the reward value of the goal
state and assign it directly to Q(s, a).

Chapter 17 Reinforcement Learning

664

Finally, we refresh the mazeBoard to show the new set of changes to

the GUI.

Listing 17-11.  Method Handling the Tick Event

 private void TimerTick(object sender, EventArgs e)

 {

 if (!_stopWatch.IsRunning)

 _stopWatch.Start();

 if (_agent.X != _n - 1 || _agent.Y != _m - 1)

 _agent.QLearning(_episode < 20);

 else

 {

 �_agent.QTable[new Tuple<int, int>

(_n - 1, _m - 1)] = new List<double>

 {

 �_agent.Reward

[_n - 1, _m - 1],

 �_agent.Reward

[_n - 1, _m - 1],

 �_agent.Reward

[_n - 1, _m - 1],

 �_agent.Reward

[_n - 1, _m - 1]

 };

 _stopWatch.Stop();

 _agent.Reset();

 �var file = new StreamWriter("E:/time_difference.txt",

true);

 file.WriteLine(_stopWatch.ElapsedMilliseconds);

 file.Close();

Chapter 17 Reinforcement Learning

665

 _stopWatch.Reset();

 _episode++;

 }

 mazeBoard.Refresh();

 }

}

Now that we have all components in place, let’s try to test the application

and run it, as we have done throughout this book, in a console application,

creating the necessary map and reward matrixes (Listing 17-12).

Listing 17-12.  Testing the MazeGui Application

var map = new [,]

 {

 {true, false, true, false, true},

 {true, true, true, false, true},

 {true, false, true, false, true},

 {true, false, true, true, true},

 {true, true, true, false, true}

 };

var reward = new [,]

 {

 {-0.01, -0.01, -0.01, -0.01, -0.01},

 {-0.01, -0.01, -0.01, -0.01, -0.01},

 {-0.01, -0.01, -0.01, -0.01, -0.01},

 {-0.01, -0.01, -0.01, -0.01, -0.01},

 {-0.01, -0.01, -0.01, -0.01, 1},

 };

Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

Application.Run(new MazeGui(5, 5, map, reward));

Chapter 17 Reinforcement Learning

666

Using the exploration strategy previously described (the one where we

mix frequency of visited cells and randomness for executing actions), we

continuously visit each state in each episode. After 20 episodes have been

completed, the agent starts taking actions that rely only on the Q values

learned and always executing the action that corresponds to Q(s', a) with

the highest value. In this case, we were able to find the optimal policy,

which was detailed in Figure 17-5.

The result obtained after executing the code from Listing 17-12 would

be an instance of the Windows Forms application developed throughout

this chapter (Figure 17-6). The reward function contains a reward of 1 for

the goal state and -0.01 for any other state. Once the agent has completed

the first episode the goal state (Exit) will contain reward 1 for every action;

i.e., Q('Exit', {up, down, left, right}) = 1.

Figure 17-6.  Episode 2, the QAgent is learning and updating Q
values, which are shown in the upper-left corner of every cell

Chapter 17 Reinforcement Learning

667

Figure 17-7.  Optimal policy found and executed by the agent

Figure 17-7 illustrates the values ultimately calculated for Q(s, a) and

after 20 episodes have passed. The reader can check that a path starting

at cell (0, 0) and choosing always the action (remember they appeared in

the order up, down, left, right) with the highest Q value will lead it to the

optimal policy—the one leading to the Exit (goal state) in the least number

of steps.

Recall that our goal in Q-learning is to actually learn the Q function,

Q(s, a). In this case, we learn the function in its tabular form, which

has states as rows and actions as columns of a table or matrix. In some

scenarios it might be intractable to do it this way, given the fact that we

may have a large state space. In such a scenario, we can rely on a function

approximator such as neural networks to approximate the Q function.

This is actually the approach used by Tesauro in its popular backgammon

agent, capable of defeating the backgammon world champion of its time.

Chapter 17 Reinforcement Learning

668

�Summary
In this chapter, we described the interesting topic of reinforcement

learning (RL), one of the most important machine learning paradigms

along supervised and unsupervised Learning. We began by defining

Markov decision processes (MDPs), the mathematical framework used in

RL to model problems of the real world. We described the value function

(V) and the action–value function (Q) and demonstrated the relationship

between these and their importance in obtaining an optimal policy. The

concept of policy was also included in the chapter. We provided several

methods for solving MDPs. Namely, we detailed the value iteration and

policy iteration algorithms. In the end, we discussed Q-learning and

implemented a practical problem where we used it to get an agent to learn

how to exit a maze in the shortest number of steps.

Chapter 17 Reinforcement Learning

669© Arnaldo Pérez Castaño 2018
A. Pérez Castaño, Practical Artificial Intelligence,
https://doi.org/10.1007/978-1-4842-3357-3

Index

A
A Beautiful Mind, 590
Activision-Blizzard

(Call of Duty), 549
Adversarial search

agents, 593
board-games analysis, 593
constant-sum game, 595
deterministic game

environment, 594
imperfect information

game, 595
Lee Sedol vs. AlphaGo, 594
methods, game types, 595
Minimax search algorithm (see

Minimax search algorithm)
perfect information game, 595
stochastic game

environment, 594
utility function, 594
zero-sum game, 595

Agent architectures
deliberative architecture

alternatives generation, 122
BDI architecture (see Beliefs,

Desires, and Intentions
(BDI) architecture)

diagram, 120
filtering, 122
goal-based behavior, 119
logical reasoning, 119
means-end reasoning, 121
planning component,

121–122
practical reasoning, 121
problems, 119

hybrid architecture
goal-based component, 127
horizontal and vertical

layering, 128–130
mediator function, 130
reactive and deliberative

components, 128
InteRRaP, 133–134
properties, 113
reactive architecture

(subsumption)
behavior-based, 115
Brooks’ architecture, 115
characteristics, 116
cleaning agent, 115–118
diagram, 114
principle, 116
reactive agent, 114

touring machines, 131–132

https://doi.org/10.1007/978-1-4842-3357-3

670

Agent Communication Language
(ACL), 251

FIPA (see Foundation for
Intelligent Physical Agents
(FIPA))

KQML, 204–207
Agents

actuators, 92
autonomy, 95
bots, 92
cleaning robot

advantages, 110
AgentAction(List<Percepts>

percepts), 108–109
cleaning agent, 110–113
constructor and fields, 103
List<Tuple<int, int>>, 103
loop, agent function, 104
methods Clean(), IsDirty(),

MoveAvailable(int x, int y),
and Print() methods, 105

Percepts enum and
Perceived() method, 106

UpdateState() method, 107
definition, 92–93
environments, 94

accessible, 101
continuous, 101
decision-making process, 99
deterministic, 100
discrete, 101
dynamic, 101
episodic, 102
inaccessible, 101

non-deterministics, 100–101
static, 101

fundamental AI entities, 91
intelligent, 93–94
proactive, 97
proactiveness, 95
properties of, 98–99
purely reactive, 95
rationality, 95
reactive agent

advantages, 96
cleaning robot, 96
decision-making process,

95–96
disadvantages, 97

reactivity, 95
sensors, 92
social ability, 95
state-based, 102–103

Agglomerative clustering, 484, 486
Airport simulation

Airplane class, 298–299
AirplaneEvtArrival

<TimeSpan> class, 302–303
AirplaneEvtBreakdown

<TimeSpan> class, 305
AirplaneEvtProcess

Cargo<int> class, 303–304
AirportEvent<T> abstract

class, 299
methods, 302
properties, 301

arrivals, time and lambda
parameter, 297

Index

671

console application, 312
constructor, fields and

properties of Simulation
class, 305–307

Execute() method, 307–309
initialize and test

simulation, 311
passengers, cargo, 297–298
RunwayAvailable() and

TryToLand() methods, 310
Alpha-Beta pruning

branches/subtrees, 600
Minimax tree, 599–600
optimal child, 602
pseudocode, 600

Application programming interface
(API), 221

Artificial immune systems
(AISs), 522

Atomic propositions, 4
Automated theorem proving

(ATP), 40
applications, 42
automation, 43
binary decision tree, 45
Boolean values, 44
classical application, 43
description, 42
flow diagram, 42
hardware verification, 43
logical language, 43
proof assistant, 43
proof checking, 44
proof generation, 45

SATisfiability (SAT), 44
software verification, 43
string-matching algorithms, 42

Average linkage clustering, 485

B
Backpropagation algorithm

ActivationValue and ErrorTerm
properties, 454

chain rule, 442
classification-related

methods, 455
classification vector, 456
CreateLayers() method, 448
flow backward, 445
FunctionDerivative() method,

451, 452
gradient descent search

method, 440, 459
handwritten digit

recognition, 459
hyperbolic tangent and ReLU

units, 444, 453–454
List of SigmoidUnit, 448
MultiLayerNetwork and Layer

classes, 446–448
Predict() method, 455
PredictSet() method, 448
ReLU function, 445
ReturnIndexByHalf() and

ReturnIndexByMax()
methods, 455

SigmoidUnit class, 449

Index

672

stochastic approximation,
441–442

training data set, 441
Training() method, 450, 451
TrainingSample class, 457–458
UpdateWeight() method,

454–455
weight-update formulas, 443

Basic geostatical area (BGA), 542
BDT, see Binary decision t

ree (BDT)
Bee colony (BC), 522
Beliefs, Desires, and Intentions

(BDI) architecture
agent’s action function, 127
beliefs, 124
bold agent, 125
cautious agent, 125
components, 126–127
desires, 124
diagram, 123
intentions, 124–125
practical reasoning, 126

Best First Search, 580–581
Bidirectional search (BS)

simultaneous searches, 559
Sliding Tiles Puzzle (see Sliding

Tiles Puzzle)
Binary comparer circuit, 19, 21
Binary decision tree (BDT)

advantages, 30
AI data structure, 27
conditions, 26

constructors and properties,
27–28

decision-making processes, 30
leaf and non-leaf nodes, 27
recursive structure, 28
static methods, 29
varIndex variable, 30
visual representation, 30

Breadth-first search (BFS), 142,
157–158

Bfs<T> class, 561–562
derivations, 559
graph-based search

algorithms, 556
procedure, 557
time and space

complexity, 556

C
C4.5 algorithm

binary decision node, 397–398
error reduction, 394–396
Gain() method, 405–406
GainContinuous() method,

403–404
gain ratio, 397
GainRatio() and

SplitInformation(),
404–405

handling continuous attributes,
393, 397

handling missing values,
393, 398

Backpropagation algorithm (cont.)

Index

673

HighestGainAttribute() method,
401, 403

implementation, 399
main body, 399–401
overfitting, 393–394
pruning process,

cross-validation, 394
rule pruning, 394, 396
SubsetEntropy() method,

406, 407
testing, console application,

408–410
validation set, training data, 395

Canonical hyperplane, 323
Centroid linkage clustering, 485
Clause class, 46–47

methods, 48
Cleaning agents, 249, 288

CleaningAgentPlatform class,
254–255

CleaningTask class, 251–252
fields/properties, 253
methods, 253

Contract Net, 256–261
static methods, 261

FipaAcl class, 262–265
methods, 266–267

GUI, Room class, 280–282
MasCleaningAgent class

Action() method, 278–279
Bid() method, 274–276
fields, properties, and

constructor, 267–268
methods, 280

propertiesand fields,
269–270

ReactionTimeOnTick()
method, 272–274

Run() method, 271
SetSocialLaw() method,

276–278
program structure, 250–251
running application

agents exchange messages,
Contract Net, 284–285

console application, 283–284
InitCommunicationService()

method, 284
“Task Finished” message,

286–287
Cleaning robot

CleaningRobot C#
class, 83–87

creation, 82
features, 82
grid, 82
predicates and functions, 83
print() method, 87
Start() method, 87
terrain, 88

Clustering
algorithms family, 483
applications, 481
compactness, 482
criterion/objective

function, 481
definition, 480
Euclidean distance, 482

Index

674

hierarchical (see Hierarchical
clustering)

isolation/separation, 483
Manhattan distance, 482
Minkowski distance, 482
object color, 480–481
optimization, 481
partitional algorithms

(see K-means algorithm)
similarity measure, 481

Cnf class, 48–50
DPLL algorithm, 52
Formula hierarchy, 52, 53
Literals() method, 53, 54
methods, 51
RemoveParenthesis(And and)

method, 52
Common Language Runtime

(CLR), 222
Communication

ACL (see Agent Communication
Language (ACL))

blackboard systems, 200–201
classification, agents, 199–200
message passing, 201
Speech Act Theory, 201
WCF (see Windows

Communication
Foundation (WCF))

Complete linkage clustering, 485
Compound propositions, 4
Conjunction logical connective, 8

Conjunctive normal form
(CNF), 5, 17

And class with ToCnf() method
override, 38

DISTRIBUTE-CNF, 36
function, 36
Or class with ToCnf() method

override, 38–39
ToCnf() and DistributeCnf()

methods, 37
ToCnf() method override, Not

and Variable classes, 39
transformation

algorithm, 36
variables, 36

Contract Net
announcement, 215
awarding, 215
bidding, 215
contractors, 215, 217
expediting, 215
FIPA-ACL specification, 218
manager, 215, 217
process, 215, 216

Coordination and cooperation
approaches, 212
basic strategy, 213
benevolent, 212
coherence, 211
Contract Net (see Contract Net))
decision making, 211
description, 211–212
designing, 212

Clustering (cont.)

Index

675

interests of individuals,
organizations,
companies, 212

possibilities, 213
results sharing, 214
social norms and societies,

218–219
Subscribe/Notify pattern, 214
task sharing

problem decomposition, 213
solution synthesis, 214
subproblem solution, 214

Crytek (Far Cry), 549

D
Data contract, 224
Data mining, 367
Davis-Putnam-Logemann-

Loveland (DPLL) algorithm
auxiliary methods

Dpll(Cnfcnf) method, 57–59
OneLiteral(Cnfcnf) method,

59–62
PureLiteralRule() method,

62–65
Split() method, 65, 67

binary decision tree, 55
CNF formula, 55
definition, 55
heuristics and

metaheuristics, 67
OneLiteral, 56–57
pseudocode, 55–56

PureLiteral, 56–57
SAT problem, 55
Split, 56–57
tree construction, 67

Decision tree (DT)
attributes and values, 369
data classification, 371
DecisionTree class, 380–382

methods, 383
properties, 382

definition, 368
generation

Hunt’s algorithm, 372
ID3 algorithm, 373
training data set size,

373–374
leaf nodes, 369
multiple internal

nodes, 369
partition, 368
root node, 369
SVM/neural networks, 369
training data set, 370–371

Depth-first search (DFS)
backtracks, 557
derivations, 559
Dfs<T> class, 562–563
DLS, 559
graph-based search

algorithm, 557
infinite paths, 558
procedure, 558
time and space complexity, 558
visited nodes, 557

Index

676

Depth-limited search (DLS)
DFS, 559
Dls<T> class, 563–565

Digital information flow, 19
Dirichlet’s Box Principle, 67
Discreteet-event simulation

(DES), 290–291, 313
events, 293
knowledge, 292
objects, 292
probability and statistics, 293
properties, 292
queues, 293
resources, 293
time, 292–293

Disjunction logical connective, 9
Disjunctive normal form (DNF), 17
DPLL algorithm, see Davis-

Putnam-Logemann-
Loveland (DPLL)
algorithm)

E
Entropy

definition, 375
function, 375
ID3 algorithm, 376

Equivalence logical connective,
11–12

Estimation of Distribution
algorithms (EDAs), 522

Evolutionary algorithms (EAs), 522
Extension methods, 387–391

F
Fault contract, 224
First-order logic (FOL)

components, 77
evaluation, 79
formula, 77
interpretation, 79–80
predicates, 75

Dog class, 80
filter and get objects, 81
property, 76

propositional logic, 76
quantifiers, 78
requirement, 76
rules of interpretation, 78
syntax of, 77

FOL, see First-order logic (FOL)
Foundation for Intelligent Physical

Agents (FIPA)
components, 207
inform performative, 210
parameters, 208
performatives, 208–209
request performative, 210
structure of, 207

G
Game programming

AI methods, 550
development, 549
disciplines specific, 550
economic impact, 549

Index

677

informed search
A* search, 582–583
Best First Search, 580–581
Greedy Best First Search, 581

search procedures
features, 555
information usage, 555
Sliding Tiles Puzzle, 553–555
systematicity, 555

uninformed search (see
Uninformed search
algorithms)

video game
AI game development, 552
companies, 549
design phase, 552
game engine, 552
Halo Series, 551
software development, 551

Game theory
A Beautiful Mind, 590
adversarial search (see

Adversarial search)
applications in sociology and

psychology, 590
definition, 591
identification of process

participants, 591
mathematical framework, 589
Nobel Prize in Economics, 590
Othello (see Othello game)
popular games, 591
Prisoner’s Dilemma (PD),

591–592

two-person zero-sum, 589
Gaussian kernel, 348
Genetic algorithms (GA), 523
Gradient descent search (GDS),

428–431, 459
Greedy Best First Search, 581–582

H
Handwritten digit recognition

(HDR)
classification, handwritten

digits, 476–477
Classify button, 473–474
extract features from image,

471–472
handwriting, 463
HandwrittenDigit

RecognitionNn class, 467
HandwrittenRecognition

Gui class, 468–469
low-resolution images, 462
Mouse-Event methods, 470–471
multi-layer NN

hidden layers, 465
image pixels, 465
initialization of weights, 467
structure of, 466
training data, 466

OCR applications, 463
physiological/behavioural

characteristics, 462
ReadWeights() method,

474–475

Index

678

testing, 476
training data set, 464
universe of characters, 463
visual application, 476
weights, training data set,

472–473
Windows Forms

application, 467
Hessian matrix, 333, 336, 341
Heuristics

features, 511
Mars Rover, 509
NP-Hard problems, 509
problem-independent iterative

process, 510
Sliding Tiles Puzzle, 511
speed-up process, 510

Hierarchical clustering
agglomerative, 484, 486
divisive, 484
measures, 485

Hill climbing method
diversification, 523
intensification, 523
Execute() Method, 519, 521
GA, 523
genetic manner, 523
InitialSolution(),

Neighborhood(), and
NSpherePoints() methods,
518–519

local optimum, 513–514

Local Search (LS), 515, 522
MathParserNuget package, 516
mutation operator, 524
n-sphere surrounding, 515–516
optimization methods, 525
parabolic function, 521
properties/fields, 517
pseudocode of

algorithm, 514
public property, 516
selection, mutation and

crossover methods, 525
testing, 521
TSP (see Traveling Salesman

Problem (TSP)
types, 512–513

Hunt’s algorithm, 372–373

I, J
Implication logical connective,

10–11
Incremental gradient descent,

431–432
Information gain

calculation, 377
definition, 377
formula, 376

Inheritance and C# operators
abstract Formula class, 22
AND class, 23
BinaryGate class, 22
creating and evaluating

formula, 25

Handwritten digit recognition
(HDR) (cont.)

Index

679

Or, Not, and Variable classes,
23–25

result, executing code, 26
structural recursion, 21

Integration of Rational Reactive
behavior and Planning
(InteRRaP), 133–134

Intelligent agent, 93–94
Interactive Dichotomizer 3 (ID3)

algorithm, 373, 383–386
attributes and training data set,

377–378
fields and properties, 379

attribute-splitting test, 373
DecisionTree class, 380–382

console application, 391–393
methods, 383
properties, 382–383

entropy, 373
extension methods, 387–390
implementation, 377
information gain, 373
tree splitting, 377

Iterative deepening search (IDS),
559, 565–566, 568

K
Karush-Kuhn-Tucker (KKT)

conditions, 349–350
K-means algorithm

centroids, 487, 490
Cluster class, 490–492

methods, 493

properties, 493
data points and centroids,

487–489
description, 486–487
Element class, 493
Euclidean distance, 488
execution of, 499
initialization

phase, 487
inner and outer loops, 487
isolated data points, 490
KMeans and DataSet classes,

494–496
properties and

fields, 497
pseudocode, 488
SSE, 488, 499
testing, 497
unsupervised learning

method, 487
Knowledge Interchange Format

(KIF), 204
Knowledge Query and

Manipulation Language
(KQML), 204–207

L
Lagrange multipliers, 325–326
Lagrangian method, 325
Laws of Propositional

Logic, 12, 14–16
Least Mean Square (LMS), 427
Linear regression, 316

Index

680

Linear SVM
classifying hyperplane, 343
console application, 341
GetIndicesFromValues()

method, 336
Predict() method, 336–337
properties and fields, 328–330
SetInitValue() method,

extension class, 335–336
SvmGui Windows Forms class,

337–341
Training() method, dual-

optimization problem,
330–333

UpdateWeightVector() and
UpdateBias() methods, 334

Local Search (LS) algorithms, 515,
522

Logic
circuits (see Logic circuits)
computational, 2
definition, 2
DPLL, 1
fundamental, 1
philosophers, 1

Logical connectives
conjunction, 8
disjunction, 9
equivalence, 11–12
implication, 10–11
negation, 7
symbols, 6
unary/binary functions, 6

Logical gate, 18–19

Logic circuits
binary comparer, 19, 21
bivalent functions, 17
computer, 18
conjunction component

(AND), 20
conjunction gates, 19
disjunction component

(OR), 20
electronic component, 19
information flows, 18
logical gate, 18–19
negation component (NOT), 19

M
Manhattan Distance, 585
Markov decision processes

(MDPs), 634, 668
decision-making process, 639
discount factor, 638
discrete state–time transition

system, 636
horizons, 639
infinite horizons, 639, 640
Markov chain, 639
MRP, 639
optimization problem, 638
probability distribution, 639
reward types, 638
robot mouse, 636
sum of rewards, 638
transition probabilities, 637
working day of android, 640

Index

681

Markov Property, 637
Markov reward process (MRP), 639
Mars Rover

architecture
BDI layer, 141
beliefs, 142
BFS, 142
deliberation process, 142
heuristics, 143
hybrid, 140
layers, 141
path-finding

algorithms, 142
planning layer, 142
reactive layer, 141
relative frequency, 142
Total Relative Frequency,

142–143
BDI, 137, 140
classic rovers, 139
coding

Action() method, 162–165
BDI classes, 148–152
beliefs, desires, percepts,

plans and actions, 152
BFS algorithm, 157–158
Brf() method, 169–170
ExistsPlan() and

ExecuteAction() methods,
175–176

fields, variables, and
constructor, 143–146

Filter() and ChoosePlan()
methods, 174

FulFill() method, 158
GetCurrentTerrain()

method, 160–161
GetPercepts() method,

158–159
InjectBelief() method, 165
InjectBelief(),

SetRelativeFreq(), and
RelativeFreq() methods,
167–169

Manhattan Distance, 173
Mars class, 147–148
MoveAvailable() and

LookAround() methods, 159
Options() method, 172
Percept and Plan classes,

153–157
RandomMove() method, 166
UpdateBelief() method,

171–172
UpdatePerceivedCellsDicc()

and CheckTerrain()
methods, 161–162

definition, 138
diagram, 139
Earth, 139
movement, 139
obstacles, 140
space agencies, 138
space exploration, 137
spirit and

opportunity, 138
visual application (Visual

application, Mars Rover)

Index

682

MasCleaningAgent class, 267–268
Action() method, 278–279
Bid() method, 274–276
methods, 280
properties and fields, 269–270
ReactionTimeOnTick() method,

272–274
Run() method, 271
SetSocialLaw() method,

276–278
Message contract, 224
Minimax search algorithm

Alpha-Beta pruning (see Alpha-
Beta pruning)

backtracking, 597
description, 596
end-game position, 597
evaluation procedure, 599
execution, 598
game types, 596
pseudocode, 598
search tree, 597
utility value, 597
zero-sum games, 596

Misplaced Tiles, 583–584
Multi-agent organizations

description, 196
flat/democracy, 198
hierarchical, 197
hybrids, 198
modular, 198
subsumption, 198

Multi-agent systems (MAS)
agent architecture, 196

air traffic control scenario,
194–195

autonomous, 196
cleaning agent, 193
coalition, 195
communication (see

Communication)
definition, 194
discrete, 196
distributed artificial

intelligence, 193
efficiency, 196
flexibility, 197
modularity, 196
multi-agent organization,

196–198
platform, 195
problem solving, 196
real-world applications, 193
reliability, 197
reusability, 196
strategy, 195

Multi-layer networks
deep learning, 438
deep neural networks, 438
hidden layers, 439
layers, 435–436
layers and power, 438
sigmoid function, 437
underfitting, 439
XOR function, 437

Multi-objective clustering
inter-class distance, 500
intra-class distance, 500

Index

683

MOPs, 500–501
non-dominated vector, 500
objective function, 500
Pareto Frontier Builder (see

Pareto Frontier Builder)
Pareto optimal, 500–501
zoning, 499

Multi-objective optimization
problems (MOPs), 500–501

N
Negation logical

connective, 7
Negation normal form (NNF), 16

function, 31
Nnf() override

Not class, 33–34
Variable class, 35

ToNnf() abstract method
Formula abstract class, 32
And, Or classes, 32–33

transformation algorithm, 31
Nerve cells, 18
Neural networks (NNs)

activation function, 413
Adaline and GDS, 427–430
Adaline class, 432–435
artificial, 461
artificial intelligence, 411
biological neuron, 413
electrochemical signals, 412
face recognition, 461
graph, 414

HDR (see Handwritten digit
recognition (HDR))

iterative processes, 411
learning process, 461
multi-layer, 412, 435–439
neuron, 412
Perceptron algorithm (see

Perceptron algorithm)
single-neuron networks, 414
stochastic approximation,

431–432
training data set, 461

Neurons, 18
Normal forms, 16–17

O
Offline character recognition, 463
One-vs-All classification (OVA), 364
Online character recognition, 463
Operation contract, 224
Optical character recognition

(OCR), 461, 463
Osuna’s theorem, 349–351
Othello game

8 x 8 board, 602–603
creator, Goro Hasegawa, 602
heuristics

corner closeness, 606
corner occupancy, 605
mobility, 606
piece difference, 605
range of values, 606
utility value, 606–607

Index

684

imaginary arrangement, 604
initial configuration, 603
Minimax class

GetOptimalMove() and
Execute() methods, 630–631

properties and fields, 629
white pieces, 604–605
Windows Forms

AvailableMoves
AroundPiece() and
SetPieceCreatedBoard()
methods, 612–617

CheckUpDown(),
CheckLftRgt(),
CheckDiagonal(),
UpdateFlips(), SetPiece(),
FlipPieces(), and
UpdatePiecePos()
methods, 617–621

development, 629
EmptyCell(), Expand(),

AvailableMoves() and
IsLegalMove() methods,
610–611

handling paint and mouse-
click events, 625–626

HeuristicUtility(), 623
OthelloBoard class, 607–609
OthelloGui class, 623–624
UpdateBoardGui() and

AiPlayTimerTick()
methods, 626–628

UtilityValue, 622

P
Pareto Frontier Builder

bi-objective
optimization, 501

description, 501
functions, 501
iterations, step

values, 505–506
linkage mechanism, 503
stages, 502–503
strategy, 502–503
variations, 503–504

Pareto Frontier Linkage, 503
Pareto optimal, 500–501
Particle swarm optimization

(PSO), 522
Perceptron algorithm

activation function, 415
class constructor, 422–423
console application, 425–426
data set, 426
dot product, 419
equation of line, 416
fields/properties, 422
hyperplanes, 416, 423
learning process, 417
learning rate, 420
learning rule, 419
linear classifier, 416
pseudocode, 418–419
setting random values, 417
SingleNeuralNetwork abstract

class, 420–422

Othello game (cont.)

Index

685

fields and properties, 422
methods, 422–423
Perceptron class, 423–424

training data set, 417
training/learning process, 417
weight vector and bias, 426

Pigeonhole Principle, 67–68, 74
Policy iteration algorithm, 646–647
Polynomial kernel, 347
Prism, 596
Prisoner’s Dilemma (PD), 591–592
Proof assistant, 43
Proof checking, 44
Proof generation, 45
Propositional logic

ATP, 75
compound, 4
CNF, 5
contradiction/unsatisfiable, 5
definition, 3
examples, 3
formula (p ˅ q) ˄ (p ˅ ¬q) ˄ (¬p ˅

q) ˄ (¬p ˅ ¬r), 71–72
formula (p ˅ q ˅ ¬r) ˄ (p ˅ q ˅ r) ˄

(p ˅ ¬q) ˄ ¬p, 72
formula (p ˅ q ˅ r) ˄ (p ˅ q ˅ ¬r) ˄

(p ˅ ¬q ˅ r) ˄ (p ˅ ¬q ˅ ¬r) ˄
(¬p ˅ q ˅ r) ˄ (¬p ˅ q ˅ ¬r) ˄
(¬p ˅ ¬q ˅ r), 73

interpretation, 5
Name property to Variable class

and ToString() overrides
for Variable, Not, And, Or,
and Cnf classes, 69–70

Pigeonhole Principle, 67–68, 74
simple/atomic, 4
syntax of, 5
tautology/logic law, 5

Propositional variables, 4
Pruning process

error reduction
pseudocode, 395
subtree replacement, 396

rule pruning
attribute tests, 397
steps, 396

Q
Q-learning, 634

agent, behavior, 644
model-free learning, 644, 647
optimal policy, 648
problem-specific

knowledge, 647
Q value, 648
solving maze

ActionSelector() and
ActionToTuple()
methods, 658

AvailableActions()
method, 657

fields and constructor,
MazeGui class, 660–661

FreqStrategy() method,
656–657

InitQTable() method,
653–654

Index

686

method handling, tick event,
663–665

neural networks, 667
optimal policy, 650–651, 667
Paint event of Picture Box,

661–663
QAgent and Q values, 666
QAgent class, 651–653
Reset() method and

QAgentAction enum, 659
SelectAction() method,

655–656
testing, MazeGui

application, 665
state transitions, 644

R
Reinforcement learning (RL)

action–value function, 642
basic flow, 635
Bellman’s Equation, 641
classical planning, 641
components, 635
definition, 634
development, 635
Dynamic Programming

Equation, 641
machine learning paradigm, 634
MDPs (see Markov decision

processes (MDPs))
optimal action–value

function, 643

optimal policy, 643
optimal state–value

function, 642
optimal values, 643
policy, 642
policy iteration, 646–647
Principle of Optimality, 641
Q-learning (see Q-learning)
Reward Hypothesis, 635
state–value function, 642
tabular values, 640
TDA, 649
trial-and-error, 634
value function, 641
value iteration, 644–645

S
SATisfiability (SAT), 1, 44, 55
Scatter search (SS), 522
Sequential minimal

optimization (SMO)
All vs. All, 365
bias, 355
classifying hyperplane, 364
clipped value, 353
description, 348
ExamineExample() and

TakeStep() methods,
357–358

KKT conditions, 349–350
Lagrange multipliers,

constraints, 351–352
learning rate, 355

Q-learning (cont.)

Index

687

learning/update rule, 353–355
LFunctionValue() and Kernel.

Polynomial() methods,
361–362

LFunctionValue() method, bias
and weight vector, 362–363

linear constraint, 352–354
multi-class, 364–365
Osuna’s theorem, 349–351
OVA, 364
TakeStep() method, 358–361
TrainingBySmo() method,

LinearSvmClassifier class,
356–357

training data, 351
Service contract, 224
Service-oriented application

(SOA), 222–223
Simple Object Access Protocol

(SOAP), 223
Simple propositions, 4
Simulation

airport (see Airport simulation)
analytic approach, 290–291
definition, 290
DES (see Discreteet-event

simulation (DES))
flexibility, 290
modeling

classification, 289
definition, 289
features, 289

probabilistic distributions
discrete random variable, 294

exponential distribution, 295
normal distribution, 296
parameter μ, 294
parameter σ2, 294
Poisson process, 294–295

Single-linkage clustering, 485
Sliding Tiles Puzzle, 553–555

A* search algorithm
cost of shortest path, 584
Linear Conflict, 585
Linear Conflict + Manhattan

Distance heuristic, 586
Manhattan Distance, 585
Misplaced Tiles, 583–584
pattern database, 586–587
tree structure, 583

AI search methods, board game,
553, 568

Board classes, 569–573
Bs<T> class, 575–577
Expand() method, 574
forward and backward searches,

577–578
hardest 8-puzzle configuration,

578–579
IEqualityComparer<Board<T>>

interface, 575
Move() method, 574
node generation, 574
path variable, 574
reverse of swap

operation, 568
SolutionMet() method, 577–578
states and trees, 553–555

Index

688

S-metaheuristics algorithms
adaptive memory, 539
BGA, 542
clustering-related problem, 547
diversification, 539
HC-related components, 540
homogeneity, 542, 545
iteration, 539
iterative methods, 538
k data-set elements, 544
medium-and long-term

memories, 540–541
multi-objective optimization

problem, 542, 543
Pareto Frontier Builder, 543,

545–546
Tabu List data structure, 544
Toluca Valley, 544
zoning problem, 543–544

Social commitment, 218
Social norms/laws, 218–219
Speech Act Theory, 201
Stochastic gradient descent (SGD),

431–432
Subtree replacement, 396
Sum of Squared Errors (SSE),

488, 499
Supervised learning

classifier, 316–317
dataset, 633
image, properties, 633
linear regression, 316
phases, 315
prediction, 315–316
regressor, 316–317

tabular data, 633
training data, 315–316

Support vector machines (SVMs)
classifiers and regressors, 318
duality, 325
generalized Lagrangian, 326
hyperplane

bias/intercept, 321
canonical, 323
classes, 321
classification, 319–320,

323, 325
constraints, 323–324
normalization, 322
optimization problem, 324
support vectors, 321–323
weight vector, 321–322

Lagrange multipliers, 325–326
Lagrangian method, 325, 345
linear (see Linear SVM)
non-linear case

data mapping from 2D to 3D
space, 346

feature mapping, 346
Gaussian kernel, 348
hyperplane, 346
kernel function, 347, 348
polynomial feature

mapping, 347
polynomial kernel, 347
quadratic problem, 347
training data, 345

optimal classifying hyperplane,
343–344

optimization problem, 318, 327

Index

689

reformulation, training
data, 344

SMO (see Sequential minimal
optimization (SMO))

soft-margin and
hard-margin, 345

text-classification tasks, 319

T
Tabu Search (TS), see

S-metaheuristics
algorithms)

Take-Two Interactive (NBA2K
series), 549

Temporal difference algorithm
(TDA), 649

Temporal difference (TD), 634
Theory of Games and Economic

Behavior, 589
Touring machines, 131–132
Traveling Salesman Problem (TSP)

biological process, 526
Canonic property, 531, 533
chromosome/solution

encoding, 528
crossover operator, 531
GeneticAlgorithmTsp class,

533–537
InitialPopulation() method, 534
NewPopulation() method, 534
NP-Hard problem, 527
OffSprings() method, 534
problem-specific issues, 528

Solution class, 529–531, 533
US map, 526–527

Two-person zero-sum games, 589

U
Ubisoft (Assassin’s Creed), 549
Uninformed search algorithms

BFS, 556, 558–559
blind search, 556
BS, 559
DFS, 557–559
DLS, 559
Execute() lines, results, 568
Graph Theory toolbox, 556
IDS, 559
testing, console application,

566–567
Tree<T> class, 560–561
UninformedMethod<T>

abstract class, 561
Unsupervised learning

data structure, 633
methods, 479–480

V
Value iteration algorithm, 644–645
Visual application, Mars Rover, 137

actual water location, 189–190
diversification, 187–188
explore–exploit tradeoff, 188
intensification phase, 188
lower-left corner, water

location, 189

Index

690

new water-location belief, 191
plan (sequence of actions), 185
SenseRadius parameter, 184
set up, Mars Rover and world,

182–183
WanderThreshold, 191
water-location belief,

185–186, 191
water-location belief and

obstacle-location belief,
183–184, 186–187

Windows Form, 176–181, 184

W, X, Y, Z
Windows Communication

Foundation (WCF)
agents

adding, WCF service, 232
AgentCommunication

Service class, 237
Callback Contract

implementation, 239–240
class and interface, 232
client application, 243–245
Client UI in Windows

Forms, 245
console application, 241–242
create WCF service, 232
exchanging messages, 247
executing service and

clients, 246

implementation process, 231
lock statement, 237
Proxy implementation, 238
Publisher/Subscriber

pattern, 231
Send() method, 237
service and callback

contracts, 232–233
service implementation,

234–237
Subscriber() method, 237
synchronization context, 240
UpdatedListEventArgs,

240–241
API, 221
bindings, 227–228
CLR types, 222
contracts

description, 224
Duplex pattern, 225
IHelloWorld service, 227
One-Way pattern, 225
Request–Response

pattern, 225
service implementation,

226–227
types, 224

endpoints, 229
.NET Framework, 221
network application, 222
Publisher/Subscriber pattern,

221, 230–231

services, 222–223

Visual application, Mars Rover (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Logic & AI
	What Is Logic?
	Propositional Logic
	Logical Connectives
	Negation
	Conjunction
	Disjunction
	Implication
	Equivalence

	Laws of Propositional Logic
	Normal Forms
	Logic Circuits
	Practical Problem: Using Inheritance and C# Operators to Evaluate Logic Formulas
	Practical Problem: Representing Logic Formulas as Binary Decision Trees
	Practical Problem: Transforming a Formula into Negation Normal Form (NNF)
	Practical Problem: Transforming a Formula into Conjunctive Normal Form (CNF)
	Summary

	Chapter 2: Automated Theorem Proving & First-Order Logic
	Automated Theorem Proving
	Practical Problem: Clauses and CNFs Classes in C#
	DPLL Algorithm
	Practical Problem: Modeling the Pigeonhole Principle in Propositional Logic
	Practical Problem: Finding Whether a Propositional Logic Formula is SAT
	First-Order Logic
	Predicates in C#

	Practical Problem: Cleaning Robot
	Summary

	Chapter 3: Agents
	What’s an Agent?
	Agent Properties
	Types of Environments
	Agents with State
	Practical Problem: Modeling the Cleaning Robot as an Agent and Adding State to It
	Agent Architectures
	Reactive Architectures: Subsumption Architecture
	Deliberative Architectures: BDI Architecture
	Hybrid Architectures
	Touring Machines
	InteRRaP

	Summary

	Chapter 4: Mars Rover
	What’s a Mars Rover?
	Mars Rover Architecture
	Mars Rover Code
	Mars Rover Visual Application
	Summary

	Chapter 5: Multi-Agent Systems
	What’s a Multi-Agent System?
	Multi-Agent Organization
	Communication
	Speech Act Theory
	Agent Communication Languages (ACL)

	Coordination & Cooperation
	Negotiation Using Contract Net
	Social Norms & Societies

	Summary

	Chapter 6: Communication in a Multi-Agent System Using WCF
	Services
	Contracts
	Bindings
	Endpoints
	Publisher/Subscriber Pattern
	Practical Problem: Communicating Among Multiple Agents Using WCF
	Summary

	Chapter 7: Cleaning Agents: A Multi-Agent System Problem
	Program Structure
	Cleaning Task
	Cleaning Agent Platform
	Contract Net
	FIPA-ACL
	MAS Cleaning Agent
	GUI
	Running the Application
	Summary

	Chapter 8: Simulation
	What Is Simulation?
	Discrete-Event Simulation
	Probabilistic Distributions
	Practical Problem: Airport Simulation
	Summary

	Chapter 9: Support Vector Machines
	What Is a Support Vector Machine (SVM)?
	Practical Problem: Linear SVM in C#
	Imperfect Separation
	Non-linearly Separable Case: Kernel Trick
	Sequential Minimal Optimization Algorithm (SMO)
	Practical Problem: SMO Implementation
	Summary

	Chapter 10: Decision Trees
	What Is a Decision Tree?
	Generating a Decision Tree: ID3 Algorithm
	Entropy and Information Gain
	Practical Problem: Implementing the ID3 Algorithm
	C4.5 Algorithm
	Practical Problem: Implementing the C4.5 Algorithm

	Summary

	Chapter 11: Neural Networks
	What Is a Neural Network?
	Perceptron: Singular NN
	Practical Problem: Implementing the Perceptron NN
	Adaline & Gradient Descent Search
	Stochastic Approximation
	Practical Problem: Implementing Adaline NN
	Multi-layer Networks
	Backpropagation Algorithm
	Practical Problem: Implementing Backpropagation & Solving the XOR Problem

	Summary

	Chapter 12: Handwritten Digit Recognition
	What Is Handwritten Digit Recognition?
	Training Data Set
	Multi-layer NN for HDR
	Implementation
	Testing
	Summary

	Chapter 13: Clustering & Multi-objective Clustering
	What Is Clustering?
	Hierarchical Clustering
	Partitional Clustering
	Practical Problem: K-Means Algorithm
	Multi-objective Clustering
	Pareto Frontier Builder
	Summary

	Chapter 14: Heuristics & Metaheuristics
	What Is a Heuristic?
	Hill Climbing
	Practical Problem: Implementing Hill Climbing
	P-Metaheuristics: Genetic Algorithms
	Practical Problem: Implementing a Genetic Algorithm for the Traveling Salesman Problem
	S-Metaheuristics: Tabu Search
	Summary

	Chapter 15: Game Programming
	What Is a Video Game?
	Searching in Games
	Uninformed Search
	Practical Problem: Implementing BFS, DFS, DLS, and IDS
	Practical Problem: Implementing Bidirectional Search on the Sliding Tiles Puzzle
	Informed Search
	A* for the Sliding Tiles Puzzle
	Summary

	Chapter 16: Game Theory: Adversarial Search & Othello Game
	What Is Game Theory?
	Adversarial Search
	Minimax Search Algorithm
	Alpha-Beta Pruning
	Othello Game
	Practical Problem: Implementing the Othello Game in Windows Forms
	Practical Problem: Implementing the Othello Game AI Using Minimax
	Summary

	Chapter 17: Reinforcement Learning
	What Is Reinforcement Learning?
	Markov Decision Process
	Value/Action–Value Functions & Policies
	Value Iteration Algorithm
	Policy Iteration Algorithm
	Q-Learning & Temporal Difference
	Practical Problem: Solving a Maze Using Q-Learning
	Summary

	Index

